Carbon-Isotope Ratio (δ13C) and Phenolic-Compounds Analysis in Authenticity Studies of Wines from Dealu Mare and Cotnari Regions (Romania)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Statistical Tests
3.1.1. ANOVA Evaluation
3.1.2. Tukey HSD Test
Sample | Gallic Acid | Protocatechuic Acid | Caftaric Acid | Caffeic Acid | Coumaric Acid | Trans-Resveratrol | Hydroxy-Tyrosol | Tyrosol | Procyanidin Dimer B1 | Catechin | Procyanidin Dimer B2 | Epicatechin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | ||
Fetească neagră Cotnari (5) | Min | 43.59 | 2.27 | 34.55 | 19.02 | 6.64 | 3.12 | 2.56 | 13.48 | 17.71 | 19.70 | 9.81 | 12.76 |
Max | 98.27 | 4.82 | 62.79 | 24.54 | 11.72 | 12.61 | 3.28 | 18.42 | 28.20 | 28.67 | 13.08 | 21.09 | |
Average | 71.38 | 3.50 | 46.52 | 22.55 | 9.01 | 7.86 | 2.91 | 15.42 | 21.49 | 23.51 | 11.17 | 16.55 | |
SD | 21.19 | 0.90 | 10.84 | 2.19 | 1.88 | 4.01 | 0.30 | 2.07 | 4.12 | 3.56 | 1.70 | 3.55 | |
Busuioacă de Bohotin Cotnari (7) | Min | 30.44 | 1.08 | 13.92 | 3.20 | 2.65 | 0.43 | 1.47 | 8.92 | 4.36 | 6.74 | 0.36 | 2.68 |
Max | 89.31 | 1.73 | 58.70 | 6.82 | 5.69 | 096 | 1.93 | 11.05 | 6.50 | 9.65 | 0.97 | 5.96 | |
Average | 50.40 | 1.37 | 42.45 | 4.77 | 4.33 | 0.75 | 1.68 | 10.11 | 5.43 | 8.12 | 0.71 | 4.05 | |
SD | 18.48 | 0.26 | 14.80 | 1.22 | 0.91 | 0.19 | 0.18 | 0.81 | 0.67 | 1.08 | 0.19 | 1.21 | |
Fetească albă Cotnari (4) | Min | 1.79 | 0.39 | 27.56 | 1.25 | 0.41 | Nd | 0.00 | 14.12 | 2.06 | 4.32 | 0.33 | 1.36 |
Max | 59.18 | 0.77 | 34.12 | 2.60 | 1.65 | Nd | 0.33 | 21.80 | 3.32 | 6.83 | 0.63 | 2.77 | |
Average | 25.19 | 0.54 | 29.87 | 1.70 | 0.82 | Nd | 0.20 | 17.12 | 2.60 | 5.47 | 0.44 | 2.05 | |
SD | 24.35 | 0.17 | 2.91 | 0.61 | 0.58 | Nd | 0.16 | 3.66 | 0.57 | 11.7 | 0.14 | 0.62 | |
Fetească neagră Dealu Mare (4) | Min | 33.68 | 2.44 | 43.26 | 12.15 | 5.51 | 3.77 | 2.29 | 24.63 | 36.77 | 33.75 | 20.26 | 27.80 |
Max | 70.99 | 3.66 | 88.62 | 17.30 | 8.85 | 12.07 | 3.31 | 32.15 | 40.69 | 40.81 | 24.46 | 37.32 | |
Average | 49.56 | 3.16 | 63.99 | 14.44 | 7.36 | 6.78 | 2.72 | 28.43 | 38.92 | 37.06 | 22.71 | 32.39 | |
SD | 17.27 | 0.57 | 1963 | 2.20 | 1.43 | 3.63 | 0.46 | 3.53 | 1.76 | 3.29 | 1.78 | 3.90 | |
Busuioacă de Bohotin Dealu Mare (4) | Min | 0.50 | 0.79 | 21.05 | 0.71 | 1.48 | 0.29 | 0.79 | 7.15 | 4.47 | 7.66 | 0.25 | 5.19 |
Max | 33.26 | 1.97 | 36.19 | 6.10 | 4.09 | 1.79 | 3.69 | 10.11 | 8.72 | 13.00 | 1.52 | 8.32 | |
Average | 10.06 | 1.22 | 27.78 | 3.96 | 3.02 | 0.97 | 2.33 | 8.75 | 5.96 | 9.66 | 0.97 | 6.95 | |
SD | 15.54 | 0.54 | 6.34 | 2.33 | 1.15 | 0.64 | 1.43 | 1.40 | 1.98 | 2.32 | 0.54 | 1.36 | |
Fetească albă Dealu Mare (4) | Min | 0.79 | 0.74 | 19.57 | 3.32 | 2.11 | Nd | 0.29 | 14.65 | 1.40 | 4.03 | 0.19 | 2.00 |
Max | 12.57 | 1.68 | 27.19 | 4.81 | 3.78 | Nd | 1.16 | 22.07 | 2.37 | 6.83 | 0.85 | 2.42 | |
Average | 5.92 | 1.29 | 22.55 | 3.71 | 2.65 | Nd | 0.60 | 17.66 | 1.82 | 5.26 | 0.41 | 2.26 | |
SD | 4.95 | 0.42 | 3.27 | 0.73 | 0.76 | Nd | 0.41 | 3.40 | 0.47 | 1.33 | 0.30 | 0.19 |
Tukey HSD Test | |||||||||||||
No. | Region | Variable: Gallic acid, MS = 405.39, df = 24.000 | Variable: Protocatechuic acid, MS = 0.51870, df = 24.000 | Variable: Caftaric acid, MS = 222.41, df = 24.000 | Variable: Caffeic acid, MS = 11.421, df = 24.000 | Variable: coumaric acid, MS = 2.3497, df = 24.000 | Variable: trans-resveratrol, MS = 718.87, df = 24.000 | ||||||
{1} 50.652 | {2} 21.849 | {1} 1.8283 | {2} 1.8919 | {1} 40.575 | {2} 38.104 | {1} 9.5612 | {2} 7.3711 | {1} 4.9151 | {2} 4.3453 | {1} 42.503 | {2} 22.892 | ||
1 | Cotnari | 0.001133 | 0.819332 | 0.668389 | 0.102783 | 0.340172 | 0.067559 | ||||||
2 | Dealu Mare | 0.001133 | 0.819332 | 0.668389 | 0.102783 | 0.340172 | 0.067559 | ||||||
Tukey HSD Test | |||||||||||||
No. | Region | Variable: Hydroxytyrosol, MS = 0.38400, df = 24.000 | Variable: Tyrosol, MS = 25.605, df = 24.000 | Variable: Procyanidin dimer B1, MS = 51.513, df = 24.000 | Variable: Catechin, MS = 35.256, df = 24.000 | Variable: Procyanidin dimer B2, MS = 20.830, df = 24.000 | Variable: Epicatechin, MS = 33.531, df = 24.000 | ||||||
{1} 1.6937 | {2} 1.8820 | {1} 13.520 | {2} 18.277 | {1} 9.7428 | {2} 15.566 | {1} 12.268 | {2} 17.327 | {1} 3.9133 | {2} 8.0264 | {1} 7.4569 | {2} 13.864 | ||
1 | Cotnari | 0.433942 | 0.021524 | 0.044233 | 0.035432 | 0.026882 | 0.008065 | ||||||
2 | Dealu Mare | 0.433942 | 0.021524 | 0.044233 | 0.035432 | 0.026882 | 0.008065 |
Tukey HSD Test | |||||||||||||||||||
No. | Variety | Variable: Gallic acid, MS = 405.39, df = 24.000 | Variable: Protocatechuic acid, MS = 0.51870, df = 24.000 | Variable: Caftaric acid, MS = 222.41, df = 24.000 | Variable: Caffeic acid, MS = 11.421, df = 24.000 | Variable: coumaric acid, MS = 2.3497, df = 24.000 | Variable: trans-resveratrol, MS = 718.87, df = 24.000 | ||||||||||||
{1} 55.562 | {2} 35.758 | {3} 17.666 | {1} 3.1021 | {2} 1.3759 | {3} 0.8286 | {1} 50.957 | {2} 36.978 | {3} 27.159 | {1} 17.660 | {2} 4.2259 | {3} 2.6210 | {1} 7.8205 | {2} 3.8622 | {3} 1.4424 | {1} 86.976 | {2} 7.7264 | {3} 0.0000 | ||
1 | Fetească neagră | 0.082862 | 0.002408 | 0.000162 | 0.000131 | 0.101911 | 0.101911 | 0.009557 | 0.000129 | 0.000129 | 0.000137 | 0.000129 | 0.000130 | 0.000130 | |||||
2 | Busuioacă de Bohotin | 0.082862 | 0.172695 | 0.000162 | 0.277098 | 0.376352 | 0.000129 | 0.000137 | 0.008973 | 0.000130 | 0.823642 | ||||||||
3 | Fetească albă | 0.002408 | 0.172695 | 0.000131 | 0.277098 | 0.009557 | 0.376352 | 0.000129 | 0.592940 | 0.000129 | 0.008973 | 0.000130 | 0.823642 | ||||||
Tukey HSD Test | |||||||||||||||||||
No. | Variety | Variable: Hydroxy-tyrosol, MS = 0.38499, df = 24.000 | Variable: Tyrosol, MS = 25.605, df = 24.000 | Variable: Procyanidin dimer B1, MS = 51.513, df = 24.000 | Variable: Catechin, MS = 35.256, df = 24.000 | Variable: Procyanidin dimer B2, MS = 20.830, df = 24.000 | Variable: Epicatechin, MS = 33.531, df = 24.000 | ||||||||||||
{1} 2.8841 | {2} 1.6321 | {3} 0.4128 | {1} 19.797 | {2} 10.356 | {3} 17.680 | {1} 26.774 | {2} 5.4234 | {3} 2.1837 | {1} 27.471 | {2} 8.4902 | {3} 5.1588 | {1} 14.695 | {2} 0.8605 | {3} 0.3586 | {1} 21.897 | {2} 4.7014 | {3} 2.1414 | ||
1 | Fetească neagră | 0.000419 | 0.000129 | 0.000856 | 0.677037 | 0.000130 | 0.000129 | 0.000129 | 0.000129 | 0.000130 | 0.000131 | 0.000130 | 0.000130 | ||||||
2 | Busuioacă de Bohotin | 0.000419 | 0.001349 | 0.000856 | 0.016787 | 0.000130 | 0.624898 | 0.000129 | 0.487631 | 0.000130 | 0.971999 | 0.000130 | 0.637743 | ||||||
3 | Fetească albă | 0.000129 | 0.001349 | 0.677037 | 0.016787 | 0.000129 | 0.624898 | 0.000129 | 0.487631 | 0.000131 | 0.971999 | 0.000130 | 0.637743 |
No. | Region | Variety | Tukey HSD Test; Variable δ13C; Approximate Probabilities for Post Hoc Tests; Error: Between MS = 0.9002, df = 22.00 | |||||
---|---|---|---|---|---|---|---|---|
{1} −27.21 | {2} −26.23 | {3} −26.6 | {4} −28.01 | {5} −27.10 | {6} −26.77 | |||
1 | Cotnari | Fetească neagră | 0.000292 | 0.057273 | 0.007517 | 0.993574 | 0.285852 | |
2 | Cotnari | Busuioacă de Bohotin | 0.000292 | 0.394961 | 0.000144 | 0.001653 | 0.079276 | |
3 | Cotnari | Fetească alba | 0.057273 | 0.394961 | 0.000153 | 0.207191 | 0.959551 | |
4 | Dealu Mare | Fetească neagră | 0.007517 | 0.000144 | 0.000153 | 0.003671 | 0.000220 | |
5 | Dealu Mare | Busuioacă de Bohotin | 0.993574 | 0.001653 | 0.207191 | 0.003671 | 0.636627 | |
6 | Dealu Mare | Fetească albă | 0.285852 | 0.079276 | 0.959551 | 0.000220 | 0.636627 |
3.1.3. Statistical Tests—Discriminant Function Analysis (DFA)
Group | Root 1 | Root 2 |
---|---|---|
Fetească neagră | −16.8736 | 0.23597 |
Busuioacă de Bohotin | 7.3757 | −3.38780 |
Fetească albă | 8.8411 | 4.39277 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geana, E.I.; Popescu, R.; Costinel, D.; Dinca, O.R.; Ionete, R.E.; Stefanescu, I.; Artem, V.; Bala, C. Classification of red wines using suitable markers coupled with multivariatestatistic analysis. Food Chem. 2016, 192, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Dinca, O.-R.; Ursu, S.O.; Costinel, D.; Miricioiu, M.G.; Radu, G.-L.; Popa, V.; Campeanu, C.B.; Elena, R. Samburesti wines characterization in terms of their stable isotope content. U.P.B. Sci. Bull. Ser. B 2015, 77, 177–188. [Google Scholar]
- Versini, G.; Monetti, A.; Reniero, F. Monitoring authenticity and regional origin of wines by natural stable isotope ratios analysis. ACS Symp. Ser. 1991, 661, 113–130. [Google Scholar]
- Dinca, O.R.; Ionete, R.E.; Popescu, R.; Costinel, D.; Radu, G.-L. Geographical and Botanical Origin Discrimination of Romanian Honey Using Complex Stable Isotope Data and Chemometrics. Food Anal. Methods 2015, 8, 401–412. [Google Scholar] [CrossRef]
- Costinel, D.; Tudorache, A.; Ionete, R.E.; Vremera, R. The Impact of Grape Varieties to Wine Isotopic Characterization. Anal. Lett. 2011, 44, 2856–2864. [Google Scholar] [CrossRef]
- Ehlers, M.; Uttl, L.; Riedl, J.; Raeke, J.; Westkamp, I.; Hajslova, J.; Brockmeyer, J.; Fauhl-Hassek, C. Instrument comparability of non-targeted UHPLC-HRMS for wine authentication. Food Control 2022, 144, 109360. [Google Scholar] [CrossRef]
- Pan, Y.; Gu, H.-W.; Lv, Y.; Yin, X.-L.; Chen, Y.; Long, W.; Fu, H.; She, Y. Untargeted metabolomic analysis of Chinese red wines for geographical origin traceability by UPLC-QTOF-MS coupled with chemometrics. Food Chem. 2022, 394, 133473. [Google Scholar] [CrossRef]
- Yunoki, K.; Yasui, Y.; Naito, A.; Kawaguchi, M.; Ohnishi, M. Comparative analysis of concentrations of trans- and cis-resveratrol in must and wine from eleven different grapes grown in Hokkaido, Northen Japan. J. Oleo Sci. 2001, 50, 895–903. [Google Scholar] [CrossRef]
- Rodríguez-Delgado, M.Á.; González-Hernández, G.; Conde-González, J.E.; Pérez-Trujillo, J.P. Principal component analysis of the polyphenol content in young red wines. Food Chem. 2002, 78, 523–532. [Google Scholar] [CrossRef]
- Rastija, V.; Srecnik, G.; Medic-Saric, M. Polyphenolic composition of Croatian wines with different geographical origin. Food Chem. 2009, 115, 54–60. [Google Scholar] [CrossRef]
- Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Zaldea, G.; Nechita, A.; Damian, D.; Ghiur, A.D.; Cotea, V.V. Climate changes in recent decades, the evolution of the drought phenomenon and their influence on vineyards in north-eastern Romania. Not. Bot. Horti Agrobot. 2021, 49, 12448. [Google Scholar] [CrossRef]
- Nedelcu, A.; Privitera, D.; Ivona, A.; Ganusceac, A. Wine tourism as a vector of local and regional development. Case study Prahova county. Udekom Balcan 3rd Int. Themat. Monograph. 2021, 341–357. [Google Scholar] [CrossRef]
- Liviu, M.; Nicolae, G.; Carmen, P.; Ramona, C. Tradition and quality of romanian viticulture. Ann. Univ. Craiova 2018, 23, 139–143. [Google Scholar]
- Irimia, L.M.; Patriche, C.V.; Quenol, H.; Sfîcă, L.; Foss, C. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania. Theor. Appl. Climatol. 2018, 131, 1069–1081. [Google Scholar] [CrossRef]
- Nedelcu, A. Wine Tourism in Romania: Case Study: Dealu Mare Vineyard. Int. J. Sustain. Econ. Manag. 2014, 3, 16–26. [Google Scholar] [CrossRef]
- Ballester, J.; Magne, M.; Julien, P.; Noret, L.; Nikolantonaki, M.; Coelho, C.; Gougeon, R.D. Sensory Impact of Polyphenolic Composition on the Oxidative Notes of Chardonnay Wines. Beverages 2018, 4, 19. [Google Scholar] [CrossRef]
- Guyon, F.; van Leeuwen, C.; Gaillard, L.; Grand, M.; Akoka, S.; Remaud, G.S.; Sabathié, N.; Salagoïty, M.H. Comparative study of 13C composition in ethanol and bulk dry wine using isotope ratio monitoring by mass spectrometry and by nuclear magnetic resonance as an indicator of vine water status. Anal. Bioanal. Chem. 2015, 407, 9053–9060. [Google Scholar] [CrossRef]
- Šorgić, S.; Sredović Ignjatović, I.; Antić, M.; Šaćirović, S.; Pezo, L.; Čejić, V.; Đurović, S. Monitoring of the Wines’ Quality by Gas Chromatography: HSS-GC/FID Method Development, Validation, Verification, for Analysis of Volatile Compounds. Fermentation 2022, 8, 38. [Google Scholar] [CrossRef]
- Dinca, O.R.; Ionete, R.E.; Costinel, D.; Geana, I.E.; Popescu, R.; Stefanescu, I.; Radu, G.L. Regional and Vintage Discrimination of Romanian Wines Based on Elemental and Isotopic Fingerprinting. Food Anal. Methods 2016, 9, 2406–2417. [Google Scholar] [CrossRef]
- Banc, R.; Loghin, F.; Miere, D.; Ranga, F.; Socaciu, C. Phenolic composition and antioxidant activity of red, rosé and white wines originating from Romanian grape cultivars. Not. Bot. Horti Agrobot. 2020, 48, 716–734. [Google Scholar] [CrossRef]
- Geana, E.-I.; Ionete, R.E.; Tudorache, A.; Pasa, R.; Postolache, E.; Ranca, A. Phenolic Contents of Romanian Wines with Different Geographical Origins. Asian J. Chem. 2011, 23, 5. [Google Scholar]
- Pajović-Šćepanović, R.; Wendelin, S.; Eder, R. Phenolic composition and varietal discrimination of Montenegrin red wines (Vitis vinifera var. Vranac, Kratošija, and Cabernet Sauvignon). Eur. Food Res. Technol. 2018, 244, 2243–2254. [Google Scholar] [CrossRef]
- Geana, E.I.; Popescu, R.; Costinel, D.; Dinca, O.R.; Stefanescu, I.; Ionete, R.E. Verifying the Red Wines Adulteration through Isotopic and Chromatographic Investigations Coupled with Multivariate Statistic Interpretation of the Data. Food Control 2016, 62, 1–9. [Google Scholar] [CrossRef]
- Tzachristas, A.; Pasvanka, K.; Calokerinos, A.; Proestos, C. Polyphenols: Natural Antioxidants to be used as a Quality Tool in Wine Authenticity. Appl. Sci. 2020, 10, 5908. [Google Scholar] [CrossRef]
Current Number | Region | Grape Variety | Wine Colour | Year | Density (g/cm3) | Ethanol Concentration (% v/v) | pH | Total Acidity (g/L Tartaric Acid) | Sugars (g/L) |
---|---|---|---|---|---|---|---|---|---|
1 | Cotnari | Fetească neagră | Red | 2017 | 0.9934 | 13.26 | 3.63 | 5.57 | 5.90 |
2 | 2017 | 0.9920 | 13.66 | 3.72 | 4.97 | 4.80 | |||
3 | 2017 | 0.9937 | 13.08 | 3.64 | 5.54 | 4.90 | |||
4 | 2017 | 0.9938 | 13.37 | 3.57 | 5.79 | 6.10 | |||
5 | 2017 | 0.9931 | 12.16 | 3.73 | 5.02 | 5.10 | |||
6 | Busuioacă de Bohotin | Rosé | 2019 | 0.9897 | 13.63 | 3.15 | 6.61 | 3.70 | |
7 | 2019 | 1.0012 | 12.79 | 3.35 | 6.38 | 29.50 | |||
8 | 2019 | 0.9937 | 12.77 | 3.36 | 6.14 | 11.40 | |||
9 | 2019 | 0.9935 | 12.91 | 3.37 | 6.14 | 11.20 | |||
10 | 2019 | 0.9934 | 12.98 | 3.30 | 6.28 | 12.10 | |||
11 | 2019 | 0.9903 | 13.05 | 3.26 | 6.64 | 3.90 | |||
12 | 2019 | 0.9935 | 13.18 | 3.34 | 5.91 | 12.10 | |||
13 | Fetească albă | White | 2018 | 0.9885 | 12.96 | 3.44 | 4.85 | 2.60 | |
14 | 2018 | 1.0018 | 12.53 | 3.25 | 6.11 | 31.50 | |||
15 | 2018 | 0.9901 | 13.19 | 3.27 | 6.15 | 4.20 | |||
16 | 2018 | 0.9920 | 13.52 | 3.16 | 6.63 | 10.30 | |||
17 | Dealu mare | Fetească neagră | Red | 2017 | 0.9900 | 13.61 | 3.44 | 5.49 | 4.80 |
18 | 2017 | 0.9924 | 14.41 | 3.64 | 5.27 | 5.60 | |||
19 | 2017 | 0.9938 | 14.25 | 3.83 | 5.04 | 5.80 | |||
20 | 2017 | 0.9917 | 14.10 | 3.81 | 4.87 | 3.40 | |||
21 | Busuioacă de Bohotin | Rosé | 2019 | 0.9901 | 12.12 | 3.45 | 6.72 | 1.40 | |
22 | 2019 | 1.0053 | 12.30 | 3.66 | 5.48 | 35.20 | |||
23 | 2019 | 1.0046 | 12.51 | 3.10 | 7.36 | 38.40 | |||
24 | 2019 | 0.9908 | 13.41 | 3.39 | 6.28 | 5.80 | |||
25 | Fetească albă | White | 2018 | 0.9905 | 11.49 | 3.41 | 5.49 | 3.40 | |
26 | 2018 | 0.9900 | 13.61 | 3.44 | 5.49 | 4.80 | |||
27 | 2018 | 0.9947 | 13.00 | 3.47 | 5.79 | 12.30 | |||
28 | 2018 | 0.9885 | 12.96 | 3.44 | 4.85 | 2.60 |
White and Rosé Wines | Red Wines | ||||
---|---|---|---|---|---|
Time (min) | Eluent B (%) | C (%) | Time (min) | Eluent B (%) | C (%) |
5 | 3 | 97 | 0–8 | 3–5 | 97–95 |
5–8 | 3–5 | 97–95 | 8–17 | 5 | 95 |
8–17 | 5 | 95 | 17–19 | 5–9 | 95–91 |
17–19 | 5–9 | 95–91 | 19–25 | 9 | 91 |
19–25 | 9 | 91 | 25–35 | 9–14.3 | 91–85.7 |
25–25 | 9–14.3 | 91–85.7 | 35–38 | 14.3 | 85.7 |
35–36 | 14.3–23 | 85.7–67 | 38–41 | 23–27 | 77–73 |
36–45 | 23–100 | 67–0 | 41–46 | 27–50 | 73–50 |
35–50 | 100 | 0 | 46–52 | 50–100 | 50–0 |
50–55 | 100–3 | 0–97 | 52–57 | 100 | 0 |
55–60 | 3 | 97 | 57–62 | 100–3 | 0–97 |
62–68 | 3 | 97 |
Current Number | Region | Grape Variety | δ13C VPDB (‰) | SD |
---|---|---|---|---|
1 | Cotnari | Fetească neagră | −27.30 | 0.16 |
2 | −26.89 | 0.02 | ||
3 | −27.48 | 0.16 | ||
4 | −27.36 | 0.16 | ||
5 | −27.04 | 0.02 | ||
6 | Busuioacă de Bohotin | −25.66 | 0.06 | |
7 | −26.13 | 0.09 | ||
8 | −26.21 | 0.27 | ||
9 | −26.35 | 0.00 | ||
10 | −26.44 | 0.20 | ||
11 | −26.34 | 0.17 | ||
12 | −26.48 | 0.06 | ||
13 | Fetească albă | −26.12 | 0.39 | |
14 | −26.37 | 0.11 | ||
15 | −27.27 | 0.11 | ||
16 | −26.63 | 0.25 | ||
17 | Dealu Mare | Fetească neagră | −27.83 | 0.07 |
18 | −28.12 | 0.00 | ||
19 | −28.18 | 0.22 | ||
20 | −27.92 | 0.05 | ||
21 | Busuioacă de Bohotin | −27.13 | 0.25 | |
22 | −27.14 | 0.09 | ||
23 | −26.98 | 0.04 | ||
24 | −27.16 | 0.08 | ||
25 | Fetească albă | −26.74 | 0.25 | |
26 | −26.28 | 0.05 | ||
27 | −26.87 | 0.14 | ||
28 | −27.20 | 0.09 |
Roots (Function) | Eigen Value | Canonic R | Wilks’ Lambda | Chi-Sqr | df | p-Value |
---|---|---|---|---|---|---|
1 | 151.4477 | 0.996715 | 0.000536 | 143.1067 | 26 | 0.000001 |
2 | 11.2449 | 0.958297 | 0.081667 | 47.5970 | 12 | 0.000004 |
Variable | Root 1 | Root 2 |
---|---|---|
Gallic acid | −0.7147 | 0.28852 |
Protocatechuic acid | 0.3225 | 0.36014 |
Caftaric acid | 1.0130 | −0.25608 |
Caffeic acid | −2.6101 | −0.15378 |
Coumaric acid | 0.2592 | −1.23542 |
Trans-resveratrol | −0.7378 | 1.36782 |
Hydroxytyrosol | 0.8915 | 0.18484 |
Tyrosol | 0.3968 | 2.06080 |
Procyanidin dimer B1 | −0.3499 | −6.83465 |
Catechin | 0.2303 | 1.35097 |
Procyanidin dimer B2 | −0.6267 | 5.42857 |
Epicatechin | −3.1831 | −1.36891 |
δ13C mean | −0.3352 | −0.32343 |
Eigenval | 151.447 | 11.24487 |
Cum. Prop. | 0.9309 | 1.00000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popîrdă, A.; Luchian, C.E.; Colibaba, L.C.; Focea, E.C.; Nicolas, S.; Noret, L.; Cioroiu, I.B.; Gougeon, R.; Cotea, V.V. Carbon-Isotope Ratio (δ13C) and Phenolic-Compounds Analysis in Authenticity Studies of Wines from Dealu Mare and Cotnari Regions (Romania). Agronomy 2022, 12, 2286. https://doi.org/10.3390/agronomy12102286
Popîrdă A, Luchian CE, Colibaba LC, Focea EC, Nicolas S, Noret L, Cioroiu IB, Gougeon R, Cotea VV. Carbon-Isotope Ratio (δ13C) and Phenolic-Compounds Analysis in Authenticity Studies of Wines from Dealu Mare and Cotnari Regions (Romania). Agronomy. 2022; 12(10):2286. https://doi.org/10.3390/agronomy12102286
Chicago/Turabian StylePopîrdă, Andreea, Camelia Elena Luchian, Lucia Cintia Colibaba, Elena Cornelia Focea, Sebastien Nicolas, Laurence Noret, Ionel Bogdan Cioroiu, Régis Gougeon, and Valeriu V. Cotea. 2022. "Carbon-Isotope Ratio (δ13C) and Phenolic-Compounds Analysis in Authenticity Studies of Wines from Dealu Mare and Cotnari Regions (Romania)" Agronomy 12, no. 10: 2286. https://doi.org/10.3390/agronomy12102286
APA StylePopîrdă, A., Luchian, C. E., Colibaba, L. C., Focea, E. C., Nicolas, S., Noret, L., Cioroiu, I. B., Gougeon, R., & Cotea, V. V. (2022). Carbon-Isotope Ratio (δ13C) and Phenolic-Compounds Analysis in Authenticity Studies of Wines from Dealu Mare and Cotnari Regions (Romania). Agronomy, 12(10), 2286. https://doi.org/10.3390/agronomy12102286