Varying Effects of Organic Waste Products on Yields of Market Garden Crops in a 4-Year Field Experiment under Tropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Physical and Chemical Parameters
2.3. Experimental Design
- −
- MF: mineral fertilisation treatment based on N-P2O5-K2O (10-10-20) with added mineral N (a form of urea) and K (a form of potassium sulphate);
- −
- Sewage sludge (SS)-1: dried sewage sludge with added mineral N and K;
- −
- SS-2: double the SS-1 dose;
- −
- Poultry litter (PL)-1: poultry litter with added mineral N and K;
- −
- PL-2: double the PL-1 dose;
- −
- Anaerobic digestate (AD)-1: digestate from anaerobic digestion of cow manures with added mineral N and K;
- −
- AD-2: double the AD-1 dose.
2.4. Plant Materials and Application of Treatments
2.5. Cultivation Cycle and Climatic Data
2.6. Yield, Chemical Analysis of Plants and Statistical Analysis of Data
3. Results
3.1. Effects of Treatment Inputs on Soil Parameters after 4 Years of Cultivation
3.2. Effects of Treatment and Campaign Variables and Their Interaction on Crop Yields
3.3. Changes in the Yields of the Three Crops over the Four Campaigns
3.4. Evolution of Nitrogen Concentrations in Vegetables during the Campaigns in the Different Treatments Applied
4. Discussion
4.1. Effects of High Doses of OWP and Mineral Supplementation on Yields
4.2. Contrasting Effects on Crop Yields Depending on the Type of OWP
4.3. Effect of Repeated Applications of OWP after Several Cropping Campaigns
4.4. The Strong Impact of Inter-Annual Temperature Variability on Yields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Reeve, J.R.; Hoagland, L.A.; Villalba, J.J.; Carr, P.M.; Atucha, A.; Cambardella, C.; Delate, K. Organic farming, soil health, and food quality: Considering possible links. Adv. Agron. 2016, 137, 319–367. [Google Scholar] [CrossRef]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Diallo, F.; Masse, D.; Diarra, K.; Feder, F. Impact of organic fertilisation on lettuce biomass production according to the cultivation duration in tropical soils. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2020, 70, 215–223. [Google Scholar] [CrossRef]
- Atakora, K.; Agyarko, K.; Asiedu, E.K. Influence of grasscutter, chicken manure and NPK fertilizer on the physical properties of a Chromic Luvisol, growth and yield of carrot (Daucus carota). Int. J. Plant Soil Sci. 2014, 3, 197–204. [Google Scholar] [CrossRef]
- Cesarano, G.; De Filippis, F.; La Storia, A.; Scala, F.; Bonanomi, G. Organic amendment type and application frequency affect crop yields, soil fertility and microbiome composition. Appl. Soil Ecol. 2017, 120, 254–264. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, M.; Wang, B.; Yang, X.; Huang, S.; Gao, S. Long-term evaluation of manure application on maize yield and nitrogen use efficiency in China. Soil Sci. Soc. Am. J. 2011, 75, 1562–1573. [Google Scholar] [CrossRef]
- Bacca, A.; Ceretta, C.A.; Kulmann, M.S.D.S.; Souza, R.O.S.; Ferreira, P.A.A.; Rodrigues, L.A.T.; Marchezan, C.; Garlet, P.L.; Brunetto, G. Residual and immediate effect after 16 applications of organic sources on yield and nitrogen use efficiency in black oat and corn. Rev. Bras. Ciência Solo 2020, 44, 44. [Google Scholar] [CrossRef]
- Marchezan, C.; Ferreira, P.A.; Silva, L.S.; Bacca, A.; Krug, A.V.; Nicoloso, F.T.; Camila, P.; Tarouco, C.P.; Tiecher, T.L.; Brunetto, G.; et al. Nitrogen availability and physiological response of corn after 12 years with organic and mineral fertilization. J. Soil Sci. Plant Nutr. 2020, 20, 979–989. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Dai, H.; Cui, J.; Wang, L.; Sui, P. Effects of Organic Amendments on the Improvement of Soil Nutrients and Crop Yield in Sandy Soils during a 4-Year Field Experiment in Huang-Huai-Hai Plain, Northern China. Agronomy 2021, 11, 157. [Google Scholar] [CrossRef]
- Avadí, A.; Hodomihou, N.R.; Amadji, G.L.; Feder, F. LCA and nutritional assessment of southern Benin market vegetable gardening across the production continuum. Int. J. Life Cycle Assess. 2021, 26, 1977–1997. [Google Scholar] [CrossRef]
- Feder, F. Recycling Organic Waste Products in a Tropical Context. In Soils as a Key Component of the Critical Zone 5: Degradation and Rehabilitation; Valentin, C., Ed.; ISTE Éditions: London, UK, 2018. [Google Scholar] [CrossRef]
- Lashermes, G.; Nicolardot, B.; Parnaudeau, V.; Thuriès, L.; Chaussod, R.; Guillotin, M.L.; Linères, M.; Mary, B.; Metzger, L.; Morvan, T.; et al. Typology of exogenous organic matters based on chemical and biochemical composition to predict potential nitrogen mineralization. Bioresour. Technol. 2010, 101, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Gentile, R.M.; Vanlauwe, B.; Six, J. Integrated Soil Fertility Management: Aggregate carbon and nitrogen stabilization in differently textured tropical soils. Soil Biol. Biochem. 2013, 67, 124–132. [Google Scholar] [CrossRef]
- Feder, F. Soil map update: Procedure and problems encountered for the island of Réunion. Catena 2013, 110, 215–224. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility: A review. Agron. Sustain. Dev. 2011, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Li, X.; Horlacher, D.; Liebig, H.-P. Effects of Different Nitrogen Rates on Open-Field Vegetable Growth and Nitrogen Utilization in the North China Plain. Commun. Soil Sci. Plant Anal. 2004, 35, 1725–1740. [Google Scholar] [CrossRef]
- Colombari, L.F.; Lanna, N.B.; Guimarães, L.R.; Cardoso, A. Production and quality of carrot in function of split application of nitrogen doses in top dressing. Hortic. Bras. 2018, 36, 306–312. [Google Scholar] [CrossRef]
- Feder, F.; Bochu, V.; Findeling, A.; Doelsch, E. Repeated pig manure applications modify nitrate and chloride competition and fluxes in a Nitisol. Sci. Total Environ. 2015, 511, 238–248. [Google Scholar] [CrossRef]
- Özyazici, M.A. Effects of sewage sludge on plant yield in the wheat-white cabbage-tomato rotation system. Eurasian J. Soil Sci. 2013, 2, 35–44. [Google Scholar] [CrossRef]
- Kabil, E.M.; Faize, M.; Makroum, K.; Assobhei, O.; Rafrafi, M.; Loizidou, M.; Aajjane, A. Effect of compost made with sludge and organic residues on soil and sugar beet crop in MoroccoEffet du compost à base de boues et de résidus organiques sur le sol et les betteraves sucrières au Maroc. J. Agron. 2015, 14, 264–271. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No 106; FAO: Rome, Italy, 2015. [Google Scholar]
- AFNOR. Évaluation de la Qualité des Sols. In Recueil Normes et Réglementation, 1: Méthodes D’analyse Chimique; AFNOR: Paris, France, 2004. [Google Scholar]
- Alary, K.; Babre, D.; Caner, L.; Feder, F.; Szwarc, M.; Naudan, M.; Bourgeon, G. Pretreatment of Soil Samples rich in Short-Range-Order Minerals before Particle-Size Analysis by the Pipette Method. Pedosphere 2013, 23, 20–28. [Google Scholar] [CrossRef]
- Feder, F.; Oliver, R.; Rakotoarisoa, J.; Muller, B.; Scopel, E. Geochemical properties of variable charge soil explain the low nitrogen bioavailability. Commun. Soil Sci. Plant Anal. 2020, 51, 2022–2037. [Google Scholar] [CrossRef]
- Nicoletto, C.; Santagata, S.; Zanin, G.; Sambo, P. Effect of the anaerobic digestion residues use on lettuce yield and quality. Sci. Hortic. 2014, 180, 207–213. [Google Scholar] [CrossRef]
- Feder, F. Effects of Fertilisation Using Organic Waste Products with Mineral Complementation on Sugarcane Yields and Soil Properties in a 4 Year Field Experiment. Agriculture 2021, 11, 985. [Google Scholar] [CrossRef]
- Duan, J.; Shao, Y.; He, L.; Li, X.; Hou, G.; Li, S.; Xie, Y. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci. Total Environ. 2019, 697, 134088. [Google Scholar] [CrossRef]
- Elia, A.; Conversa, G. Agronomic and physiological responses of a tomato crop to nitrogen input. Eur. J. Agron. 2012, 40, 64–74. [Google Scholar] [CrossRef]
- Moreira, M.A.; dos Santos, C.A.P.; Lucas, A.A.T.; Bianchini, F.G.; de Souza, I.M.; Viégas, P.R.A. Lettuce production according to different sources of organic matter and soil cover. Agric. Sci. 2014, 5, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Andriolo, J.L.; Godoi, R.D.S.; Cogo, C.M.; Bortolotto, O.C.; da Luz, G.L.; Madaloz, J.C. Growth and development of lettuce plants at high NH4+: NO3− ratios in the nutrient solution. Hortic. Bras. 2006, 24, 352–355. [Google Scholar] [CrossRef] [Green Version]
- Siddique, M.T.; Robinson, J.S. Phosphorus sorption and availability in soils amended with animal manures and sewage sludge. J. Environ. Qual. 2003, 32, 1114–1121. [Google Scholar] [CrossRef]
- Herencia, J.F.; Maqueda, C. Effects of time and dose of organic fertilizers on soil fertility, nutrient content and yield of vegetables. J. Agric. Sci. 2016, 154, 1343. [Google Scholar] [CrossRef]
- Feder, F.; Findeling, A. Retention and leaching of nitrate and chloride in an andic soil after pig manure amendment. Eur. J. Soil Sci. 2007, 58, 393–404. [Google Scholar] [CrossRef]
- Kirchmann, H.; Kätterer, T.; Bergström, L.; Börjesson, G.; Bolinder, M.A. Flaws and criteria for design and evaluation of comparative organic and conventional cropping systems. Field Crop. Res. 2016, 186, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Makinde, A.I.; Jokanola, O.O.; Adedeji, J.A.; Awogbade, A.L.; Adekunle, A.F. Impact of organic and inorganic fertilizers on the yield, lycopene and some minerals in tomato (Lycopersicum esculentum mill) fruit. Eur. J. Agric. For. Res. 2016, 4, 18–26. [Google Scholar]
- Moccia, S.; Chiesa, A.; Oberti, A.; Tittonell, P.A. Yield and Quality of Sequentially Grown Cherry Tomato and Lettuce under Long-Term Conventional, Low-Input and Organic Soil Management Systems. Eur. J. Hortic. Sci. 2016, 71, 183–191, 1611-4426. [Google Scholar]
- Adegbidi, H.G.; Briggs, R.D. Nitrogen mineralization of sewage sludge and composted poultry manure applied to willow in a greenhouse experiment. Biomass Bioenergy 2003, 25, 665–673. [Google Scholar] [CrossRef]
- Kiraci, S. Effects of seaweed and different farm manures on growth and yield of organic carrots. J. Plant Nutr. 2018, 41, 716–721. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Gutser, R.; Ebertseder, T.; Weber, A.; Schraml, M.; Schmidhalter, U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J. Plant Nutr. Soil Sci. 2005, 168, 439–446. [Google Scholar] [CrossRef]
- Tambone, F.; Adani, F. Nitrogen mineralization from digestate in comparison to sewage sludge, compost and urea in a laboratory incubated soil experiment. J. Plant Nutr. Soil Sci. 2017, 180, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration-A review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef]
- Adams, S.R.; Cockshull, K.E.; Cave, C.R.J. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 2001, 88, 869–877. [Google Scholar] [CrossRef]
- Van Der Ploeg, A.; Heuvelink, E. Influence of sub-optimal temperature on tomato growth and yield: A review. J. Hortic. Sci. Biotechnol. 2005, 80, 652–659. [Google Scholar] [CrossRef]
0–20 cm | 20–40 cm | ||||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||
Bulk density | kg·dm−3 | 1.3 | 0.1 | ||
Clay | % | 10 | 3 | 11 | 4 |
Silt | % | 11 | 4 | 11 | 4 |
Sand | % | 77 | 11 | 77 | 11 |
pH H2O | 6.46 | 0.33 | 6.54 | 0.42 | |
pH KCl | 5.58 | 0.41 | 5.22 | 0.49 | |
org. C | g·kg−1 | 6.82 | 1.35 | 5.35 | 1.17 |
total C | 7.6 | 0.15 | 5.6 | 0.17 | |
total N | 0.7 | 0.01 | 0.5 | 0.01 | |
C/N | 13.04 | 0.66 | 13.76 | 0.87 | |
N-NO3 | mg·kg−1 | 1.79 | 0.69 | 0.71 | 0.28 |
N-NH4 | 0.7 | 0.99 | 0.18 | 0.6 | |
P | 34.57 | 21.1 | 32.24 | 25.12 | |
CEC | cmol(+)·kg−1 | 9.66 | 2.54 | 9.71 | 2.91 |
Ca ex. | 5.13 | 1.51 | 5.04 | 1.31 | |
Mg ex. | 2.64 | 0.83 | 2.28 | 0.8 | |
Na ex. | 0.12 | 0.08 | 0.16 | 0.15 | |
K ex. | 0.19 | 0.09 | 0.11 | 0.05 |
OWP Type | Sewage Sludge (SS) | Poultry Litter (PL) | Anaerobic Digestate (AD) | Mineral Fertilisation (MF) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Major Components | N | P | K | N | P | K | N | P | K | N | P2O5 | K2O | Calculation |
Mean concentration dry matter (g·kg−1) (n = 8) | 20.7 ± 7.3 | 10.6 ± 4.9 | 1.7 ± 0.7 | 25.3 ± 8.7 | 9 ± 2.0 | 11.3 ± 3.5 | 18.1 ± 0.8 | 5.4 ± 0.3 | 15.7 ± 3.3 | 100 | 100 | 200 | (1) |
Dry matter contents (%) | 90.1 | 90.1 | 90.1 | 89.5 | 89.5 | 89.5 | 10.5 | 10.5 | 10.5 | 100 | 100 | 100 | (2) |
Amount of raw materials applied (t·ha−1·year−1) (n = 12) | 5.3 ± 1.6 | 5.3 ± 1.6 | 5.3 ± 1.6 | 4.6 ± 1.2 | 4.6 ± 1.2 | 4.6 ± 1.6 | 6.9 ± 4.1 | 6.9 ± 4.1 | 6.9 ± 4.1 | 0.8 ± 0.4 | 0.8 ± 0.4 | 0.8 ± 0.4 | (3) |
N-P-K provided (kg·ha−1·year−1) | 98.8 | 50.6 | 8.1 | 104.2 | 37.1 | 46.5 | 13.1 | 3.9 | 11.4 | 81.5 | 81.5 | 163 | (4) = (1) × (2) × (3)/100 |
Mineral complementation (kg·ha−1·year−1) | 60.3 | 0 | 175.2 | 20.3 | 0 | 103.2 | 27.8 | 0 | 67.7 | 82.2 | 0 | 92.6 | (5) |
Treatments SS-1/PL-1/AD-1/MF (kg·ha−1·year−1) | 159 | 51 | 183 | 124 | 37 | 150 | 41 | 4 | 79 | 164 | 82 | 256 | (6) = (4) + (5) |
Treatments SS-2/PL-2/AD-2 (kg·ha−1·year−1) | 318 | 101 | 367 | 249 | 74 | 299 | 82 | 8 | 158 | - | - | - | (7) = 2 × (6) |
Crop | Lettuce | Carrot | Tomato | ||||
---|---|---|---|---|---|---|---|
Variety | Eden | Pamela | Mongal | ||||
Campaign 1 (2016–2017) | February–March | (63) | end April–mid August | (100) | mid November–end February | (113) | |
Campaign 2 (2017–2018) | mid-March–mid-May | (63) | end May–end August | (92) | end November–end March | (127) | |
Campaign 3 (2018–2019) | end March–end May | (63) | end June–end September | (92) | mid-November–mid March | (127) | |
Campaign 4 (2019–2020) | mid-April–mid-June | (63) | mid-June–mid September | (85) | mid-November–March | (117) | |
Crop needs * kg·ha−1 | N | 120 | 110 | 120 | |||
P | 28 | 35 | 39 | ||||
K | 200 | 225 | 175 |
Years | Campaign 1 | Campaign 2 | Campaign 3 | Campaign 4 | |
---|---|---|---|---|---|
1981–2010 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | |
December to May | <3.5 | <3 | |||
June | 17 | 17 | 19 | 21 | 12 |
July | 72 | 63 | 93 | 71 | 59 |
August | 168 | 159 | 175 | 162 | 152 |
September | 144 | 151 | 125 | 155 | 149 |
October | 23 | 29 | 25 | 33 | 40 |
November | 1 | 1 | 5 | 1 | 1 |
Depth (cm) | MF | SS-1 | SS-2 | PL-1 | PL-2 | AD-1 | AD-2 | ||
---|---|---|---|---|---|---|---|---|---|
pH H2O (T4) − pH H2O (T0) | 0–20 | −0.8 * | 0.0 | −0.1 | 0.5 * | 0.6 * | −0.3 | −0.2 | |
20–40 | −0.7 * | −0.1 | 0.1 | 0.5 | 0.1 | −0.4 | −0.2 | ||
pH KCl (T4) − pH KCl (T0) | 0–20 | −0.9 * | −0.1 | 0.0 | 0.4 | 0.5 | −0.7 * | −0.4 | |
20–40 | −0.3 | 0.2 | 0.7 | 0.8 * | 0.4 | −0.3 | 0.0 | ||
[org. C (T4) − org. C (T0)/org. C(T0)] × 100 | % | 0–20 | −20 | −4 | 6 | 6 | −19 | −39 * | −24 |
20–40 | −8 | 5 | 29 | −12 | −16 | −31 | −12 | ||
[tot. C (T4) − tot. C (T0)/org. C(T0)] × 100 | 0–20 | −13 | 2 | 12 | 15 | −15 | −30 * | −22 | |
20–40 | −10 | 6 | 33 | −14 | −12 | −27 | −8 | ||
[tot. N(T4) − tot. N(T0)/org. C(T0)] × 100 | 0–20 | −25 | −15 | −1 | −26 | −25 | −37 * | −31 * | |
20–40 | −21 | −9 | 15 | −25 | −18 | −35 | −21 | ||
assim. P (T4) − assim. P (T0) | mg·kg−1 | 0–20 | 55.4 | −13.0 | −0.7 | −11.7 | 7.7 | −17.4 | −8.0 |
CEC (T4) − CEC (T0) | cmol(+)·kg−1 | 0–20 | 0.9 | 1.3 | 0.1 | −0.5 | 0.9 | −1.3 | 1.4 |
20–40 | 0.5 | −0.5 | −3.2 | −1.7 | 0.5 | −1.5 | 0.8 | ||
Ca ex. (T4) − Ca ex. (T0) | 0–20 | 1.9 | 2.1 | 2.3 | 1.6 | 2.6 * | −0.6 | 1.6 | |
20–40 | 2.8 | 2.1 | 3.2 | 0.7 | 2.8 | 0.1 | 1.9 | ||
Mg ex. (T4) − Mg ex. (T0) | 0–20 | −0.1 | 0.0 | −1.0 * | −0.4 | 0.0 | −0.3 | 0.4 | |
20–40 | 0.2 | 0.3 | −0.4 | −0.3 | 0.2 | −0.2 | 0.3 | ||
Na ex.(T4) − Na ex.(T0) | 0–20 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | |
20–40 | 0.2 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | ||
K ex.(T4) − K ex.(T0) | 0–20 | 0.2 * | 0.2 | 0.6 * | 0.2 | 0.4 * | 0.1 | 0.4 * | |
20–40 | 0.1 * | 0.1 | 0.4 | 0.2 * | 0.3 | 0.1 | 0.2 * |
Lettuce | Carrot | Tomato | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Camp. 1 | Camp. 2 | Camp. 3 | Camp. 1 | Camp. 2 | Camp. 3 | Camp. 1 | Camp. 2 | Camp. 3 | ||
total N (g·kg−1) | MF | 45.94 a | 31.95 b | 24.20 c | 19.75 a | 14.15 a | 17.63 a | 27.89 a | 28.54 a | - |
SS-1 | 39.33 a | 33.00 b | 26.01 b | 18.03 a | 15.22 a | 16.03 a | 30.59 a | 28.50 a | - | |
SS-2 | 39.90 a | 45.99 a | 28.04 b | 15.41 a | 17.51 a | 18.76 a | 29.47 a | 28.73 a | - | |
PL-1 | 42.03 a | 22.77 b | 26.94 b | 17.80 a | 13.13 b | 15.10 ab | 27.50 a | 22.55 a | - | |
PL-2 | 48.03 a | 29.59 b | 28.28 b | 21.86 a | 14.61 a | 18.18 a | 28.58 a | 25.44 a | - | |
AD-1 | - | 28.92 a | 23.66 a | - | 10.80 b | 15.20 a | 24.84 a | 26.30 a | - | |
AD-2 | - | 38.22 a | 28.00 a | - | 11.72 b | 20.59 a | 26.55 a | 22.14 a | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diallo, F.; Legros, S.; Diarra, K.; Feder, F. Varying Effects of Organic Waste Products on Yields of Market Garden Crops in a 4-Year Field Experiment under Tropical Conditions. Agronomy 2022, 12, 32. https://doi.org/10.3390/agronomy12010032
Diallo F, Legros S, Diarra K, Feder F. Varying Effects of Organic Waste Products on Yields of Market Garden Crops in a 4-Year Field Experiment under Tropical Conditions. Agronomy. 2022; 12(1):32. https://doi.org/10.3390/agronomy12010032
Chicago/Turabian StyleDiallo, Falilou, Samuel Legros, Karamoko Diarra, and Frédéric Feder. 2022. "Varying Effects of Organic Waste Products on Yields of Market Garden Crops in a 4-Year Field Experiment under Tropical Conditions" Agronomy 12, no. 1: 32. https://doi.org/10.3390/agronomy12010032
APA StyleDiallo, F., Legros, S., Diarra, K., & Feder, F. (2022). Varying Effects of Organic Waste Products on Yields of Market Garden Crops in a 4-Year Field Experiment under Tropical Conditions. Agronomy, 12(1), 32. https://doi.org/10.3390/agronomy12010032