Resistance to Leaf and Yellow Rust in a Collection of Spanish Bread Wheat Landraces and Association with Ecogeographical Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Fungal Material
- -
- JC13: Lr1, Lr2c, Lr3, Lr3bg, Lr10, Lr14a, Lr14b, Lr17, Lr20, LrB/Lr2a, Lr3ka, Lr9, Lr11, Lr16, Lr18, Lr24, Lr26, Lr30.
- -
- HU14: Lr1, Lr3, Lr3bg, Lr3ka, Lr11, Lr14a, Lr14b, Lr17, Lr26, Lr30, LrB/Lr2a, Lr2c, Lr9, Lr10, Lr16, Lr18, Lr20, Lr24, Lr28.
- -
- PG14: Lr1, Lr3, Lr3bg, Lr10, Lr14a, Lr14b, Lr16, Lr17, Lr18, Lr20, Lr26, Lr30, LrB/Lr2a, Lr2c, Lr3ka, Lr9, Lr11, Lr18, Lr24, Lr28.
2.3. Experiment of Hypersensitive Resistance to Leaf Rust and Yellow Rust at Seedling Stage in the Greenhouse
2.4. Experiment of Partial Resistance to Leaf Rust at Seedling Stage in the Greenhouse
2.5. Leaf and Yellow Rust Evaluation at the Adult Plant Stage in the Field Experiments
2.6. Agronomic Characterization
2.7. Ecogeographical Characterization
2.8. Data Analyses
3. Results
3.1. Leaf Rust (Hypersensitive) Resistance of the Representative Subset at Seedling Stage in the Greenhouse
3.1.1. Correlations between Disease Parameters
3.1.2. Identification of Resistant Landraces to Leaf Rust
3.1.3. Relations between Seedling Resistance to Leaf Rust and Agronomic Traits
3.1.4. Relations between Leaf Rust Seedling Resistance and Ecogeographical Variables of the Geographical Area of Origin
3.1.5. Leaf Rust Resistance at Adult Plant Stage in the Field Experiments
3.1.6. Selection of Resistant Landraces to Leaf Rust Based on Ecogeographical Variables of the Collecting Site
3.2. Partial Resistance to Leaf Rust at Seedling Stage in the Greenhouse
Relations between Seedling Resistance, Agronomic Traits, and Ecogeographical Variables of the Collecting Site
3.3. Yellow Rust Resistance at Seedling Stage in the Greenhouse
3.3.1. Correlations between Disease Parameters
3.3.2. Identification of Resistant Landraces to Yellow Rust
3.3.3. Relations between Seedling Resistance and Agronomic Traits
3.3.4. Relations between Seedling Resistance and Ecogeographical Variables of the Collection Site
3.3.5. Yellow Rust Resistance at Adult Plant Stage in the Field Experiments
3.3.6. Selection of Resistant Landraces to Yellow Rust Based on Ecogeographical Variables of the Collecting Site
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pascual, L.; Ruiz, M.; López-Fernández, M.; Pérez-Penã, H.; Benavente, E.; Vázquez, J.F.; Sansaloni, C.; Giraldo, P. Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding. BMC Genom. 2020, 21, 122. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, M.; Rodriguez-Quijano, M.; Metakovsky, E.V.; Francisco Vazquez, J.; Carrillo, J.M. Polymorphism, variation and genetic identity of Spanish common wheat germplasm based on gliadin alleles. Field Crops Res. 2002, 79, 185–196. [Google Scholar] [CrossRef]
- Rivero, J. Los Cambios Técnicos del Cultivo de Cereal en España (1800–1930); Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2013; ISBN 978-84-491-1285-0.
- Gadea, M. Trigos Españoles; Instituto Nacional de Investigaciones Agronómicas: Madrid, Spain, 1954.
- Sánchez-Monge, E. Catálogo Genético de Trigos Españoles; Ministerio de Agricultura: Madrid, Spain, 1957.
- Ruiz, M.; Metakovsky, E.V.; Rodriguez-Quijano, M.; Vazquez, J.F.; Carrillo, J.M. Assessment of storage protein variation in relation to some morphological characters in a sample of Spanish landraces of common wheat (Triticum aestivum L. ssp. aestivum). Genet. Resour. Crop Evol. 2002, 49, 371–382. [Google Scholar] [CrossRef]
- López-Fernández, M.; Pascual, L.; Faci, I.; Fernández, M.; Ruiz, M.; Benavente, E.; Giraldo, P. Exploring the end-use quality potential of a collection of Spanish bread wheat landraces. Plants 2021, 10, 620. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Hovmøller, M.S.; Walter, S.; Bayles, R.A.; Hubbard, A.; Flath, K.; Sommerfeldt, N.; Leconte, M.; Czembor, P.; Rodriguez-Algaba, J.; Thach, T.; et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 2016, 65, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Kolmer, J. Leaf rust of wheat: Pathogen biology, variation and host resistance. Forests 2013, 4, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Schwessinger, B. Fundamental wheat stripe rust research in the 21st century. New Phytol. 2016, 213, 1625–1631. [Google Scholar] [CrossRef]
- Niks, R.E.; Parlevliet, J.E.; Lindhout, P.; Bai, Y. Breeding Crops with Resistance to Diseases and Pests; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; ISBN 978-90-8686-328-0. [Google Scholar]
- Dinh, H.X.; Singh, D.; Periyannan, S.; Park, R.F.; Pourkheirandish, M. Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl. Genet. 2020, 133, 2035–2050. [Google Scholar] [CrossRef] [PubMed]
- Gill, B.S.; Raupp, W.J.; Browder, L.E.; Cox, T.S. Registration of KS86WGRC02 leaf rust resistant hard red winter wheat germplasm. Crop Sci. 1988, 28, 207. [Google Scholar] [CrossRef]
- Klymiuk, V.; Yaniv, E.; Huang, L.; Raats, D.; Fatiukha, A.; Chen, S.; Feng, L.; Frenkel, Z.; Krugman, T.; Lidzbarsky, G.; et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzger, R.G.; Silbaugh, B.A. Inheritance of resistance to stripe rust and its association with brown glume color in Triticum aestivum L., ‘P.I. 178383’. Crop Sci. 1970, 10, 567–568. [Google Scholar] [CrossRef]
- Wang, L.; Ma, J.; Zhou, R.; Wang, X.; Jia, J. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I.178383 (Triticum aestivum L.). Euphytica 2002, 124, 71–73. [Google Scholar] [CrossRef]
- Rubiales, D.; Niks, R.E. Characterization of Lr34, a major gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Dis. 1995, 79, 1208–1212. [Google Scholar] [CrossRef]
- Kolmer, J.A.; Singh, R.P.; Garvin, D.F.; Viccars, L.; William, H.M.; Huerta-Espino, J.; Ogbonnaya, F.C.; Raman, H.; Orford, S.; Bariana, H.S.; et al. Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci. 2008, 48, 1841–1852. [Google Scholar] [CrossRef] [Green Version]
- Pascual, L.; Fernández, M.; Aparicio, N.; López-Fernández, M.; Fité, R.; Giraldo, P.; Ruiz, M. Development of a multipurpose core collection of bread wheat based on high-throughput genotyping data. Agronomy 2020, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- McNeal, F.H.; Konzak, C.F.; Smith, E.P.; Tate, W.S.; Russell, T.S. A Uniform System for Recording and Processing Cereal Research Data; US Agricultural Research Services: Wanshington, DC, USA, 1971; pp. 34–121.
- Peterson, R.F.; Campbell, A.B.; Hannan, A.E. A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can. J. Res. Sect. 1948, 26, 496–500. [Google Scholar] [CrossRef]
- Roelfs, A.P.; Singh, R.P.; Saari, E.E.; International Maize and Wheat Improvement Center. Rust Diseases of Wheat: Concepts and Methods of Disease Management; CIMMYT: Mexico City, Mexico, 1992; ISBN 968612747X. [Google Scholar]
- Ruiz, M.; Giraldo, P.; Royo, C.; Villegas, D.; Jose Aranzana, M.; Carrillo, J.M. Diversity and genetic structure of a collection of Spanish durum wheat landraces. Crop Sci. 2012, 52, 2262–2275. [Google Scholar] [CrossRef] [Green Version]
- Inventario Nacional de Recursos Fitogenéticos (INIA). Available online: http://webx.inia.es/web_inventario_nacional/Introduccioneng.asp (accessed on 7 December 2021).
- Parra-Quijano, M.; Torres, E.; Iriondo, J.M.; López, F. Capfitogen Tools. User Manual Version 2.0. International Treaty on Plant Genetic Resources for Food and Agriculture; FAO Books: Rome, Italy, 2015; ISBN 9789253082551. [Google Scholar]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Martínez-Moreno, F.; Solís, I. Wheat rust evolution in Spain: An historical review. Phytopathol. Mediterr. 2019, 58, 3–16. [Google Scholar] [CrossRef]
- Martinez, F.; Niks, R.E.; Moral, A.; Urban, J.M.; Rubiales, D. Search for partial resistance to leaf rust in a collection of ancient Spanish wheats. Hereditas 2001, 135, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Moreno, F.; Giraldo, P.; Cátedra, M.D.M.; Ruiz, M. Evaluation of leaf rust resistance in the Spanish core collection of tetraploid wheat landraces and association with ecogeographical variables. Agricutrue 2021, 11, 277. [Google Scholar] [CrossRef]
- Salah-Ud-Din Lodhi, S.; John, P.; Bux, H.; Kazi, A.M.; Gul, A. Resistance potential of Pakistani wheat landraces (Triticum aestivum L.) against stripe rust (Puccinia striformis) and karnal bunt (Tilletia indica). Pak. J. Bot. 2018, 50, 801–806. [Google Scholar]
- Beharav, A.; Golan, G.; Levy, A. Evaluation and variation in response to infection with Puccinia striiformis and Puccinia recondita of local wheat landraces. Euphytica 1997, 94, 287–293. [Google Scholar] [CrossRef]
- Bansal, U.K.; Arief, V.N.; DeLacy, I.H.; Bariana, H.S. Exploring wheat landraces for rust resistance using a single marker scan. Euphytica 2013, 194, 219–233. [Google Scholar] [CrossRef]
- Fatima, F.; McCallum, B.D.; Pozniak, C.J.; Hiebert, C.W.; McCartney, C.A.; Fedak, G.; You, F.M.; Cloutier, S. Identification of new leaf rust resistance loci in wheat and wild relatives by array-based SNP genotyping and association genetics. Front. Plant Sci. 2020, 11, 1728. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, A.; Chhokar, V.; Gangwar, O.P.; Bhardwaj, S.C.; Sivasamy, M.; Prasad, S.V.S.; Prakasha, T.L.; Khan, H.; Singh, R.; et al. Genome-wide association studies in diverse spring wheat panel for stripe, stem, and leaf rust resistance. Front. Plant Sci. 2020, 11, 748. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, C.; Cheng, Y.; Yao, F.; Long, L.; Wu, Y.; Li, J.; Li, H.; Wang, J.; Jiang, Q.; et al. Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genom. 2021, 22, 34. [Google Scholar] [CrossRef]
- Yang, F.; Liu, J.; Guo, Y.; He, Z.; Rasheed, A.; Wu, L.; Cao, S.; Nan, H.; Xia, X. Genome-wide association mapping of adult-plant resistance to stripe rust in common wheat (Triticum aestivum). Plant Dis. 2020, 104, 2174–2180. [Google Scholar] [CrossRef]
- McIntosh, R.; Wellings, C.R.; Park, R.F. Wheat Rusts, an Atlas of Resistance Genes; CSIRO Publications: Melbourne, Australia, 1995. [Google Scholar]
- Kolmer, J.A. Postulation of leaf rust resistance genes in selected soft red winter wheats. Crop Sci. 2003, 43, 1266–1274. [Google Scholar] [CrossRef]
- McCallum, B.D.; Seto-Goh, P. Physiologic specialization of Puccinia triticina, the causal agent of wheat leaf rust, in Canada in 2003. Can. J. Plant Pathol. 2006, 28, 208–213. [Google Scholar] [CrossRef]
- Martínez, F.; Niks, R.E.; Singh, R.P.; Rubiales, D. Characterisation of Lr46, a major gene conferring partial resistance to wheat leaf rust. Hereditas 2001, 135, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Foessel, S.A.; Lagudah, E.S.; Huerta-Espino, J.; Hayden, M.J.; Bariana, H.S.; Singh, D.; Singh, R.P. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor. Appl. Genet. 2011, 122, 239–249. [Google Scholar] [CrossRef]
- Ellis, J.G.; Lagudah, E.S.; Spielmeyer, W.; Dodds, P.N. The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 2014, 5, 641. [Google Scholar] [CrossRef] [Green Version]
- Ledesma-Ramírez, L.; Solis-Moya, E.; Ramírez-Pimentel, J.G.; Dreisigacker, S.; Huerta-Espino, J.; Aguirre-Mancilla, C.L.; Mariscal-Amaro, L.A. Relationship between the number of partial resistance genes and the response to leaf rust in wheat genotypes. Chil. J. Agric. Res. 2018, 78, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Herrera-Foessel, S.; Huerta-Espino, J.; Singh, S.; Bhavani, S.; Lan, C.; Basnet, B.R. Progress towards genetics and breeding for minor genes based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat. J. Integr. Agric. 2014, 13, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Danial, D.L. Aspects of Durable Resistance in Wheat to Yellow Rust. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1994. [Google Scholar]
- Bentivenga, G.; Spina, A.; Ammar, K.; Allegra, M.; Cacciola, S.O. Screening of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) Italian cultivars for susceptibility to Fusarium Head Blight incited by Fusarium graminearum. Plants 2021, 10, 68. [Google Scholar] [CrossRef]
- He, X.; Singh, P.K.; Schlang, N.; Duveiller, E.; Dreisigacker, S.; Payne, T.; He, Z. Characterization of Chinese wheat germplasm for resistance to Fusarium head blight at CIMMYT, Mexico. Euphytica 2014, 195, 383–395. [Google Scholar] [CrossRef]
- Yi, X.; Cheng, J.; Jiang, Z.; Hu, W.; Bie, T.; Gao, D.; Li, D.; Wu, R.; Li, Y.; Chen, S.; et al. Genetic analysis of fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Front. Plant Sci. 2018, 9, 573. [Google Scholar] [CrossRef] [PubMed]
- Chester, K. The Nature and Prevention of the Cereal Rust as Exemplified in the Leaf Rust of Wheat; Chronica Botanica Company: Waltham, MA, USA, 1946. [Google Scholar]
- Cromey, M.G. Infection and control of stripe rust in wheat spikes. N. Z. J. Crop Hortic. Sci. 1989, 17, 159–164. [Google Scholar] [CrossRef]
- Zadoks, J.C. Yellow rust on wheat studies in epidemiology and physiologic specialization. Tijdschr. Over Plantenziekten 1961, 67, 69–256. [Google Scholar] [CrossRef]
- Broers, L.H.M.; Haan, A.A. Relationship between the origin of European landraces and the level of partial resistance to wheat leaf rust. Plant Breed.-Z. Pflanzenzucht. 1994, 113, 75–78. [Google Scholar] [CrossRef]
- Te Beest, D.E.; Paveley, N.D.; Shaw, M.W.; van den Bosch, F. Disease–weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology 2008, 98, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Wiik, L.; Ewaldz, T. Impact of temperature and precipitation on yield and plant diseases of winter wheat in southern Sweden 1983–2007. Crop Prot. 2009, 28, 952–962. [Google Scholar] [CrossRef] [Green Version]
- Barkley, A.; Tack, J.; Nalley, L.L.; Bergtold, J.; Bowden, R.; Fritz, A. Weather, disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011. Agron. J. 2014, 106, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Caballero, L.; Martín, L.M.; Alvarez, J.B. Agrobiodiversity of hulled wheats in Asturias (North of Spain). Genet. Resour. Crop Evol. 2007, 54, 267–277. [Google Scholar] [CrossRef]
- Alvarez, J.B.; Guzmán, C. Advances in crop science and technology Spanish ancient wheats: A genetic resource for wheat quality breeding. Adv. Crop Sci. Tech. 2013, 1, 101. [Google Scholar] [CrossRef]
- El Bouhssini, M.; Street, K.; Joubi, A.; Ibrahim, Z.; Rihawi, F. Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genet. Resour. Crop Evol. 2009, 56, 1065–1069. [Google Scholar] [CrossRef]
- El Bouhssini, M.; Street, K.; Amri, A.; Mackay, M.; Ogbonnaya, F.C.; Omran, A.; Abdalla, O.; Baum, M.; Dabbous, A.; Rihawi, F. Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the Focused Identification of Germplasm Strategy (FIGS). Plant Breed. 2011, 130, 96–97. [Google Scholar] [CrossRef]
- Bhullar, N.K.; Zhang, Z.; Wicker, T.; Keller, B. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: A large scale allele mining project. BMC Plant Biol. 2010, 10, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Seedling Stage | Adult Stage | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter/Isolate | JC13 1 | HU14 | PG14 | Cordoba | Jerez | Granada | ||||||
No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | |
IT | 10 | 12 | 28 | 33 | 4 | 5 | - | - | - | - | - | - |
DS | 34 | 40 | 37 | 44 | 39 | 46 | 10 | 6 | 10 | 13 | 5 | 4 |
Disease Parameter | Isolate | Bioclimatic (Thermal Variables) | Bioclimatic (Hydric Variables) | Geophysical |
---|---|---|---|---|
IT | HU14 | - | - | Density (−) |
DS | HU14 | - | - | Density (−) |
DS | PG14 | Temperature seasonality (−) 1 | Precipitation of wettest month (+) | |
July maximum temperature (−) | Precipitation of wettest quarter (+) | |||
Annual temperature range (−) | March precipitation (+) | |||
Maximum temperature of hottest month (−) | Annual precipitation (+) | |||
Mean daily temperature range (−) | October precipitation (+) | |||
August maximum temperature (−) | September precipitation (+) | |||
December precipitation (+) | ||||
February precipitation (+) | ||||
Precipitation of coldest quarter (+) | ||||
April precipitation (+) | ||||
Precipitation of hottest quarter (+) | ||||
January precipitation (+) | ||||
August precipitation (+) |
Seedling Stage | Adult Plant Stage (Cordoba) | Adult Plant Stage (Jerez) | Adult Plant Stage (Granada) | |||||
---|---|---|---|---|---|---|---|---|
Whole set | Selected | Whole set | Selected | Whole set | Selected | Whole set | Selected | |
Bio_16 > 186.48 mm | 52 | 83 | 6 | 10 | 13 | 28 | 4 | 6 |
Isolate | Bioclimatic (Thermal Variables) | Bioclimatic (Hydric Variables) |
---|---|---|
EJ18 | Temperature seasonality (−) 1 | Precipitation of coldest quarter (+) |
Annual temperature range (−) | December precipitation (+) |
Seedling Stage | Adult Plant Stage | |||
---|---|---|---|---|
December precipitation (x) | Whole set | Selected | Whole set | Selected |
49.30 mm < x ≤ 101.14 mm | 20 | 56 | 75 | 83 |
x > 49.30 | 20 | 36 | 75 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Moreno, F.; Giraldo, P.; Nieto, C.; Ruiz, M. Resistance to Leaf and Yellow Rust in a Collection of Spanish Bread Wheat Landraces and Association with Ecogeographical Variables. Agronomy 2022, 12, 187. https://doi.org/10.3390/agronomy12010187
Martínez-Moreno F, Giraldo P, Nieto C, Ruiz M. Resistance to Leaf and Yellow Rust in a Collection of Spanish Bread Wheat Landraces and Association with Ecogeographical Variables. Agronomy. 2022; 12(1):187. https://doi.org/10.3390/agronomy12010187
Chicago/Turabian StyleMartínez-Moreno, Fernando, Patricia Giraldo, Cristina Nieto, and Magdalena Ruiz. 2022. "Resistance to Leaf and Yellow Rust in a Collection of Spanish Bread Wheat Landraces and Association with Ecogeographical Variables" Agronomy 12, no. 1: 187. https://doi.org/10.3390/agronomy12010187
APA StyleMartínez-Moreno, F., Giraldo, P., Nieto, C., & Ruiz, M. (2022). Resistance to Leaf and Yellow Rust in a Collection of Spanish Bread Wheat Landraces and Association with Ecogeographical Variables. Agronomy, 12(1), 187. https://doi.org/10.3390/agronomy12010187