Mechanical Intervention in Compacted No-Till Soil in Southern Brazil: Soil Physical Quality and Maize Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Management
2.2. Soil Sampling and Analysis
2.3. Soil Physical Quality Index Development
2.4. Statistical Analysis
3. Results
3.1. Field Measurements of Soil Penetration Resistance
3.2. Soil Physical Measurements at the 0.05 to 0.15 m Soil Layer
3.3. Soil Physical Function and Soil Physical Quality Index (SPQI)
3.4. Maize Yield
4. Discussion
4.1. Field Measurements of Soil Penetration Resistance
4.2. Effects of Machinery Traffic on Soil Physical Quality
4.3. Effects of Mechanical Intervention on Soil Physical Quality
4.4. Maize Yield Responses to Soil Compaction and Decompaction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuentes-Llanillo, R.; Telles, T.S.; Junior, D.S.; de Melo, T.R.; Friedrich, T.; Kassam, A. Expansion of no-tillage practice in conservation agriculture in Brazil. Soil Tillage Res. 2021, 208, 104877. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Schick, J.; Bertol, I.; Barbosa, F.T.; Miquelluti, D.J.; Cogo, N.P. Water erosion in a long-term soil management experiment with a Humic Cambisol. Rev. Bras. Ciência Solo 2017, 41, 1–13. [Google Scholar] [CrossRef]
- Merten, G.H.; Araújo, A.G.; Biscaia, R.C.M.; Barbosa, G.M.C.; Conte, O. No-till surface runoff and soil losses in southern Brazil. Soil Tillage Res. 2015, 152, 85–93. [Google Scholar] [CrossRef]
- Nicoloso, R.S.; Rice, C.W. Intensification of no-till agricultural systems: An opportunity for carbon sequestration. Soil Sci. Soc. Am. J. 2021, 85, 1395–1409. [Google Scholar] [CrossRef]
- Li, Y.; Song, D.; Liang, S.; Dang, P.; Qin, X.; Liao, Y.; Siddique, K.H.M. Effect of no-tillage on soil bacterial and fungal community diversity: A meta-analysis. Soil Tillage Res. 2020, 204, 104721. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and crop productivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef]
- Sattolo, T.M.S.; Pereira, L.M.; Otto, R.; Francisco, E.; Duarte, A.P.; Kappes, C.; Prochnow, L.I.; Cherubin, M.R. Effects of land use, tillage management, and crop diversification on soil physical quality in Cerrado agricultural systems. Soil Sci. Soc. Am. J. 2021, 85, 1799–1813. [Google Scholar] [CrossRef]
- Bluett, C.; Tullberg, J.N.; McPhee, J.E.; Antille, D.L. Soil and Tillage Research: Why still focus on soil compaction? Soil Tillage Res. 2019, 194, 104282. [Google Scholar] [CrossRef]
- Lima, R.P.; Silva, A.P.; Giarola, N.F.B.; Silva, A.R.; Rolim, M.M.; Keller, T. Impact of initial bulk density and matric suction on compressive properties of two Oxisols under no-till. Soil Tillage Res. 2018, 175, 168–177. [Google Scholar] [CrossRef]
- Lima, R.P.; Keller, T.; Giarola, N.F.B.; Tormena, C.A.; Silva, A.R.; Rolim, M.M. Measurements and simulations of compaction effects on the least limiting water range of a no-till Oxisol. Soil Res. 2019, 58, 62–72. [Google Scholar] [CrossRef]
- Tormena, C.A.; Araújo, M.A.; Fidalski, J.; Imhoff, S.; Silva, A.P. Quantificação da resistência tênsil e da friabilidade de um Latossolo Vermelho distroférrico sob plantio direto. Rev. Bras. Ciência Solo 2008, 32, 943–952. [Google Scholar] [CrossRef]
- Cavalieri, K.M.V.; Silva, A.P.; Tormena, C.A.; Leão, T.P.; Dexter, A.R.; Håkansson, I. Long-term effects of no-tillage on dynamic soil physical properties in a Rhodic Ferrasol in Paraná, Brazil. Soil Tillage Res. 2009, 103, 158–164. [Google Scholar] [CrossRef]
- Colombi, T.; Keller, T. Developing strategies to recover crop productivity after soil compaction—A plant eco-physiological perspective. Soil Tillage Res. 2019, 191, 156–161. [Google Scholar] [CrossRef]
- Pott, L.P.; Amado, T.J.C.; Leal, O.A.; Ciampitti, I.A. Mitigation of soil compaction for boosting crop productivity at varying yield environments in southern Brazil. Eur. J. Soil Sci. 2019, 71, 1157–1172. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Virto, I.; Bescansa, P.; Imaz, M.J.; Enrique, A.; Karlen, D.L. No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Tillage Res. 2009, 106, 29–35. [Google Scholar] [CrossRef]
- Peixoto, D.S.; da Silva, L.D.C.M.; de Melo, L.B.B.; Azevedo, R.P.; Araújo, B.C.L.; de Carvalho, T.S.; Moreira, S.G.; Curi, N.; Silva, B.M. Occasional tillage in no-tillage systems: A global meta-analysis. Sci. Total Environ. 2020, 745, 140887. [Google Scholar] [CrossRef]
- Peixoto, D.S.; Silva, B.M.; Godinho Silva, S.H.; Karlen, D.L.; Moreira, S.G.; Pereira da Silva, A.A.; Resende, Á.V.; Norton, L.D.; Curi, N. Diagnosing, Ameliorating, and Monitoring Soil Compaction in No Till Brazilian Soils. Agrosystems Geosci. Environ. 2019, 2, 1–14. [Google Scholar] [CrossRef]
- Tavares-Filho, J.; Fonseca, I.C.B.; Ribon, A.A.; Barbosa, G.M.C. Efeito da escarificação na condutividade hidráulica saturada de um Latossolo Vermelho sob plantio direto. Cienc. Rural 2006, 36, 996–999. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.L.; Klein, V.A. Propriedades físico-hídricas de um Latossolo Vermelho submetido a diferentes sistemas de manejo. Rev. Bras. Ciênc. Solo 2007, 31, 1271–1280. [Google Scholar] [CrossRef]
- Nunes, M.R.; Pauletto, E.A.; Denardin, J.E.; Faganello, A.; Pinto, L.F.S.; Scheunemann, T. Persistência dos efeitos da escarificação sobre a compactação de Nitossolo sob plantio direto em região subtropical úmida. Pesqui. Agropecu. Bras. 2014, 49, 531–539. [Google Scholar] [CrossRef]
- Silva, S.G.C.; Silva, Á.P.D.; Giarola, N.F.B.; Tormena, C.A.; Sá, J.C.D.M. Temporary effect of chiseling on the compaction of a Rhodic Hapludox under no-tillage. Rev. Bras. Ciênc. Solo 2012, 36, 547–555. [Google Scholar] [CrossRef]
- Vizioli, B.; Cavalieri-Polizeli, K.M.V.; Tormena, C.A.; Barth, G. Effects of long-term tillage systems on soil physical quality and crop yield in a Brazilian Ferralsol. Soil Tillage Res. 2021, 209, 104935. [Google Scholar] [CrossRef]
- Mahl, D.; Furlani, C.E.A.; Gamero, C.A. Efficiency of pneumatic and horizontal perforated disk meter mechanism in corn no-tillage seeders in soil with different mobilizations reports. Eng. Agric. 2008, 28, 535–542. [Google Scholar] [CrossRef]
- Brandelero, E.M.; Araujo, A.G.; Ralisch, R. Mobilização do solo e profundidade de semeadura por diferentes mecanismos para o manejo do sulco de semeadura em uma semeadora direta. Eng. Agric. 2014, 34, 263–272. [Google Scholar] [CrossRef]
- Tormena, C.A.; Silva, Á.P.; Imhoff, S.D.C.; Dexter, A.R. Quantification of the soil physical quality of a tropical Oxisol using the s index. Sci. Agric. 2008, 65, 56–60. [Google Scholar] [CrossRef]
- Moreira, W.H.; Tormena, C.A.; Lima, R.P.; Anghinoni, G.; Imhoff, S. The influence of sowing furrow opening and wetting and drying cycles on soil physical quality under no-tillage in Southern Brazil. Soil Tillage Res. 2020, 204, 104711. [Google Scholar] [CrossRef]
- Ferreira, C.J.B.; Tormena, C.A.; Moreira, W.H.; Zotarelli, L.; Betioli Junior, E.; Anghinoni, G. Sampling position under no-tillage system affects the results of soil physical properties. Rev. Bras. Ciênc. Solo 2016, 40, 1–12. [Google Scholar] [CrossRef]
- Anghinoni, G.; Tormena, C.A.; Lal, R.; Moreira, W.H.; Júnior, E.B.; Ferreira, C.J.B. Within cropping season changes in soil physical properties under no-till in Southern Brazil. Soil Tillage Res. 2017, 166, 108–112. [Google Scholar] [CrossRef]
- Nunes, M.R.; Denardin, J.E.; Faganello, A.; Pauletto, E.A.; Pinto, L.F.S. Efeito de semeadora com haste sulcadora para ação profunda em solo manejado com plantio direto. Rev. Bras. Cienc. Solo 2014, 38, 627–638. [Google Scholar] [CrossRef]
- Santos, A.P.; Volpato, C.E.S.; Tourino, M.C.C. Desempenho de três semeadoras-adubadoras de plantio direto para a cultura do milho. Ciênc. Agrotecnol. 2008, 32, 540–546. [Google Scholar] [CrossRef]
- Nunes, M.R.; Denardin, J.E.; Pauletto, E.A.; Faganello, A.; Pinto, L.F.S. Mitigation of clayey soil compaction managed under no-tillage. Soil Tillage Res. 2015, 148, 119–126. [Google Scholar] [CrossRef]
- Blum, J.; Giarola, N.F.B.; Silva, Á.P.; Guedes Filho, O.; Silva, S.G.C.; Eberhardt, D.N.; Araújo, S.R. Assessment of soil physical attributes at sowing row and inter-row under no-till system. Rev. Cienc. Agron. 2014, 45, 888–895. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Karlen, D.L.; Franco, A.L.C.; Tormena, C.A.; Cerri, C.E.P.; Davies, C.A.; Cerri, C.C. Soil physical quality response to sugarcane expansion in Brazil. Geoderma 2016, 267, 156–168. [Google Scholar] [CrossRef]
- Cavalcanti, R.Q.; Rolim, M.M.; Lima, R.P.; Tavares, U.E.; Pedrosa, E.M.R.; Cherubin, M.R. Soil physical changes induced by sugarcane cultivation in the Atlantic Forest biome, northeastern Brazil. Geoderma 2020, 370, 114353. [Google Scholar] [CrossRef]
- Santos, R.S.; Wiesmeier, M.; Cherubin, M.R.; Oliveira, D.M.S.; Locatelli, J.L.; Holzschuh, M.; Cerri, C.E.P. Consequences of land-use change in Brazil’s new agricultural frontier: A soil physical health assessment. Geoderma 2021, 400, 115149. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Bagarello, V.; Iovino, M.; Elrick, D. A simplified falling-head technique for rapid determination of field-saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 2004, 68, 66–73. [Google Scholar] [CrossRef]
- Elrick, D.E.; Reynolds, W.D. Methods for analyzing constant-head well permeameter data. Soil Sci. Plant Nutr. 1992, 56, 320–323. [Google Scholar] [CrossRef]
- Campbell, G.S. Determining the -15 Bar (Permanent Wilt) Water Content of Soils with the WP4. Decagon Devices Application Note. 2006. Available online: http://ictinternational.com/content/uploads/2015/02/Determining-15Bar-PermanentWilt-WaterContentofSoilswiththeWP4.pdf (accessed on 10 September 2022).
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Dexter, A. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa Solos: Brasília, DF, Brazil, 2017. [Google Scholar]
- Reynolds, W.D.; Bowman, B.T.; Drury, C.F.; Tan, C.S.; Lu, X. Indicators of good soil physical quality: Density and storage parameters. Geoderma 2002, 110, 131–146. [Google Scholar] [CrossRef]
- Lima, R.P.; Silva, A.R.; Silva, A.P.; Leão, T.P.; Mosaddeghi, M.R. Soilphysics: An R package for calculating soil water availability to plants by different soil physical indices. Comput. Electron. Agric. 2016, 120, 63–71. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Bagarello, V.; Sgroi, A. Using the simplified falling head technique to detect temporal changes in field-saturated hydraulic conductivity at the surface of a sandy loam soil. Soil Tillage Res. 2007, 94, 283–294. [Google Scholar] [CrossRef]
- Secretaria de Agricultura e Abastecimento do Estado do Paraná. Dep. Econ. Rural—DERAL/Div. Estatísticas Básicas-DEB. Available online: http://www.agricultura.pr.gov.br/deral/safras (accessed on 20 September 2020).
- Peixoto, D.S.; Silva, B.M.; Oliveira, G.C.; Moreira, S.G.; Silva, F.; Curi, N. A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil Tillage Res. 2019, 194, 104307. [Google Scholar] [CrossRef]
- Park, E.J.; Smucker, A.J.M. Saturated Hydraulic Conductivity and Porosity within Macroaggregates Modified by Tillage. Soil Sci. Soc. Am. J. 2005, 69, 38–45. [Google Scholar] [CrossRef]
- Vazquez, L.; Myhre, D.L.; Hanlon, E.A.; Gallaher, R.N. Soil penetrometer resistance and bulk density relationships after long-term no tillage. Commun. Soil Sci. Plant Anal. 1991, 22, 2101–2117. [Google Scholar] [CrossRef]
- Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Mastroberti, A.A.; Levien, R.; Leitner, D.; Schnepf, A. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Res. 2020, 200, 104611. [Google Scholar] [CrossRef]
- Batey, T.; McKenzie, D.C. Soil compaction: Identification directly in the field. Soil Use Manag. 2006, 22, 123–131. [Google Scholar] [CrossRef]
- Genro Junior, S.A.; Reinert, D.J.; Reichert, J.M. Variabilidade temporal da resistência à penetração de um latossolo argiloso sob semeadura direta com rotação de culturas. Rev. Bras. Ciênc. Solo 2004, 28, 477–484. [Google Scholar] [CrossRef]
- Silva, S.R.; Barros, N.F.; Costa, L.M. Atributos físicos de dois Latossolos afetados pela compactação do solo. Rev. Bras. Eng. Agric. Ambient. 2006, 10, 842–847. [Google Scholar] [CrossRef]
- Bécel, C.; Vercambre, G.; Pagès, L. Soil penetration resistance, a suitable soil property to account for variations in root elongation and branching. Plant Soil 2012, 353, 169–180. [Google Scholar] [CrossRef]
- Nosalewicz, A.; Lipiec, J. The effect of compacted soil layers on vertical root distribution and water uptake by wheat. Plant Soil 2014, 375, 229–240. [Google Scholar] [CrossRef]
- Castioni, G.A.; de Lima, R.P.; Cherubin, M.R.; Bordonal, R.O.; Rolim, M.M.; Carvalho, J.L. Machinery traffic in sugarcane straw removal operation: Stress transmitted and soil compaction. Soil Tillage Res. 2021, 213, 105122. [Google Scholar] [CrossRef]
- Sadras, V.O.; O’Leary, G.J.; Roget, D.K. Crop responses to compacted soil: Capture and efficiency in the use of water and radiation. Field Crop. Res. 2005, 91, 131–148. [Google Scholar] [CrossRef]
- Inagaki, T.M.; Sá, J.C.M.; Tormena, C.A.; Dranski, A.; Muchalak, A.; Briedis, C.; Ferreira, A.O.; Giarola, N.F.B.; da Silva, Á.P. Mechanical and biological chiseling impacts on soil organic C stocks, root growth, and crop yield in a long-term no-till system. Soil Tillage Res. 2021, 211, 104993. [Google Scholar] [CrossRef]
- Naderi-Boldaji, M.; Keller, T. Degree of soil compactness is highly correlated with the soil physical quality index S. Soil Tillage Res. 2016, 159, 41–46. [Google Scholar] [CrossRef]
- Sivarajan, S.; Maharlooei, M.; Bajwa, S.G.; Nowatzki, J. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil Tillage Res. 2018, 175, 234–243. [Google Scholar] [CrossRef]
- Akinci, I.; Cakir, E.; Topakci, M.; Canakci, M.; Inan, O. The effect of subsoiling on soil resistance and cotton yield. Soil Tillage Res. 2004, 77, 203–210. [Google Scholar] [CrossRef]
- Galambošová, J.; Macák, M.; Rataj, V.; Antille, D.L.; Godwin, R.J.; Chamen, W.C.T.; Žitňák, M.; Vitázková, B.; Ďuďák, J.; Chlpík, J. Field Evaluation of Controlled Traffic Farming in Central Europe Using Commercially Available Machinery. Am. Soc. Agric. Biol. Eng. 2017, 60, 657–669. [Google Scholar] [CrossRef]
- Arshad, M.A.; Franzluebbers, A.J.; Azooz, R.H. Components of surface soil structure under conventional and no-tillage in northwestern Canada. Soil Tillage Res. 1999, 53, 41–47. [Google Scholar] [CrossRef]
- Edreira, J.I.R.; Guilpart, N.; Sadras, V.; Cassman, K.G.; van Ittersum, M.K.; Schils, R.L.M.; Grassini, P. Water productivity of rainfed maize and wheat: A local to global perspective. Agric. For. Meteorol. 2018, 259, 364–373. [Google Scholar] [CrossRef]
- Ren, L.; Nest, T.V.; Ruysschaert, G.; D’Hose, T.; Cornelis, W.M. Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil Tillage Res. 2019, 192, 76–86. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wortmann, C.S. Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil Tillage Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Fidalski, J.; Yagi, R.; Tormena, C.A. Revolvimento ocasional e calagem em latossolo muito argiloso em sistema plantio direto consolidado. Rev. Bras. Ciênc. Solo 2015, 39, 1483–1489. [Google Scholar] [CrossRef]
- Blainski, É.; Tormena, C.; Fidalski, J.; Guimarães, R.M.L. Quantificação da degradação física do solo por meio da curva de resistência do solo à penetração. Rev. Bras. Ciênc. Solo 2008, 32, 975–983. [Google Scholar] [CrossRef]
Treatments | 2013–2014 (Soybean) 1 | 2014–2015 (Maize) 2 | 2015 (Wheat) | 2015–2016 (Beans) | 2016–2017 (Soybean) | 2017–2018 (Maize) |
---|---|---|---|---|---|---|
0 WT | 4565 | 13,089 | 3805 | 3689 | 4754 | 13,973 |
14 WT | 4582 | 13,534 | 3756 | 3548 | 4671 | 14,149 |
28 WT | 4640 | 12,873 | 3663 | 3445 | 4862 | 13,608 |
Year | pH | Al | H + Al | Ca | Mg | K | BS | CEC | P | OC | BS |
---|---|---|---|---|---|---|---|---|---|---|---|
CaCl2 | -------------------mmolc dm−3--------------------- | mg dm−3 | g dm−3 | % | |||||||
2013 | 4.7 | 1 | 45 | 23 | 11 | 0.8 | 34.8 | 79.8 | 25 | 37 | 44 |
2015 | 4.7 | 1.8 | 60 | 16 | 8 | 2.6 | 26.6 | 86.6 | 26 | 47 | 31 |
2017 | 4.7 | 2 | 64 | 22 | 13 | 2 | 37 | 101 | 30 | 30 | 37 |
Soil Physical Function | Weight (A) | Soil Indicators | Weight (B) | Value of Transformed Indicator (C) | Soil Indicator Score (B × C) | Ʃ (B × C) (D) | Soil Function Score (D × A) | SPQI Ʃ (D × A) |
---|---|---|---|---|---|---|---|---|
Support for plant growth | 0.333 | BD | 0.5 | 0.800 | 0.400 | 0.765 | 0.255 | 0.609 |
SPR | 0.5 | 0.730 | 0.365 | |||||
Water fluxes | 0.333 | PAWC | 0.5 | 0.830 | 0.415 | 0.545 | 0.181 | |
Kfs | 0.5 | 0.260 | 0.130 | |||||
Soil aeration capacity | 0.333 | SAC | 0.5 | 0.690 | 0.345 | 0.520 | 0.173 | |
MaP | 0.5 | 0.350 | 0.175 |
Physical Indicators | 0 WT | 14 WT | 28 WT | p-Value | CV (%) |
---|---|---|---|---|---|
BD (Mg m−3) | 1.28 a | 1.26 a | 1.22 a | 0.355 | 4.71 |
TP (m3 m−3) | 0.51 a | 0.52 a | 0.56 a | 0.104 | 4.32 |
MaP (m3 m−3) | 0.10 a | 0.12 a | 0.17 a | 0.138 | 26 |
MiP (m3 m−3) | 0.40 a | 0.40 a | 0.39 a | 0.289 | 4.13 |
Kfs (cm h−1) | 0.48 a | 0.41 a | 0.38 a | 0.477 | 74.41 |
S index | 0.038 a | 0.036 a | 0.038 a | 0.412 | 6.6 |
SAC | 0.24 a | 0.26 a | 0.33 a | 0.170 | 17.13 |
PAWC (m3 m−3) | 0.17 a | 0.14 b | 0.14 b | 0.007 *** | 6.62 |
SPR (kPa) | 1525.09 b | 1735.88 a | 1715.99 a | 0.054 * | 15.96 |
Physical Indicators | NT | NT + FS | SC | SSS | p-Value | CV (%) |
---|---|---|---|---|---|---|
BD (g cm−3) | 1.30 a | 1.27 ab | 1.24 bc | 1.22 c | 0.033 ** | 6.54 |
TP (m3 m−3) | 0.51 b | 0.52 b | 0.54 a | 0.54 a | 0.015 ** | 6.09 |
MaP (m3 m−3) | 0.10 c | 0.12 bc | 0.13 ab | 0.15 a | 0.039 ** | 36.52 |
MiP (m3 m−3) | 0.40 a | 0.39 a | 0.40 a | 0.39 a | 0.196 | 4.85 |
Kfs (cm h−1) | 26.18 b | 34.82 ab | 53.39 ab | 59.03 a | 0.067 * | 63.07 |
S index | 0.035 b | 0.035 b | 0.039 a | 0.039 a | 0.001 *** | 12.49 |
SAC | 0.27 bc | 0.24 c | 0.28 ab | 0.31 a | 0.028 ** | 26.33 |
PAWC (m3 m−3) | 0.14 a | 0.15 a | 0.15 a | 0.15 a | 0.1, 14 | 9.27 |
SPR (kPa) | 2009.15 a | 1791.86 a | 1295.77 c | 1539.16 b | 0.005 *** | 12.45 |
f(i) Plant growth | |||||
Treatments | NT | NT + FS | SC | SS | p-Value |
0 WT | 0.66 aC | 0.71 aC | 0.88 aA | 0.79 aB | 0.0001 *** |
14 WT | 0.64 aB | 0.68 aB | 0.80 bA | 0.76 aA | 0.001 *** |
28 WT | 0.69 aB | 0.68 aB | 0.79 bA | 0.74 aAB | 0.04 ** |
p-value | 0.26 | 0.68 | 0.02 ** | 0.19 | |
f(ii) Water fluxes | f(iii) Soil aeration capacity | SPQI | |||
0 WT | 0.54 a | 0.52 a | 0.60 a | ||
14 WT | 0.49 ab | 0.58 a | 0.59 a | ||
28 WT | 0.42 b | 0.70 a | 0.62 a | ||
p-value | 0.07* | 0.18 | 0.72 | ||
CV (%) | 26.45 | 17.90 | 9.72 | ||
NT | 0.43 b | 0.58 b | 0.56 b | ||
NT + FS | 0.43 b | 0.54 b | 0.55 b | ||
SC | 0.54 a | 0.60 ab | 0.65 a | ||
SS | 0.53 a | 0.66 a | 0.65 a | ||
p-value | 0.07* | 0.08 * | 0.002 *** | ||
CV (%) | 19.47 | 22.32 | 10.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, R.K.; Barbosa, E.A.A.; Giarola, N.F.B.; Kochinski, E.G.; Povh, F.P.; Paula, A.L.d.; Cherubin, M.R. Mechanical Intervention in Compacted No-Till Soil in Southern Brazil: Soil Physical Quality and Maize Yield. Agronomy 2022, 12, 2281. https://doi.org/10.3390/agronomy12102281
Becker RK, Barbosa EAA, Giarola NFB, Kochinski EG, Povh FP, Paula ALd, Cherubin MR. Mechanical Intervention in Compacted No-Till Soil in Southern Brazil: Soil Physical Quality and Maize Yield. Agronomy. 2022; 12(10):2281. https://doi.org/10.3390/agronomy12102281
Chicago/Turabian StyleBecker, Regiane Kazmierczak, Eduardo Augusto Agnellos Barbosa, Neyde Fabíola Balarezo Giarola, Edson Giovani Kochinski, Fabrício Pinheiro Povh, Ariane Lentice de Paula, and Maurício Roberto Cherubin. 2022. "Mechanical Intervention in Compacted No-Till Soil in Southern Brazil: Soil Physical Quality and Maize Yield" Agronomy 12, no. 10: 2281. https://doi.org/10.3390/agronomy12102281
APA StyleBecker, R. K., Barbosa, E. A. A., Giarola, N. F. B., Kochinski, E. G., Povh, F. P., Paula, A. L. d., & Cherubin, M. R. (2022). Mechanical Intervention in Compacted No-Till Soil in Southern Brazil: Soil Physical Quality and Maize Yield. Agronomy, 12(10), 2281. https://doi.org/10.3390/agronomy12102281