Collection Guidelines to Achieve a Viable Caper Commercial Propagation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.2. Experiment 2
2.3. Experiment 3
2.4. Statistical Analysis
3. Results and Discussion
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chedraoui, S.; Abi-Rizk, A.; El-Beyrouthy, M.; Chalak, L.; Ouaini, N.; Rajjou, L. Capparis spinosa L. in a systematic review: A xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Front. Plant Sci. 2017, 8, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo de Santayana, M.; Morales, R.; Tardío, J.; Molina, M. Inventario Español de Los Conocimientos Tradicionales Relativos a la Biodiversidad. Fase II (1); Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2018; ISBN 978-84-491-1472-4. [Google Scholar]
- Wojdyło, A.; Nowicka, P.; Grimalt, M.; Legua, P.; Almansa, M.S.; Amorós, A.; Carbonell-Barrachina, Á.A.; Hernández, F. Polyphenol compounds and biological activity of caper (Capparis spinosa L.) flowers buds. Plants 2019, 8, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimalt, M.; Hernández, F.; Legua, P.; Amorós, A.; Almansa, M.S. Antioxidant activity and the physicochemical composition of young caper shoots (Capparis spinosa L.) of different Spanish cultivars. Sci. Hortic. (Amsterdam) 2022, 293, 110646. [Google Scholar] [CrossRef]
- Juan Ferrer, M. Estudio para la Mejora de las Técnicas de Propagación de la Alcaparra (Capparis spinosa L.). Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 18 July 2017. [Google Scholar]
- Levizou, E.; Drilias, P.; Kyparissis, A. Exceptional photosynthetic performance of Capparis spinosa L. under adverse conditions of Mediterranean summer. Photosynthetica 2004, 42, 229–235. [Google Scholar] [CrossRef]
- Gan, L.; Zhang, C.; Yin, Y.; Lin, Z.; Huang, Y.; Xiang, J.; Fu, C.; Li, M. Anatomical adaptations of the xerophilous medicinal plant, Capparis spinosa, to drought conditions. Hortic. Environ. Biotechnol. 2013, 54, 156–161. [Google Scholar] [CrossRef]
- Fici, S. A taxonomic revision of the Capparis spinosa group (Capparaceae) from the Mediterranean to Central Asia. Phytotaxa 2014, 174, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Sottile, F.; Caltagirone, C.; Peano, C.; Del Signore, M.B.; Barone, E. Can the caper (Capparis spinosa L.) still be considered a difficult-to-propagate Crop? Horticulturae 2021, 7, 316. [Google Scholar] [CrossRef]
- San Bautista, A.; Pascual, B.; Sospedra, S.; López Galarza, S.; Laza, P.; Maroto, J.V. Influencia de la fecha y de la sección de las ramas en el enraizamiento y la brotación de las yemas en estaquillas de alcaparra. Actas Hortic. 2006, 46, 41–45. [Google Scholar]
- Pascual, B.; San Bautista, A.; Pascual-Seva, N.; García-Molina, R.; López Galarza, S.; Maroto, J.V. Estudio del enraizamiento de estaquillas de madera suave en alcaparra (Capparis spinosa L.). Actas Hortic. 2008, 50, 89–93. [Google Scholar]
- Pascual, B.; San Bautista, A.; Ferreros, N.; López-Galarza, S.; Maroto, J.V. Analysis of germination of caper seeds as influenced by the position of fruit on the mother plant, fruit maturation stage and fruit weight. J. Hortic. Sci. Biotechnol. 2003, 78, 73–78. [Google Scholar] [CrossRef]
- Pascual, B.; San Bautista, A.; López-Galarza, S.; Alagarda, J.; Maroto, J.V. Germination behavior after storage of caper seeds. Seed Sci. Technol. 2006, 34, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014; ISBN 978-0-12-416683-7. [Google Scholar]
- Pascual, B.; San Bautista, A.; Imbernón, A.; López-Galarza, S.; Alagarda, J.; Maroto, J.V. Seed treatments for improved germination of caper (Capparis spinosa). Seed Sci. Technol. 2004, 32, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Labbafi, M.; Mehrafarin, A.; Badi, H.; Ghorbani, M.; Tavakoli, M. Improve germination of caper (Capparis spinosa L.) seeds by different induction treatments of seed dormancy breaking. Trakia J. Sci. 2018, 16, 70–74. [Google Scholar] [CrossRef]
- Žutić, I.; Bajlo, K.; Benko, B.; Toth, N.; Radman, S. Germination of capper (Capparis orientalis Veill.) seeds affected by different chemical treatments. In Proceedings of the 55th Croatian & 15th International Symposium on Agriculture, Vodice, Croatia, 16–21 February 2020; pp. 248–252. [Google Scholar]
- Foschi, M.L.; Juan, M.; Pascual, B.; Pascual-Seva, N. Water uptake and germination of caper (Capparis spinosa L.) seeds. Agronomy 2020, 10, 838. [Google Scholar] [CrossRef]
- Davies, F.T.; Geneve, R.L.; Wilson, S.B. Hartmann and Kester’s Plant Propagation Principles and Practices, 9th ed.; Pearson Education: New York, NY, USA, 2018; ISBN 978-0-13-448089-3. [Google Scholar]
- International Seed Testing Association (ISTA); ISTA Rules; ISTA: Bassersdorf, Switzerland, 2018.
- ISTA Working Sheets on Tetrazolium Testing. Tree and Shrub Species, 1st ed.; The International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2003; Volume II, ISBN 3-906549-41-1. [Google Scholar]
- Patil, V.N.; Dadlani, M. Tetrazolium test for seed viability and vigour. In Handbook of Seed Testing; Agrawal, P.K., Ed.; Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India: New Delhi, India, 1993; pp. 209–241. [Google Scholar]
- Torres, M.; Frutos, G. Logistic function analysis of germination behaviour of aged fennel seeds. Environ. Exp. Bot. 1990, 30, 383–390. [Google Scholar] [CrossRef]
- Causton, D.R.; Venus, J.C. Single leaf growth and the Richards function: Methodology. In The Biometry of Plant Growth; Edward Arnold: London, UK, 1981; pp. 87–143. ISBN 978-0-7131-2812-3. [Google Scholar]
- Statistical Graphics Statgraphics Centurion XVIII; Statistical Graphics Corporation: Rockville, MD, USA, 2018.
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-4692-7. [Google Scholar]
- Hara, Y. Calculation of population parameters using Richards function and application of indices of growth and seed vigor to rice plants. Plant Prod. Sci. 1999, 2, 129–135. [Google Scholar] [CrossRef]
- Karlsson, L.M.; Milberg, P. Comparing after-ripening response and germination requirements of Conyza canadensis and C. bonariensis (Asteraceae) through logistic functions. Weed Res. 2007, 47, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Dantigny, P.; Nanguy, S.P.M.; Judet-Correia, D.; Bensoussan, M. A new model for germination of fungi. Int. J. Food Microbiol. 2011, 146, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol. 2012, 63, 507–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskin, C.C.; Baskin, J.M. Breaking seed dormancy during dry storage: A useful tool or major problem for successful restoration via direct seeding? Plants 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed]
Seed Moisture Content | Viability (S) | Viability (S + WV) | |
Type of seed (TS) | |||
OS | 9.51 | 52.50 a | 73.75 a |
IV | 9.36 | 31.25 b | 43.75 b |
CS | 9.40 | 6.25 c | 17.50 c |
Year of production (Y) | |||
2019 | 9.48 | 27.50 | 44.17 |
2020 | 9.35 | 32.50 | 45.83 |
Analysis of variance | |||
Source (degrees of freedom) | % sum of squares | ||
TS (2) | 6.06 NS | 72.67 ** | 74.56 ** |
Y (1) | 10.82 NS | 1.27 NS | 0.10 NS |
TS × Y (2) | 3.75 NS | 1.48 NS | 1.52 NS |
Residual (18) | 79.37 | 24.58 | 23.82 |
Standard deviation | 0.20 | 12.69 | 15.00 |
G | A | Gt50 | k/2 | |
Type of seed (ST) | ||||
OS | 39.31 a | 39.42 a | 50.74 | 0.058 b |
IV | 10.69 b | 10.90 b | 58.98 | 0.096 b |
CS | 1.56 c | 1.59 c | 50.37 | 0.148 a |
Year of production (Y) | ||||
2019 | 16.79 | 16.77 | 55.26 | 0.086 |
2020 | 17.58 | 17.84 | 51.46 | 0.116 |
Saturation solution (S) | ||||
Water | 5.33 b | 5.65 b | 74.37 a | 0.087 |
GA3 | 29.04 a | 28.96 a | 32.35 b | 0.115 |
Analysis of variance | ||||
Source (degrees of freedom) | % sum of squares | |||
ST (2) | 44.91 ** | 45.63 ** | 2.02 NS | 22.71 ** |
Y (1) | 0.03 NS | 0.05 NS | 0.46 NS | 3.74 NS |
S (1) | 24.40 ** | 23.94 ** | 56.34 ** | 3.25 NS |
ST × Y (2) | 0.03 NS | 0.08 NS | 2.21 NS | 2.39 NS |
ST × S (2) | 29.11 ** | 28.77 ** | 0.94 NS | 4.48 NS |
Y × S (1) | 0.07 NS | 0.06 NS | 5.11 ** | 1.85 NS |
ST × Y × S (2) | 0.43 ** | 0.34 ** | 11.85 ** | 12.83 * |
Residual (36) | 1.02 | 1.13 | 21.07 | 48.75 |
Standard deviation | 2.80 | 2.93 | 14.84 | 0.06 |
Seed Moisture Content | Viability (S) | Viability (S + WV) | |
Type of seed (ST) | |||
I | 28.45 a | 80.00 a | 93.75 a |
II | 27.55 b | 90.00 a | 95.00 a |
III | 26.82 c | 58.75 b | 68.75 b |
IV | 14.65 d | 33.75 c | 37.50 c |
Year of production (Y) | |||
2019 | 24.27 | 61.89 | 69.38 |
2020 | 24.46 | 69.38 | 78.13 |
Analysis of variance | |||
Source (degrees of freedom) | % sum of squares | ||
ST (3) | 98.95 ** | 62.17 ** | 75.70 ** |
Y (1) | 0.03 NS | 1.88 NS | 2.65 NS |
ST × Y (3) | 0.28 NS | 6.98 NS | 4.81 NS |
Residual (24) | 0.75 | 25.97 | 16.85 |
Standard deviation | 0.57 | 17.02 | 12.75 |
G | A | Gt50 | k/2 | |
Type of seeds (ST) | ||||
I | 59.06 b | 59.85 b | 61.73 a | 0.06 |
II | 67.19 a | 68.87 a | 63.09 a | 0.06 |
III | 50.69 c | 51.86 c | 68.19 a | 0.06 |
IV | 20.06 d | 19.95 d | 52.55 b | 0.07 |
Year of production (Y) | ||||
2020 | 49.06 | 49.96 | 60.99 | 0.06 |
2019 | 49.44 | 50.30 | 61.78 | 0.06 |
Saturation solution (S) | ||||
Water | 37.09 b | 39.13 b | 97.96 a | 0.04 b |
GA3 | 61.41 a | 61.13 a | 24.82 b | 0.09 a |
Analysis of variance | ||||
Source (degrees of freedom) | % sum of squares | |||
ST (3) | 57.58 ** | 60.92 ** | 2.14 ** | 2.83 NS |
Y (1) | 0.01 NS | 0.01 NS | 0.01 NS | 0.03 NS |
S (1) | 26.76 ** | 21.69 ** | 89.88 ** | 65.46 ** |
ST × Y (3) | 1.35 NS | 1.29 S | 0.17 NS | 2.72 NS |
ST × S (3) | 3.32 ** | 4.08 ** | 2.46 ** | 2.56 NS |
Y × S (1) | 0.06 NS | 0.11 NS | 0.00 NS | 0.07 NS |
ST × H × S (3) | 0.59 NS | 0.64 NS | 0.22 NS | 10.01 ** |
Residual (48) | 10.33 | 11.27 | 5.12 | 16.33 |
Standard deviation | 8.72 | 9.16 | 10.08 | 0.01 |
Seed Moisture | Viability (S) | Viability (S + WV) | |
State of the seed | |||
FS | 27.80 a | 97.5 a | 97.5 a |
DS | 9.95 b | 82.5 a | 92.5 a |
SS | 8.86 c | 47.5 b | 77.5 b |
Analysis of variance | |||
Source (degrees of freedom) | % sum of squares | ||
State (2) | 99.55 ** | 72.2 ** | 79.4 ** |
Residual (9) | 0.45 | 27.8 | 20.6 |
Standard deviation | 0.68 | 15.0 | 5.0 |
G | A | Gt50 | k/2 | |
State of the seed | ||||
FS | 75.37 a | 76.89 a | 64.39 a | 0.06 |
DS | 54.62 b | 54.38 b | 53.04 a | 0.07 |
SS | 40.50 c | 40.48 c | 39.92 b | 0.06 |
Saturation solution | ||||
Water | 34.92 b | 36.54 b | 81.28 a | 0.04 b |
GA3 | 78.75 a | 77.96 a | 23.63 b | 0.08 a |
Analysis of variance | ||||
Source (degrees of freedom) | % sum of squares | |||
State (2) | 26.33 ** | 29.48 ** | 8.94 ** | 2.11 NS |
Solution (1) | 61.66 ** | 56.19 ** | 74.32 ** | 61.87 ** |
State × Solution (2) | 7.45 ** | 9.18 ** | 8.25 ** | 1.64 NS |
Residual (18) | 4.56 | 5.15 | 8.49 | 34.39 |
Standard deviation | 6.88 | 7.24 | 11.25 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foschi, M.L.; Juan, M.; Pascual, B.; Pascual-Seva, N. Collection Guidelines to Achieve a Viable Caper Commercial Propagation. Agronomy 2022, 12, 74. https://doi.org/10.3390/agronomy12010074
Foschi ML, Juan M, Pascual B, Pascual-Seva N. Collection Guidelines to Achieve a Viable Caper Commercial Propagation. Agronomy. 2022; 12(1):74. https://doi.org/10.3390/agronomy12010074
Chicago/Turabian StyleFoschi, María Laura, Mariano Juan, Bernardo Pascual, and Nuria Pascual-Seva. 2022. "Collection Guidelines to Achieve a Viable Caper Commercial Propagation" Agronomy 12, no. 1: 74. https://doi.org/10.3390/agronomy12010074
APA StyleFoschi, M. L., Juan, M., Pascual, B., & Pascual-Seva, N. (2022). Collection Guidelines to Achieve a Viable Caper Commercial Propagation. Agronomy, 12(1), 74. https://doi.org/10.3390/agronomy12010074