Biostimulant Effects of Micro Carbon Technology (MCT®)-Based Fertilizers on Soil and Capsicum annuum Culture in Growth Chamber and Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Characterization
2.2. Fertilizers and Nutritive Solutions
- Conventional fertilization (CF): conventional fertilization using only inorganic fertilizers.
- Humic fertilization I (HF): nutrient solution made with the MCT® fertilizers: TP, TM, TC, TN, TK, TS.
- Humic fertilization II (HFX): nutrient solution made with the same MCT® fertilizers of HF plus the TX fertilizer (2 mL/L).
2.3. Solutions Effects on the Soil
2.4. Solutions Effects on Pepper Plant
2.4.1. Assay in Controlled Conditions
2.4.2. Field Conditions in Commercial Greenhouses
2.5. Statistical Analysis
3. Results
3.1. Effects of Nutrient Solutions on the Soil
3.2. Nutrient Solution Effects on Pepper
3.2.1. Controlled Conditions in Growth Chamber
3.2.2. Field Conditions in Commercial Greenhouses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vujinović, T.; Zanin, L.; Venuti, S.; Contin, M.; Ceccon, P.; Tomasi, N.; Pinton, R.; Cesco, S.; De Nobili, M. Biostimulant Action of Dissolved Humic Substances from a Conventionally and an Organically Managed Soil on Nitrate Acquisition in Maize Plants. Front. Plant Sci. 2020, 10, 1652. [Google Scholar] [CrossRef] [PubMed]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Ind. Crops Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Duan, M.; Xu, Q.; Wang, Z.; Liu, B.; Wang, L. Soil microbial functional diversity and root growth responses to soil amendments contribute to CO2 emission in rainfed cropland. Catena 2020, 195, 104747. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R. Biostimulants application alleviates water stress effects on yield and chemical composition of greenhouse green bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Gemin, L.G.; Mógor, Á.F.; De Oliveira Amatussi, J.; Mógor, G. Microalgae associated to humic acid as a novel biostimulant improving onion growth and yield. Sci. Hortic. 2019, 256, 108560. [Google Scholar] [CrossRef]
- Conselvan, G.B.; Pizzeghello, D.; Francioso, O.; Di Foggia, M.; Nardi, S.; Carletti, P. Biostimulant activity of humic substances extracted from leonardites. Plant Soil 2017, 420, 119–134. [Google Scholar] [CrossRef]
- Fuentes, M.; Baigorri, R.; González-Gaitano, G.; García-Mina, J.M. New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture. J. Soils Sediments 2018, 18, 1389–1399. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The Use of Biostimulants for Enhancing Nutrient Uptake. Adv. Agron. 2015, 130, 141–174. [Google Scholar]
- Kobierski, M.; Kondratowicz-Maciejewska, K.; Banach-Szott, M.; Wojewódzki, P.; Peñas Castejón, J.M. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. J. Soils Sediments 2018, 18, 2777–2789. [Google Scholar] [CrossRef] [Green Version]
- Tavarini, S.; Passera, B.; Martini, A.; Avio, L.; Sbrana, C.; Giovannetti, M.; Angelini, L.G. Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorous fertilization in Stevia rebaudiana Bert. Ind. Crops Prod. 2018, 111, 899–907. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Rose, M.T.; Rose, T.J.; van Zwieten, L. Effect of glyphosate and a commercial formulation on soil functionality assessed by substrate induced respiration and enzyme activity. Eur. J. Soil Biol. 2018, 85, 64–72. [Google Scholar] [CrossRef]
- Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 2018, 332, 161–172. [Google Scholar] [CrossRef]
- Kubota, H.; Iqbal, M.; Quideau, S.; Dyck, M.; Spaner, D. Agronomic and physiological aspects of nitrogen use efficiency in conventional and organic cereal-based production systems. Renew. Agric. Food Syst. 2017, 33, 443–466. [Google Scholar] [CrossRef]
- Madende, M.; Hayes, M. Fish by-product use as biostimulants: An overview of the current state of the art, including relevant legislation and regulations within the EU and USA. Molecules 2020, 25, 1122. [Google Scholar] [CrossRef] [Green Version]
- Kapoore, R.V.; Wood, E.E.; Llewellyn, C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef]
- Vallejo, J.M.; Heredia, F.; Arroyo, C.; De Benito, A.; De la Rubia, J.; Chicote, A.; Llorca, R.; Monteagudo, E.; Palomar, A.; Pardo, T.; et al. Métodos Oficiales de Análisis de Suelos y Aguas Para Riego; Ministerio de Agricultura, Pesca y Alimentación, Ed.; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1994; ISBN 978844910031. [Google Scholar]
- Bulta, A. Assessment and Mapping of Status and Spatial Distribution of Soil Macronutrients in Kambata Tembaro Zone, Southern Ethiopia. Adv. Plants Agric. Res. 2016, 4, 305–317. [Google Scholar] [CrossRef]
- McGrath, J.M.; Spargo, J.; Penn, C.J. Soil Fertility and Plant Nutrition. In Encyclopedia of Agriculture and Food Systems; Academic Press: London, UK, 2014; pp. 166–184. ISBN 9780080931395. [Google Scholar]
- Antón-Herrero, R.; García-Delgado, C.; Mayans, B.; Camacho-Arévalo, R.; Eymar, E. Impact of New Micro Carbon Technology Based Fertilizers on Growth, Nutrient Efficiency and Root Cell Morphology of Capsicum annuum L. Agronomy 2020, 10, 1165. [Google Scholar] [CrossRef]
- Cadahía, C.; Eymar, E. Fertirrigación: Cultivos Hortícolas y Ornamentales; Mundi-Pren: Madrid, Spain, 2000; ISBN 84-71114-921-4. [Google Scholar]
- Memoli, V.; Eymar, E.; García-Delgado, C.; Esposito, F.; Panico, S.C.; De Marco, A.; Barile, R.; Maisto, G. Soil element fractions affect phytotoxicity, microbial biomass and activity in volcanic areas. Sci. Total Environ. 2018, 636, 1099–1108. [Google Scholar] [CrossRef]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Barcelos, J.P.Q.; Reis, H.P.G.; Godoy, C.V.; Gratão, P.L.; Furlani Junior, E.; Putti, F.F.; Campos, M.; Reis, A.R. Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants. Plant Pathol. 2018, 67, 1502–1513. [Google Scholar] [CrossRef] [Green Version]
- Tavares, M.C.; Oliveira, K.A.; de Fátima, Â.; Coltro, W.K.T.; Santos, J.C.C. Paper-based analytical device with colorimetric detection for urease activity determination in soils and evaluation of potential inhibitors. Talanta 2021, 230, 122301. [Google Scholar] [CrossRef]
- Nadal, P.; García-Delgado, C.; Hernández, D.; López-Rayo, S.; Lucena, J.J. Evaluation of Fe-N,N′-Bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetate (HBED/Fe3+) as Fe carrier for soybean (Glycine max) plants grown in calcareous soil. Plant Soil 2012, 360, 349–362. [Google Scholar] [CrossRef]
- Gonzalo, M.J.; Lucena, J.J.; Hernández-Apaolaza, L. Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant Physiol. Biochem. 2013, 70, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, Z.Q.; He, X.S.; Yang, C.; Du, Y.Q.; Huang, Y.D.; Su, P.; Wang, S.; Zheng, X.X.; Xue, Y.J. Mechanisms of rice straw biochar effects on phosphorus sorption characteristics of acid upland red soils. Chemosphere 2018, 207, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.A.; Peco, J.D.; De Toro, J.A.; Moreno, C.; Amorós, J.A.; Moreno, M.M.; García-Noguero, E.M.; Higueras, P. Approach to the potential usage of two wood ashes waste as soil amendments on the basis of the dehydrogenase activity and soil oxygen consumption. J. Soils Sediments 2018, 18, 2148–2156. [Google Scholar] [CrossRef]
- Krishnan, A.; Convey, P.; Gonzalez, M.; Smykla, J.; Alias, S.A. Effects of temperature on extracellular hydrolase enzymes from soil microfungi. Polar Biol. 2018, 41, 537–551. [Google Scholar] [CrossRef]
- Li, D.; Fan, J.; Zhang, X.; Xu, X.; He, N.; Wen, X.; Sun, X.; Blagodatskaya, E.; Kuzyakov, Y. Hydrolase kinetics to detect temperature-related changes in the rates of soil organic matter decomposition. Eur. J. Soil Biol. 2017, 81, 108–115. [Google Scholar] [CrossRef]
- Adhikari, K.P.; Saggar, S.; Hanly, J.A.; Guinto, D.F.; Taylor, M.D. Why copper and zinc are ineffective in reducing soil urease activity in New Zealand dairy-grazed pasture soils. Soil Res. 2018, 56, 491–502. [Google Scholar] [CrossRef]
- Li, Y.; Chang, S.X.; Tian, L.; Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 2018, 121, 50–58. [Google Scholar] [CrossRef]
- Feng, J.; Xu, X.; Wu, J.; Zhang, Q.; Zhang, D.; Li, Q.; Long, C.; Chen, Q.; Chen, J.; Cheng, X. Inhibited enzyme activities in soil macroaggregates contribute to enhanced soil carbon sequestration under afforestation in central China. Sci. Total Environ. 2018, 640–641, 653–661. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Q.; Zhang, S.; Noll, L.; Wanek, W. Significant release and microbial utilization of amino sugars and d-amino acid enantiomers from microbial cell wall decomposition in soils. Soil Biol. Biochem. 2018, 123, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Siwik-Ziomek, A.; Szczepanek, M. Soil extracellular enzyme activities and uptake of N by oilseed rape depending on fertilization and seaweed biostimulant application. Agronomy 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- García, C.; Hernández, T.; Costa, F. Microbial activity in soils under mediterranean environmental conditions. Soil Biol. Biochem. 1994, 26, 1185–1191. [Google Scholar] [CrossRef]
- Mehdi-Tounsi, H.; Chelli-Chaabouni, A.; Mahjoub-Boujnah, D.; Boukhris, M. Long-term field response of pistachio to irrigation water salinity. Agric. Water Manag. 2017, 185, 1–12. [Google Scholar] [CrossRef]
- Da Cunha, A.R.; Katz, I.; Sousa, A.D.P.; Martinez Uribe, R.A. Indice SPAD en el crecimiento y desarrollo de plantas de lisianthus en función de diferentes dosis de nitrógeno en ambiente protegido. Idesia 2015, 33, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Francesca, S.; Arena, C.; Hay Mele, B.; Schettini, C.; Ambrosino, P.; Barone, A.; Rigano, M.M. The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 2020, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Kalaji, H.M.; Dąbrowski, P.; Cetner, M.D.; Samborska, I.A.; Łukasik, I.; Brestic, M.; Zivcak, M.; Tomasz, H.; Mojski, J.; Kociel, H.; et al. A comparison between different chlorophyll content meters under nutrient deficiency conditions. J. Plant Nutr. 2017, 40, 1024–1034. [Google Scholar] [CrossRef]
- Szczepanek, M.; Siwik-Ziomek, A. P and K accumulation by rapeseed as affected by biostimulant under different NPK and S fertilization doses. Agronomy 2019, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zhu, J.; Fu, Q.; Chen, J.; Hu, H.; Huang, Q. Structure and biodegradability of dissolved organic matter from Ultisol treated with long-term fertilizations. J. Soils Sediments 2018, 18, 1865–1872. [Google Scholar] [CrossRef]
- Russo, V.M. Effects of fertilizer rate, application timing and plant spacing on yield and nutrient content of bell pepper. J. Plant Nutr. 1991, 14, 1047–1056. [Google Scholar] [CrossRef]
- Karakurt, Y.; Unlu, H.; Unlu, H.; Padem, H. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric. Scand. 2009, 59, 233–237. [Google Scholar] [CrossRef]
S | L | C | |
---|---|---|---|
Sand (%) | 71 | 29 | 32 |
Silt (%) | 12 | 29 | 22 |
Clay (%) | 17 | 42 | 46 |
pH H2O | 8.01 | 8.27 | 8.36 |
pH KCl | 7.95 | 7.85 | 7.88 |
Electrical conductivity (dS/m) | 0.347 | 0.952 | 0.545 |
Organic matter (%) | 1.9 | 1.58 | 3.24 |
Nitrogen (%) | 0.09 | 0.07 | 0.13 |
C/N | 12.2 | 13.1 | 14.5 |
Total limestone (%) | 34 | 43 | 43 |
Active limestone (‰) | 45 | 64 | 82 |
Phosphorous (mg/kg) | 270 | 75 | 121 |
Potassium (mg/kg) | 2.24 | 4.11 | 2.74 |
Calcium (mg/kg) | 2.30 | 1.99 | 2.05 |
Magnesium (mg/kg) | 0.23 | 0.28 | 0.34 |
Iron (mg/kg) | 3.25 | 5.06 | 2.31 |
Product | Nutrient Composition (N-P2O5-K2O) (%) | Density (kg/L) | Total Carbon (%) | pH |
---|---|---|---|---|
TX | 6-3-0 | 1.10 | 22.4 | 8.5 |
TN | 12-0-0 | 1.41 | 6.7 | 1.0 |
TP | 0-50-0 | 1.52 | 0.05 | 1.5 |
TK | 0-0-40 | 1.48 | 6.5 | 14 |
TC | 8-0-0 and 15% CaO | 1.43 | 0.4 | 1.0 |
TM | 8% MgO and 14% S | 1.26 | 1.0 | 5.0 |
TS | 10% S; 0.5% B; 0.05% Co; 1% Cu; 2% Fe; 1% Mn; 0.05% Mo and 4% Zn | 1.31 | 21.8 | 2.0 |
SCF | SHF | SHFX | LCF | LHF | LHFX | CCF | CHF | CHFX | F | S | FxS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
g | Two-Way ANOVA | |||||||||||
Leaves | 29 ± 13 | 35 ± 7 | 17 ± 4 | 6 ± 8 | 24 ± 16 | 11.7 ± 0.8 | 26.3 ± 0.3 | 32 ± 4 | 37 ± 13 | N.S. | ** | N.S. |
Stem | 21 ± 13 | 25 ± 4 | 16 ± 5 | 8 ± 11 | 17 ± 10 | 9 ± 1 | 18 ± 5 | 19 ± 4 | 30 ± 7 | N.S. | * | N.S. |
Root | 139 ± 101 | 136 ± 9 | 137 ± 51 | 63 ± 90 | 190 ± 102 | 82 ± 48 | 142 ± 112 | 171 ± 117 | 267 ± 76 | N.S. | N.S. | N.S. |
Fruit | 49 ± 69 | 6.5 ± 0.4 | 68 ± 59 | 1 ± 1 | 27 ± 24 | 33 ± 2 | 30 ± 37 | 73 ± 38 | - | N.S. | N.S. | N.S. |
SCF | SHF | SHFX | LCF | LHF | LHFX | CCF | CHF | CHFX | F | S | FxS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Two-Way Anova | ||||||||||||
NBI | 60 ± 9 cd | 68 ± 12 bc | 51 ± 19 de | 45 ± 8 e | 58 ± 10 cd | 23 ± 9 f | 81 ± 13 a | 68 ± 13 bc | 73 ± 11 ab | *** | *** | *** |
Chl | 41 ± 3 bcd | 40 ± 3 cde | 37 ± 9 de | 36 ± 5 e | 37 ± 6 de | 22 ± 7 f | 48 ± 4 a | 45 ± 3 abc | 46 ± 5 ab | *** | *** | *** |
Flav | 0.69 ± 0.08 cd | 0.61 ± 0.08 d | 0.8 ± 0.1 bc | 0.81 ± 0.08 b | 0.64 ± 0.08 d | 1.0 ± 0.1 a | 0.6 ± 0.08 d | 0.7 ± 0.1 cd | 0.63 ± 0.05 d | *** | *** | *** |
Anth | 0.053 ± 0.005 bcd | 0.051 ± 0.003 bcd | 0.06 ± 0.02 bc | 0.06 ± 0.01 b | 0.06 ± 0.01 bc | 0.11 ± 0.02 a | 0.047 ± 0.009 cd | 0.042 ± 0.006 d | 0.043 ± 0.008 d | *** | *** | *** |
SCF | SHF | SHFX | LCF | LHF | LHFX | CCF | CHF | CHFX | F | S | FxS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
g·kg−1 | Two Way ANOVA | |||||||||||
N | 57 ± 25 a | 41 ± 4 ab | 46 ± 12 ab | 24 ± 33 b | 42 ± 14 ab | 43 ± 2 ab | 49 ± 4 ab | 54 ± 9 ab | 53 ± 13 ab | N.S. | N.S. | N.S. |
P | 0.67 ± 0.05 ab | 0.5 ± 0.1 ab | 0.8 ± 0.3 ab | 0.3 ± 0.5 b | 0.58 ± 0.08 ab | 0.44 ± 0.05 ab | 0.6 ± 0.2 ab | 0.8 ± 0.3 a | 0.9 ± 0.1 a | N.S. | N.S. | N.S. |
K | 46 ± 2 a | 41 ± 4 a | 42 ± 5 a | 26 ± 36 a | 39 ± 12 a | 43 ± 9 a | 43 ± 11 a | 43 ± 5 a | 43 ± 2 a | N.S. | N.S. | N.S. |
Ca | 34 ± 7 a | 42 ± 3 a | 36 ± 9 a | 10 ± 15 b | 40 ± 9 a | 33 ± 2 a | 35 ± 12 a | 29 ± 3 a | 30 ± 4 a | N.S. | N.S. | * |
Mg | 11 ± 1 a | 15 ± 2 a | 12 ± 3 a | 4 ± 6 b | 15 ± 2 a | 13 ± 1 a | 11 ± 1 a | 10.2 ± 0.6 a | 10.4 ± 0.6 a | * | N.S. | * |
mg·kg−1 | ||||||||||||
B | 128 ± 68 bcd | 151 ± 15 bcd | 199 ± 68 ab | 54 ± 76 d | 169 ± 76 bc | 278 ± 65 a | 74 ± 29 cd | 94 ± 17 bcd | 102 ± 9 bcd | ** | * | N.S. |
Co | 0.7 ± 0.4 cd | 1.0 ± 0.3 cd | 2.3 ± 0.9 ab | 0.3 ± 0.4 d | 2 ± 1 ab | 2.8 ± 0.1 a | 0.84 ± 0.05 cd | 1.4 ± 0.3 bcd | 1.7 ± 0.3 abc | *** | N.S. | N.S. |
Cu | 19 ± 4 ab | 18 ± 3 ab | 26 ± 13 a | 5 ± 8 b | 15 ± 7 ab | 26 ± 5 a | 17 ± 6 ab | 13 ± 3 ab | 17 ± 3 ab | * | N.S. | N.S. |
Fe | 61 ± 19 abc | 46 ± 3 bc | 54 ± 10 abc | 30 ± 43 c | 45 ± 4 bc | 41.3 ± 0.2 bc | 85 ± 26 a | 67 ± 9 abc | 72 ± 14 ab | N.S. | ** | N.S. |
Mn | 113 ± 56 abc | 95 ± 26 bc | 213 ± 95 a | 21 ± 30 c | 160 ± 103 ab | 112 ± 9 abc | 85 ± 14 bc | 90 ± 4 bc | 111 ± 29 abc | N.S. | N.S. | N.S. |
Mo | 1.9 ± 0.7 abc | 2.0 ± 0.2 ab | 1.33 ± 0.05 bc | 0.5 ± 0.7 d | 1.9 ± 0.5 abc | 1.1 ± 0.3 cd | 2.1 ± 0.2 ab | 2.7 ± 0.3 a | 1.6 ± 0.3 bc | ** | ** | N.S. |
Zn | 127 ± 12 bcd | 135 ± 35 abcd | 200 ± 75 ab | 36 ± 50 d | 105 ± 51 bcd | 232 ± 76 a | 106 ± 25 bcd | 95 ± 25 cd | 140 ± 25 abc | ** | N.S. | N.S. |
PCF | PHF | PS | PC | |
---|---|---|---|---|
Morphological parameters | ||||
Leaves (g) | 420 ± 20 a | 444 ± 24 a | 447 ± 86 a | 347 ± 170 a |
Stem (g) | 388 ± 38 a | 410 ± 30 a | 448 ± 49 a | 422 ± 233 a |
Fruit (g) | 702 ± 616 a | 1580 ± 278 a | 1075 ± 774 a | 747 ± 359 a |
Fruit hardness | 3 ± 1 a | 2.9 ± 0.8 a | 2.9 ± 0.9 a | 2.0 ± 0.9 b |
Chemical parameters | ||||
NBI | 52 ± 17 a | 45 ± 16 a | 36 ± 11 b | 29 ± 7 c |
Chl | 41 ± 8 a | 43 ± 6 a | 41 ± 7 a | 36 ± 6 b |
Flav | 0.8 ± 0.2 c | 1 ± 0.3 b | 1.2 ± 0.4 a | 1.3 ± 0.3 a |
Anth | 0.09 ± 0.03 a | 0.08 ± 0.03 a | 0.08 ± 0.02 a | 0.08 ± 0.02 a |
O.M. (%) | 73.8 ± 0.8 b | 74.7 ± 0.8 ab | 75.2 ± 0.6 ab | 76 ± 2 a |
PCF | PHF | PS | PC | |
---|---|---|---|---|
g·kg−1 | ||||
N | 36 ± 2 a | 38 ± 5 a | 34 ± 4 a | 35 ± 2 a |
P | 0.68 ± 0.09 a | 0.7 ± 0.1 a | 0.70 ± 0.06 a | 0.53 ± 0.03 b |
K | 41 ± 5 ab | 47 ± 1 a | 43 ± 3 a | 36 ± 5 b |
Ca | 47 ± 4 a | 43 ± 3 a | 47 ± 1 a | 41 ± 7 a |
Mg | 16 ± 1 a | 13 ± 1 b | 16 ± 1 a | 15 ± 2 ab |
mg·kg−1 | ||||
B | 147 ± 36 b | 106 ± 40 b | 111 ± 4 b | 201 ± 39 a |
Co | 2.1 ± 0.7 b | 2.7 ± 0.6 b | 1.2 ± 0.2 c | 3.8 ± 0.5 a |
Cu | 16 ± 7 a | 19 ± 5 a | 21 ± 2 a | 19 ± 4 a |
Fe | 137 ± 34 a | 154 ± 49 a | 148 ± 40 a | 146 ± 16 a |
Mn | 227 ± 72 a | 268 ± 45 a | 129 ± 18 b | 240 ± 45 a |
Mo | 0.7 ± 0.2 b | 0.7 ± 0.1 b | 1.0 ± 0.2 a | 0.59 ± 0.06 b |
Zn | 135 ± 32 ab | 125 ± 21 ab | 120 ± 2 b | 139 ± 6 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antón-Herrero, R.; García-Delgado, C.; Mayans, B.; Camacho-Arévalo, R.; Delgado-Moreno, L.; Eymar, E. Biostimulant Effects of Micro Carbon Technology (MCT®)-Based Fertilizers on Soil and Capsicum annuum Culture in Growth Chamber and Field. Agronomy 2022, 12, 70. https://doi.org/10.3390/agronomy12010070
Antón-Herrero R, García-Delgado C, Mayans B, Camacho-Arévalo R, Delgado-Moreno L, Eymar E. Biostimulant Effects of Micro Carbon Technology (MCT®)-Based Fertilizers on Soil and Capsicum annuum Culture in Growth Chamber and Field. Agronomy. 2022; 12(1):70. https://doi.org/10.3390/agronomy12010070
Chicago/Turabian StyleAntón-Herrero, Rafael, Carlos García-Delgado, Begoña Mayans, Raquel Camacho-Arévalo, Laura Delgado-Moreno, and Enrique Eymar. 2022. "Biostimulant Effects of Micro Carbon Technology (MCT®)-Based Fertilizers on Soil and Capsicum annuum Culture in Growth Chamber and Field" Agronomy 12, no. 1: 70. https://doi.org/10.3390/agronomy12010070
APA StyleAntón-Herrero, R., García-Delgado, C., Mayans, B., Camacho-Arévalo, R., Delgado-Moreno, L., & Eymar, E. (2022). Biostimulant Effects of Micro Carbon Technology (MCT®)-Based Fertilizers on Soil and Capsicum annuum Culture in Growth Chamber and Field. Agronomy, 12(1), 70. https://doi.org/10.3390/agronomy12010070