Effect of Salicylic Acid Foliar Application on Two Wheat Cultivars Grown under Zinc Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiment
2.2. Chemical Analyses
2.3. Calculation of the Bioaccumulation and Translocation Factor
2.4. Statistical Analyses
3. Results
3.1. Biomass Yield
3.2. Zn Concentration in Plants
3.3. Zn Concentration in the Soil
3.4. Zn Accumulation and Distribution in the Plant
3.4.1. Bioaccumulation Factors
3.4.2. Translocation Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Praharaj, S.; Skalicky, M.; Maitra, S.; Bhadra, P.; Shankar, T.; Brestic, M.; Hejnak, V.; Vachova, P.; Hossain, A. Zinc Biofortification in Food Crops Could Alleviate the Zinc Malnutrition in Human Health. Molecules 2021, 26, 3509. [Google Scholar] [CrossRef]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotox. Environ. Safe. 2015, 113, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B.; Smreczak, B.; Klimkowicz-Pawlas, A. Zagrożenie zanieczyszczeniami chemicznymi gleb na obszarach rolniczych w Polsce w świetle badan IUNG-PIB w Puławach (Threat of chemical contamination in agricultural areas in Poland in the context of research of IUNG-PIB in Pulawy). Studia i Rap. IUNG-PIB. 2013, 35, 97–118. [Google Scholar]
- Konate, A.; He, X.; Zhang, Z.; Ma, Y.; Zhang, P.; Alugongo, G.M.; Rui, Y. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 2017, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Yang, J.; Peng, Q.; Liang, X.; Mao, H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 2019, 227, 109–116. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Jia, L.; Chen, H.; Wei, X. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotox. Environ. Safe. 2013, 1, 150–157. [Google Scholar] [CrossRef]
- Paunov, M.; Koleva, L.; Vassilev, A.; Vangronsveld, J.; Goltsev, V. Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int. J. Mol. Sci. 2018, 19, 787. [Google Scholar] [CrossRef] [Green Version]
- Guerinot, M.L. The ZIP family of metal transporters. Biochim. Biophys. Acta Biomembr. 2000, 1465, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Kabir, A.H.; Akther, M.S.; Skalicky, M.; Das, U.; Gohari, G.; Brestic, M.; Hossain, M.M. Downregulation of Zn-transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn-deficient tomato. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Tsednee, M.; Yang, S.C.; Lee, D.C.; Yeh, K.C. Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiol. 2014, 166, 839–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Tech. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Lin, Y.F.; Aarts, M.G. The molecular mechanism of zinc and cadmium stress response in plants. Cell. Mol. Life Sci. 2012, 69, 3187–3206. [Google Scholar] [CrossRef] [PubMed]
- Verret, F.; Gravot, A.; Auroy, P.; Leonhardt, N.; David, P.; Nussaume, L.; Vavasseur, A.; Richaud, P. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett. 2004, 576, 306–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balafrej, H.; Bogusz, D.; Triqui, Z.E.A.; Guedira, A.; Bendaou, N.; Smouni, A.; Fahr, M. Zinc hyperaccumulation in plants: A review. Plants 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Persson, D.P.; Husted, S.; Schellenberg, M.; Gehrig, P.; Lee, Y.; Martinoia, E.; Schjoerring, J.K.; Meyer, S. A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer. Plant J. 2013, 73, 131–142. [Google Scholar]
- Hayat, Q.; Hayat, S.; Irfan, M.; Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, S.K.; Majumder, B.; Maurya, V.K.; Deeba, F.; Alam, A.; Pandey, V. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J. Proteom 2017, 163, 28–51. [Google Scholar] [CrossRef]
- Ghafoor, M.F.; Ali, Q.; Malik, A. Effects of salicylic acid priming for salt stress tolerance in wheat. Biol. Clin. Sci. Res. J. 2020, 2020, e024. [Google Scholar] [CrossRef]
- Sorahinobar, M.; Niknam, V.; Ebrahimzadeh, H.; Soltanloo, H.; Behmanesh, M.; Enferadi, S.T. Central role of salicylic acid in resistance of wheat against Fusarium graminearum. Plant. Growth Regul. 2016, 35, 477–491. [Google Scholar] [CrossRef]
- Kousar, R.; Qureshi, R.; Jalal-Ud-Din; Munir, M.; Shabbir, G. Salicylic acid mediated heat stress tolerance in selected bread wheat genotypes of Pakistan. Pak. J. Bot. 2018, 50, 2141–2146. [Google Scholar]
- Sharma, A.; Sidhu, G.P.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The role of salicylic acid in plants exposed to heavy metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostofa, M.G.; Rahman, M.; Ansary, M.; Uddin, M.; Fujita, M.; Tran, L.S.P. Interactive effects of salicylic acid and nitric oxide in enhancing rice tolerance to cadmium stress. Int. J. Mol. Sci. 2019, 20, 5798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajti, J.; Németh, E.; Glatz, G.; Janda, T.; Pál, M. Pattern of changes in salicylic acid-induced protein kinase (SIPK) gene expression and salicylic acid accumulation in wheat under cadmium exposure. Plant. Biol. 2019, 21, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Alamri, S.A.D.; Siddiqui, M.H.; Al-Khaishany, M.Y.; Ali, H.M.; Al-Amri, A.; AlRabiah, H.K. Exogenous application of salicylic acid improves tolerance of wheat plants to lead stress. Adv. Agric. Sci. 2018, 6, 25–35. [Google Scholar]
- Kumari, A.; Pandey, N.; Pandey-Rai, S. Exogenous salicylic acid-mediated modulation of arsenic stress tolerance with enhanced accumulation of secondary metabolites and improved size of glandular trichomes in Artemisia annua L. Protoplasma 2018, 255, 139–152. [Google Scholar] [CrossRef]
- Gilvanova, I.R.; Enikeev, A.R.; Stepanov, S.Y.; Rakhmankulova, Z.F. Involvement of Salicylic Acid and Nitric Oxide in Protective Reactions of Wheat under the Influence of Heavy Metals. Appl. Biochem. Microbiol. 2012, 48, 90–94. [Google Scholar] [CrossRef]
- Moussa, H.R.; El-Gamal, S.M. Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol. Plant. 2010, 54, 315–320. [Google Scholar] [CrossRef]
- Agami, R.A.; Mohamed, G.F. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotox. Environ. Safe. 2013, 94, 164–171. [Google Scholar] [CrossRef]
- Basalah, M.O.; Ali, H.M.; Al-Whaibi, M.H.; Siddiqui, M.H.; Sakran, A.M.; Al Sahli, A.A. Nitric Oxide and Salicylic Acid Mitigate Cadmium Stress in Wheat Seedlings. J. Pure Appl. Microbiol. 2013, 7, 139–148. [Google Scholar]
- Semida, W.M.; Rady, M.M.; Abd el-Mageed, T.A.; Howladar, S.M.; Abdelhamid, M.T. Alleviation of cadmium toxicity in common bean (Phaseolus vulgaris L.) plants by the exogenous application of salicylic acid. J. Hortic. Sci. Biotechnol. 2015, 90, 83–91. [Google Scholar]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Ahmad, A. Cumulative effects of proline and salicylic acid on the cadmium-induced changes in Cicer arietinum L. Fresen. Environ. Bull. 2014, 23, 330–340. [Google Scholar]
- Meng, L.; Guo, Q.; Mao, P.; Tian, X. Accumulation and Tolerance Characteristics of Zinc in Agropyron cristatum Plants Exposed to Zinc-Contaminated Soil. Bull. Environ. Contam. Toxicol. 2013, 91, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, K.; Arvin, M.J.; Ashraf, M. Mitigation of Arsenic Toxicity in Wheat by the exogenously applied salicylic acid, 24-epi-brassinolide and silicon. J. Plant. Nutr. Soil Sci. 2020, 20, 577–588. [Google Scholar] [CrossRef]
- Melo, E.E.C.; Costa, E.T.S.; Guilherme, L.R.G.; Faquin, V.; Nascimento, C.W.A. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. J. Hazard. Mate. 2009, 168, 479–483. [Google Scholar] [CrossRef]
- Filipiak, K.; Wilkos, S. Statistical analysis. In Description of AWAR System; IUNG Pulawy Publisher: Puławy, Poland, 1995; Volume R(324), 39p. (In Polish) [Google Scholar]
- Pan, X.; Chen, G.; Shi, C.; Chai, M.; Liu, J.; Cheng, S.; Shi, F. Effects of Zn stress on growth, Zn accumulation, translocation, and subcellular distribution of Spartina alterniflora Loisel. Clean–Soil Air Water 2016, 44, 579–585. [Google Scholar] [CrossRef]
- Hall, J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shri, M.; Dave, R.; Diwedi, S.; Shukla, D.; Kesari, R.; Tripathi, R.D.; Trivedi, P.K.; Chakrabarty, D. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci. Rep. 2014, 4, 5784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, S.; Shri, M.; Gupta, A.; Rani, V.; Chakrabarty, D. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ. Chem. Lett. 2018, 16, 1169–1192. [Google Scholar] [CrossRef]
- Sousa, A.I.; Caçador, I.; Lillebo, A.I.; Pardal, M.A. Heavy metal accumulation in Halimione portulacoides: Intra- and extra-cellular metal binding sites. Chemosphere 2008, 70, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Arshad, T.; Maqbool, N.; Javed, F.; Wahid, A.; Arshad, M.U. Enhancing the Defensive Mechanism of Lead Affected Barley (Hordeum vulgare L.) Genotypes by Exogenously Applied Salicylic Acid. J. Agric. Sci. 2017, 9, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Piyatida, P.; da Silva, J.A.T.; Fujita, M. Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation. J. Bot. 2012, 1–37. [Google Scholar] [CrossRef]
- Sheng, H.; Zeng, J.; Yan, F.; Wang, X.; Wang, Y.; Kang, H.; Fan, X.; Sha, L.; Zhang, H.; Zhou, Y. Effect of exogenous salicylic acid on manganese toxicity, mineral nutrients translocation and antioxidative system in polish wheat (Triticum polonicum L.). Acta Physiol. Plant. 2015, 37, 32. [Google Scholar] [CrossRef]
- Sahu, G.K.; Sabat, S.C. Salicylic acid modulates isoenzyme pattern of enzymatic antioxidants in wheat. Ind. J. Plant. Physiol. 2018, 23, 486–493. [Google Scholar] [CrossRef]
- Hayat, S.; Fariduddin, Q.; Ali, B.; Ahmad, A. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron. Hung. 2005, 53, 433–437. [Google Scholar] [CrossRef]
- Ghazijahani, N.; Hadavi, E.; Jeong, B.R. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.). Front. Plant. Sci. 2014, 5, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
pH KCl | Sand | Silt | Clay | Corg | P 1 | K 1 | Mg 2 | Zn 3 |
---|---|---|---|---|---|---|---|---|
% | mg·kg−1 | |||||||
5.7 | 73 | 24 | 3 | 0.79 | 76.7 | 147 | 107 | 34 |
Treatment | Zura | Lagwa | ||||
---|---|---|---|---|---|---|
0 SA | 0.5 SA | 1.0 SA | 0 SA | 0.5 SA | 1.0 SA | |
0 Zn | 34 ± 0.69 A a | 37 ± 0.76 A a | 37 ± 0.76 A a | 36 ± 0.73 A a | 38 ± 0.78 A a | 39 ± 0.80 A a |
300 Zn | 342 ± 6.98 B a | 356 ± 7.27 B a | 353 ± 7.21 B a | 358 ± 7.31 B a | 363 ± 7.41 B a | 366 ± 7.47 B a |
700 Zn | 700 ± 14.3 C a | 754 ± 15.4 C a | 786 ± 16.0 C a | 807 ± 16.5 C a | 750 ± 15.3 C a | 761 ± 15.5 C a |
Treatment | Zura | Lagwa | ||||||
---|---|---|---|---|---|---|---|---|
0 SA | 0.5 SA | 1.0 SA | 0 SA | 0.5 SA | 1.0 SA | |||
BFshoot | ||||||||
0 Zn | 1.4 ± 0.03 | 1.3 ± 0.03 | 1.3 ± 0.03 | 1.6 ± 0.03 | 1.6 ± 0.04 | 1.8 ± 0.04 | ||
300 Zn | 3.4 ± 0.07 | 3.2 ± 0.07 | 3.1 ± 0.06 | 3.1 ± 0.06 | 3.1 ± 0.06 | 3.2 ± 0.07 | ||
700 Zn | 4.2 ± 0.09 | 3.9 ± 0.08 | 3.5 ± 0.07 | 3.3 ± 0.07 | 4.0 ± 0.08 | 3.9 ± 0.08 | ||
BFroot | ||||||||
0 Zn | 3.4 ± 0.07 | 3.2 ± 0.07 | 3.8 ± 0.08 | 4.6 ± 0.09 | 5.4 ± 0.011 | 5.4 ± 0.012 | ||
300 Zn | 7.1 ± 0.14 | 6.8 ± 0.15 | 7.3 ± 0.15 | 9.3 ± 0.19 | 9.1 ± 0.019 | 9.3 ± 0.20 | ||
700 Zn | 11.8 ± 0.24 | 11.9 ± 0.25 | 11.0 ± 0.22 | 9.7 ± 0.20 | 11.1 ± 0.23 | 11.3 ± 0.24 |
Treatment | Zura | Lagwa | ||||
---|---|---|---|---|---|---|
0 SA | 0.5 SA | SA2 | 0 SA | 0.5 SA | 1.0 SA | |
0 Zn | 0.43 ± 0.02 | 0.42 ± 0.02 | 0.35 ± 0.01 | 0.34 ± 0.02 | 0.30 ± 0.02 | 0.33 ± 0.01 |
300 Zn | 0.47 ± 0.02 | 0.49 ± 0.03 | 0.43 ± 0.01 | 0.33 ± 0.02 | 0.34 ± 0.01 | 0.35 ± 0.03 |
700 Zn | 0.36 ± 0.03 | 0.33 ± 0.01 | 0.32 ± 0.01 | 0.34 ± 0.04 | 0.36 ± 0.03 | 0.35 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanislawska-Glubiak, E.; Korzeniowska, J. Effect of Salicylic Acid Foliar Application on Two Wheat Cultivars Grown under Zinc Stress. Agronomy 2022, 12, 60. https://doi.org/10.3390/agronomy12010060
Stanislawska-Glubiak E, Korzeniowska J. Effect of Salicylic Acid Foliar Application on Two Wheat Cultivars Grown under Zinc Stress. Agronomy. 2022; 12(1):60. https://doi.org/10.3390/agronomy12010060
Chicago/Turabian StyleStanislawska-Glubiak, Ewa, and Jolanta Korzeniowska. 2022. "Effect of Salicylic Acid Foliar Application on Two Wheat Cultivars Grown under Zinc Stress" Agronomy 12, no. 1: 60. https://doi.org/10.3390/agronomy12010060
APA StyleStanislawska-Glubiak, E., & Korzeniowska, J. (2022). Effect of Salicylic Acid Foliar Application on Two Wheat Cultivars Grown under Zinc Stress. Agronomy, 12(1), 60. https://doi.org/10.3390/agronomy12010060