Exploiting Plant Functional Diversity in Durum Wheat–Lentil Relay Intercropping to Stabilize Crop Yields under Contrasting Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Soil, and Climate
2.2. Cropping and Field Design
2.3. Plant Measurements, Processing, and Calculations
2.4. Statistical Analyses
3. Results
3.1. Effect of Crop Stand Density Type on Durum Wheat Tillering Index (TI)
3.2. Effect of Relay Intercropping on Aboveground Crop Biomass at Harvest
3.3. Effect of Relay Intercropping on the Total Grain Yield
3.4. Effect of Relay Intercropping on Crop Harvest Index (HI) and Durum Wheat Spike Productivity
3.5. Effect of Relay Intercropping on Shoot P Concentration at Flowering
3.6. Effect of Crop Density Variation in Intercropping on Land Equivalent Ratio, Aggressivity (A), and Competition Ratio (CR)
3.7. Effect of Relay Intercropping on Weed Biomass at Crop Harvest
3.8. PCA-Variation among Productivity Components in Sole and Intercropped Systems
4. Discussion
4.1. Intercrop Productivity under Contrasting Climatic Conditions
4.2. Intercropping Densities and Competition
4.3. Intercrops’ Functional Trait Complementarity: P Uptake and Weed Control
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Escamilla, R. Food Security and the 2015–2030 Sustainable Development Goals: From Human to Planetary Health. Curr. Dev. Nutr. 2017, 1, e000513. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Chen, P.; Du, Q.; Liu, X.; Zhou, L.; Hussain, S.; Lei, L.; Song, C.; Wang, X.; Liu, W.; Yang, F.; et al. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS ONE 2017, 12, e0184503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, M.; Anjum, S.A.; Hussain, S.; Cerdà, A.; Ashraf, U. Relay cropping as a sustainable approach: Problems and opportunities for sustainable crop production. Environ. Sci. Pollut. Res. 2017, 24, 6973–6988. [Google Scholar] [CrossRef]
- Amossé, C.; Jeuffroy, M.H.; David, C. Relay intercropping of legume cover crops in organic winter wheat: Effects on performance and resource availability. Field Crop. Res. 2013, 145, 78–87. [Google Scholar] [CrossRef]
- Kammoun, B.; Journet, E.-P.; Justes, E.; Bedoussac, L. Cultivar Grain Yield in Durum Wheat-Grain Legume Intercrops Could Be Estimated From Sole Crop Yields and Interspecific Interaction Index. Front. Plant Sci. 2021, 12, 128. [Google Scholar] [CrossRef]
- Gecaitė, V.; Arlauskienė, A.; Cesevičienė, J. Competition Effects and Productivity in Oat–Forage Legume Relay Intercropping Systems under Organic Farming Conditions. Agriculture 2021, 11, 99. [Google Scholar] [CrossRef]
- Yang, C.; Fraga, H.; van Ieperen, W.; Santos, J.A. Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal. Agric. Syst. 2020, 182, 102844. [Google Scholar] [CrossRef]
- Loïc, V.; Laurent, B.; Etienne-Pascal, J.; Eric, J. Yield gap analysis extended to marketable grain reveals the profitability of organic lentil-spring wheat intercrops. Agron. Sustain. Dev. 2018, 38, 39. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.-Q.; Zheng, C.-C.; Postma, J.A.; Lu, W.L.; Gao, Q.; Gao, Y.Z.; Zhang, J.J. Nitrogen acquisition, fixation and transfer in maize/alfalfa intercrops are increased through root contact and morphological responses to interspecies competition. J. Integr. Agric. 2021, 20, 2240–2254. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Kwiecinska-Poppe, E.; Staniak, M.; Rózyło, K.; Rusecki, H. Supporting crop and different row spacing as factors influencing weed infestation in lentil crop and seed yield under organic farming conditions. Agronomy 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Tilman, D.; Lambers, H.; Zhang, F.-S. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytol. 2014, 203, 63–69. [Google Scholar] [CrossRef]
- Bargaz, A.; Noyce, G.L.; Fulthorpe, R.; Carlsson, G.; Furze, J.R.; Jensen, E.S.; Dhiba, D.; Isaac, M.E. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Appl. Soil Ecol. 2017, 120, 179–188. [Google Scholar] [CrossRef]
- Leoni, F.; Hazrati, H.; Fomsgaard, I.S.; Moonen, A.C.; Kudsk, P. Determination of the Effect of Co-cultivation on the Production and Root Exudation of Flavonoids in Four Legume Species Using LC-MS/MS Analysis. J. Agric. Food Chem. 2021, 69, 9208–9219. [Google Scholar] [CrossRef]
- Tosti, G.; Guiducci, M. Durum wheat–faba bean temporary intercropping: Effects on nitrogen supply and wheat quality. Eur. J. Agron. 2010, 33, 157–165. [Google Scholar] [CrossRef]
- Mariotti, M.; Masoni, A.; Ercoli, L.; Arduini, I. Optimizing forage yield of durum wheat/field bean intercropping through N fertilization and row ratio. Grass Forage Sci. 2012, 67, 243–254. [Google Scholar] [CrossRef]
- Latati, M.; Dokukin, P.; Aouiche, A.; Rebouh, N.Y.; Takouachet, R.; Hafnaoui, E.; Hamdani, F.Z.; Bacha, F.; Ounane, S.M. Species interactions improve above-ground biomass and land use efficiency in intercropped wheat and chickpea under low soil inputs. Agronomy 2019, 9, 765. [Google Scholar] [CrossRef] [Green Version]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Pellegrini, F.; Carlesi, S.; Nardi, G.; Arberi, P.B. Wheat-clover temporary intercropping under Mediterranean conditions affects wheat biomass, plant nitrogen dynamics and grain quality. Eur. J. Agron. 2021, 130, 126347. [Google Scholar] [CrossRef]
- Wang, L.; Gruber, S.; Claupein, W. Optimizing lentil-based mixed cropping with different companion crops and plant densities in terms of crop yield and weed control. Org. Agric. 2012, 2, 79–87. [Google Scholar] [CrossRef]
- Carr, P.M.; Gardner, J.C.; Schatz, B.G.; Zwinger, S.W.; Guldan, S.J. Grain yield and weed biomass of a wheat-lentil intercrop. Agron. J. 1995, 87, 574–579. [Google Scholar] [CrossRef]
- Faucon, M.P.; Houben, D.; Lambers, H. Plant Functional Traits: Soil and Ecosystem Services. Trends Plant Sci. 2017, 22, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Nargis, A.; Alim, M.A.; Islam, M.M.; Zabun, N.; Maksuder, R.; Hossain, A.S.M.I. Iqbal Hossain Evaluation of Mixed and Intercropping of Lentil and Wheat. J. Agron. 2004, 3, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Arduini, I.; Ercoli, L.; Mariotti, M.; Masoni, A. Sowing date affect spikelet number and grain yield of durum wheat. Cereal Res. Commun. 2009, 37, 469–472. [Google Scholar] [CrossRef]
- Soil Survey Stuff (Ed.) Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; United States Department of Agriculture (USDA): Washinghton, DC, USA, 1999; Volume 2.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; Volume 3, pp. 961–1010. ISBN 9780891188667. [Google Scholar]
- Olsen, S. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954; Volume 939.
- Agroservice, S. Lentil cv. Elsa—Agroservice SPA. Available online: https://www.agroservicespa.it/en/prodotti/view/elsa_lenticchia_eng.html (accessed on 16 December 2021).
- Agroservice, S. Durum Wheat cv. Minosse—Agroservice SPA. Available online: https://www.agroservicespa.it/en/prodotti/view/minosse_frumento_duro_eng.html (accessed on 16 December 2021).
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T.; et al. The BBCH System to Coding the Phenological Growth Stages of Plants—History and Publications, 2nd ed.; Meier, U., Ed.; Federal Biological Research Centre for Agriculture and Forestry: Berlin, German, 2009; Volume 61. [Google Scholar]
- Lazzaro, M.; Bàrberi, P.; Dell’Acqua, M.; Pè, M.E.; Limonta, M.; Barabaschi, D.; Cattivelli, L.; Laino, P.; Vaccino, P. Unraveling diversity in wheat competitive ability traits can improve integrated weed management. Agron. Sustain. Dev. 2019, 39, 6. [Google Scholar] [CrossRef] [Green Version]
- Willey, R.; Rao, M. A competitive ratio for quantifying competition between intercrops. Exp. Agric. 1980, 16, 117–125. [Google Scholar] [CrossRef]
- Dariush, M.; Ahad, M.; Meysam, O. Assessing the Land Equivalent Ratio (Ler) of Two Corn [Zea mays L.] Varieties Intercropping At Various Nitrogen Levels in Karaj, Iran. J. Cent. Eur. Agric. 2006, 7, 359–364. [Google Scholar] [CrossRef]
- McGilchrist, C. Analysis of competition experiments. Biometrics 1965, 1, 975–985. [Google Scholar] [CrossRef]
- Dhima, K.V.; Lithourgidis, A.S.; Vasilakoglou, I.B.; Dordas, C.A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crop. Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 25 July 2021).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means. Available online: https://github.com/rvlenth/emmeans (accessed on 25 July 2021).
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Hartig, F.; Lohse, L. Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. Available online: https://cran.r-project.org/package=DHARMa (accessed on 25 July 2021).
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Dong, S. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crop. Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
- Koskey, G.; Mburu, S.W.; Njeru, E.M.; Kimiti, J.M.; Ombori, O.; Maingi, J.M. Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of eastern Kenya. Front. Plant Sci. 2017, 8, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskey, G.; Mburu, S.W.; Awino, R.; Njeru, E.M.; Maingi, J.M. Potential Use of Beneficial Microorganisms for Soil Amelioration, Phytopathogen Biocontrol, and Sustainable Crop Production in Smallholder Agroecosystems. Front. Sustain. Food Syst. 2021, 5, 130. [Google Scholar] [CrossRef]
- Li, Y.; Ran, W.; Zhang, R.; Sun, S.; Xu, G. Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant Soil 2009, 315, 285–296. [Google Scholar] [CrossRef]
- Xue, Y.; Xia, H.; Christie, P.; Zhang, Z.; Li, L.; Tang, C. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: A critical review. Ann. Bot. 2016, 117, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Njeru, E. Crop Diversification: A Potential Strategy To Mitigate Food Insecurity by Smallholders in sub-Saharan Africa. J. Agric. Food Syst. Community Dev. 2013, 3, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.A.; Garrity, D.P. Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crop. Res. 1993, 34, 319–334. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Banik, P.; Midya, A.; Sarkar, B.K.; Ghose, S.S. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur. J. Agron. 2006, 24, 325–332. [Google Scholar] [CrossRef]
Year | Intercropping System | Tillering Index (TI) | Aboveground Crop Biomass (t ha−1) at Harvest | ||
---|---|---|---|---|---|
Lentil | Wheat | Total Intercrop | |||
2019 | Weeded sole crop | - | - | - | - |
Sole crop | 1.64 (0.11) bA | 4.26 (0.53) aA | 12.87 (0.67) aA | - | |
100% Mix | 1.86 (0.22) bA | 1.93 (0.24) bB | 11.62 (0.38) abA | 13.55 (0.47) aA | |
33% Mix | 2.69 (0.40) aA | 2.97 (0.28) abA | 11.06 (0.45) bA | 14.03 (0.23) aA | |
2020 | Weeded sole crop | - | 3.59 (0.25) aA | - | - |
Sole crop | 0.89 (0.06) bB | 2.27 (0.31) bB | 7.30 (0.33) aB | - | |
100% Mix | 0.76 (0.03) bB | 3.04 (0.33) abA | 5.07 (0.44) bB | 8.12 (0.19) aB | |
33% Mix | 1.26 (0.09) aB | 3.03 (0.25) abA | 4.56 (0.29) bB | 7.59 (0.73) aB | |
2021 | Weeded sole crop | - | 2.85 (0.17) bA | - | - |
Sole crop | 1.61 (0.23) bA | 4.25 (0.34) aA | 5.30 (0.32) aC | - | |
100% Mix | 1.16 (0.09) bA | 3.37 (0.25) abA | 5.14 (0.38) aB | 8.50 (0.39) aB | |
33% Mix | 2.32 (0.29) aA | 3.49 (0.18) abA | 5.03 (0.32) aB | 8.52 (0.37) aB | |
p-values | Intercropping | <0.0001 | 0.047 | <0.0001 | 0.718 |
Year | <0.0001 | 0.004 | <0.0001 | <0.0001 | |
Int. × Year | 0.45 | <0.0001 | 0.016 | 0.345 |
Year | Intercropping System | Crop Grain Yield (t ha−1) | Harvest Index (HI) | |||
---|---|---|---|---|---|---|
Lentil | Wheat | Total Intercrop | Lentil HI | Wheat HI | ||
2019 | Weeded sole crop | - | - | - | - | - |
Sole crop | 1.04 (0.12) aA | 5.20 (0.26) aA | - | 0.253 (0.031) bA | 0.404 (0.005) aB | |
100% Mix | 0.77 (0.11) aA | 4.49 (0.15) abA | 5.26 (0.24) aA | 0.396 (0.018) aA | 0.386 (0.003) aB | |
33% Mix | 1.24 (0.14) aA | 4.33 (0.15) bA | 5.57 (0.11) aA | 0.414 (0.015) aA | 0.392 (0.007) aB | |
2020 | Weeded sole crop | 0.79 (0.07) aA | - | - | 0.220 (0.010) bB | - |
Sole crop | 0.28 (0.08) bB | 2.82 (0.13) aB | - | 0.115 (0.018) cB | 0.386 (0.002) aB | |
100% Mix | 1.20 (0.14) aA | 1.95 (0.17) bB | 3.15 (0.10) aB | 0.391 (0.013) aA | 0.383 (0.001) aB | |
33% Mix | 1.05 (0.10) aA | 1.68 (0.11) bB | 2.73 (0.28) aC | 0.342 (0.011) aB | 0.368 (0.003) aB | |
2021 | Weeded sole crop | 0.96 (0.08) aA | - | - | 0.331 (0.014) aA | - |
Sole crop | 1.29 (0.10) aA | 2.32 (0.15) bB | - | 0.308 (0.016) aA | 0.438 (0.011) aA | |
100% Mix | 1.17 (0.11) aA | 2.23 (0.18) aB | 3.40 (0.24) aB | 0.338 (0.012) aB | 0.433 (0.011) aA | |
33% Mix | 1.24 (0.07) aA | 2.21 (0.15) aB | 3.45 (0.18) aB | 0.357 (0.010) aAB | 0.438 (0.011) aA | |
p-values | Intercropping | 0.01 | <0.0001 | 0.579 | <0.0001 | 0.351 |
Year | 0.0002 | 0.001 | <0.0001 | <0.0001 | <0.0001 | |
Int. × Year | <0.0001 | 0.708 | <0.0001 | <0.0001 | 0.604 |
Year | Intercropping System | Phosphorus (P) Concentration (%) | |
---|---|---|---|
Lentil | Durum Wheat | ||
2019 | Weeded sole crop | - | - |
Sole control | 0.349 (0.029) aA | 0.199 (0.012) bA | |
100% Mix | 0.294 (0.005) bA | 0.216 (0.012) abA | |
33% Mix | 0.333 (0.005) bA | 0.229 (0.003) aA | |
2020 | Weeded sole crop | 0.266 (0.010) bA | - |
Sole control | 0.344 (0.007) aA | 0.136 (0.007) bB | |
100% Mix | 0.284 (0.012) bA | 0.146 (0.013) abB | |
33% Mix | 0.284 (0.014) bA | 0.164 (0.004) aB | |
p-values | Intercropping | <0.0001 | 0.002 |
Year | 0.06 | <0.0001 | |
Int. × Year | 0.143 | 0.906 |
Year | Intercropping System | Land Equivalent Ratio (LER) | Aggressivity (A) | Competition Ratio (CR) | |||
---|---|---|---|---|---|---|---|
LERwheat | LERlentil | Total LER | Awheat | CRwheat | CRlentil | ||
2019 | 100% Mix | 0.86 (0.01) aAB | 0.78 (0.18) aB | 1.64 (0.18) aB | 0.04 (0.09) aA | 1.29 (0.27) bA | 0.91 (0.21) aA |
33% Mix | 0.83 (0.03) aAB | 1.19 (0.09) aB | 2.02 (0.09) aB | −0.69 (0.06) aA | 2.15 (0.17) aA | 0.47 (0.04) bA | |
2020 | 100% Mix | 0.70 (0.06) aB | 5.35 (1.58) aA | 6.05 (1.61) aA | −2.32 (0.78) aB | 0.16 (0.03) bB | 7.51 (1.90) aB |
33% Mix | 0.61 (0.07) aB | 5.87 (2.20) aA | 6.48 (2.25) aA | −4.26 (1.64) aB | 0.53 (0.16) aB | 2.98 (0.94) bB | |
2021 | 100% Mix | 0.97 (0.09) aA | 0.91 (0.14) aB | 1.88 (0.14) aB | 0.03 (0.09) aA | 1.21 (0.26) bA | 0.99 (0.19) aA |
33% Mix | 0.99 (0.13) aA | 0.99 (0.11) aB | 1.98 (0.08) aB | −0.50 (0.11) aA | 3.41 (0.89) aA | 0.38 (0.09) bA | |
p-values | Intercropping | 0.593 | 0.050 | 0.163 | 0.067 | 0.002 | <0.0001 |
Year | 0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Int. × Year | 0.736 | 0.971 | 0.983 | 0.499 | 0.07 | 0.969 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koskey, G.; Leoni, F.; Carlesi, S.; Avio, L.; Bàrberi, P. Exploiting Plant Functional Diversity in Durum Wheat–Lentil Relay Intercropping to Stabilize Crop Yields under Contrasting Climatic Conditions. Agronomy 2022, 12, 210. https://doi.org/10.3390/agronomy12010210
Koskey G, Leoni F, Carlesi S, Avio L, Bàrberi P. Exploiting Plant Functional Diversity in Durum Wheat–Lentil Relay Intercropping to Stabilize Crop Yields under Contrasting Climatic Conditions. Agronomy. 2022; 12(1):210. https://doi.org/10.3390/agronomy12010210
Chicago/Turabian StyleKoskey, Gilbert, Federico Leoni, Stefano Carlesi, Luciano Avio, and Paolo Bàrberi. 2022. "Exploiting Plant Functional Diversity in Durum Wheat–Lentil Relay Intercropping to Stabilize Crop Yields under Contrasting Climatic Conditions" Agronomy 12, no. 1: 210. https://doi.org/10.3390/agronomy12010210
APA StyleKoskey, G., Leoni, F., Carlesi, S., Avio, L., & Bàrberi, P. (2022). Exploiting Plant Functional Diversity in Durum Wheat–Lentil Relay Intercropping to Stabilize Crop Yields under Contrasting Climatic Conditions. Agronomy, 12(1), 210. https://doi.org/10.3390/agronomy12010210