Determining Irrigation Volumes for Enhancing Profit and N Uptake Efficiency of Potato Using WASH_2D Model
Abstract
:1. Introduction
2. Material and Methods
2.1. Maximization of Virtual Net Income
2.2. Determination of Optimum Irrigation Depth
2.3. Numerical Model
2.4. Simulation Procedure
2.5. Field Experiment
- (a).
- Treatments
- (b).
- Plant
- (c).
- Irrigation and fertilizer
- (d).
- Weather data
2.6. Nitrogen Uptake Efficiency
2.7. Soil Water Balance Equation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Soil Water Content Change
3.3. Evapotranspiration
3.4. Growth of Potato
3.5. Yield and Net Income
3.6. Nitrogen Uptake and Nitrate Leaching
3.7. Accuracy of Weather Forecast
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Bierkens, M.F.P. Sustainability of global water use: Past reconstruction and future projections. Environ. Res. Lett. 2014, 9, 104003. [Google Scholar] [CrossRef]
- Liu, J.; Hertel, T.W.; Lammers, R.B.; Prusevich, A.; Baldos, U.L.C.; Grogan, D.S.; Frolking, S. Achieving sustainable irrigation water withdrawals: Global impacts on food security and land use. Environ. Res. Lett. 2017, 12, 104009. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Volschenk, T. Water use and irrigation management of pomegranate trees—A review. Agric. Water Manag. 2020, 241, 106375. [Google Scholar] [CrossRef]
- Singh, B.R.; Singh, D.P. Agronomic and physiological-responses of sorghum, maize and pearl-millet to irrigation. Field Crop. Res. 1995, 42, 57–67. [Google Scholar] [CrossRef]
- Cabello, M.J.; Castellanos, M.T.; Romojaro, F.; Martinez-Madrid, C.; Ribas, F. Yield and quality of melon grown under different irrigation and nitrogen rates. Agric. Water Manag. 2009, 96, 866–874. [Google Scholar] [CrossRef]
- Cai, X.M.; Hejazi, M.I.; Wang, D. Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling. J. Water Resour. Plan. Manag. 2011, 137, 391–403. [Google Scholar] [CrossRef]
- Cao, J.J.; Tan, J.W.; Cui, Y.L.; Luo, Y.F. Irrigation scheduling of paddy rice using short-term weather forecast data. Agric. Water Manag. 2019, 213, 714–723. [Google Scholar] [CrossRef]
- Linker, R.; Sylaios, G. Efficient model-based sub-optimal irrigation scheduling using imperfect weather forecasts. Comput. Electron. Agric. 2016, 130, 118–127. [Google Scholar] [CrossRef]
- Brown, D.J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma 2007, 140, 444–453. [Google Scholar] [CrossRef]
- Lorite, I.J.; Ramirez-Cuesta, J.M.; Cruz-Blanco, M.; Santos, C. Using weather forecast data for irrigation scheduling under semi-arid conditions. Irrig. Sci. 2015, 33, 411–427. [Google Scholar] [CrossRef]
- Muller, C.F.; Neal, M.B.; Carey-Smith, T.K.; Luttrell, J.; Srinivasan, M.S. Incorporating weather forecasts into risk-based irrigation decision-making. Australas. J. Water Resour. 2021, 25, 159–172. [Google Scholar] [CrossRef]
- Anupoju, V.; Kambhammettu, B.P.; Regonda, S.K. Role of Short-Term Weather Forecast Horizon in Irrigation Scheduling and Crop Water Productivity of Rice. J. Water Resour. Plan. Manag. 2021, 147, 5021009. [Google Scholar] [CrossRef]
- Simionesei, L.; Ramos, T.B.; Palma, J.; Oliveira, A.R.; Neves, R. IrrigaSys: A web-based irrigation decision support system based on open source data and technology. Comput. Electron. Agric. 2020, 178, 105822. [Google Scholar] [CrossRef]
- Ajdary, K.; Abianeh, H.Z. Modeling of nitrogen leaching by using urea fertilizer in sandy loam soil. Microorg. Ind. Environ. 2011, 71–75. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.S.; Li, Y.F. Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain. Agric. Water Manag. 2014, 142, 19–28. [Google Scholar] [CrossRef]
- Eltarabily, M.G.; Bali, K.M.; Negm, A.M.; Yoshimura, C. Evaluation of Root Water Uptake and Urea Fertigation Distribution under Subsurface Drip Irrigation. Water 2019, 11, 1487. [Google Scholar] [CrossRef]
- Liao, R.K.; Zhang, S.R.; Zhang, X.; Wang, M.F.; Wu, H.R.; Zhangzhong, L.L. Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept. Agric. Water Manag. 2021, 245, 106632. [Google Scholar] [CrossRef]
- Fujimaki, H.; Tokumoto, I.; Saito, T.; Inoue, M.; Shibata, M.; Okazaki, T.; El Mokh, F. Practical Applications of Agricultural System Models to Optimize the Use of Limited Water; American Society of Agronomy: Madison, MI, USA, 2014; pp. 209–235. [Google Scholar]
- Baki, H.M.A.; Raoof, M.; Fujimaki, H. Determining Irrigation Depths for Soybean Using a Simulation Model of Water Flow and Plant Growth and Weather Forecasts. Agronomy 2020, 10, 369. [Google Scholar] [CrossRef]
- El Baki, H.M.; Fujimaki, H. An Evaluation of a New Scheme for Determination of Irrigation Depths in the Egyptian Nile Delta. Water 2021, 13, 2181. [Google Scholar] [CrossRef]
- Feddes, R.A.; Raats, P.A.C. Parameterizing the soil-water-plant root system. In Unsaturated-Zone Model; Progress, Challenges Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Van Genuchten, M.T. A Numerical Model for Water and Solute Movement in and below the Root Zone; United States Department of Agriculture Agricultural Research Service US Salinity Laboratory: Riverside, CA, USA, 1987.
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper (FAO): Rome, Italy, 1998. [Google Scholar]
- Abd El Baki, H.M.; Fujimaki, H.; Tokumoto, I.; Saito, T. A new scheme to optimize irrigation depth using a numerical model of crop response to irrigation and quantitative weather forecasts. Comput. Electron. Agric. 2018, 150, 387–393. [Google Scholar] [CrossRef]
- Feddes, R.A.; Zaradny, H. Model for simulating soil-water content considering evapotranspiration—Comments. J. Hydrol. 1978, 37, 393–397. [Google Scholar] [CrossRef]
- Fujimaki, H.; Ando, Y.; Cui, Y.B.; Inoue, M. Parameter estimation of a root water uptake model under salinity stress. Vadose Zone J. 2008, 7, 31–38. [Google Scholar] [CrossRef]
- Cornish, G.; Bosworth, B.; Perry, C.; Burke, J. Water Charging in Irrigated Agriculture: An Analysis of International Experience; Food & Agriculture Organization: Rome, Italy, 2004; p. 28. [Google Scholar]
- Martínez-Romero, A.; Domínguez, A.; Landeras, G. Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions. Agric. Water Manag. 2019, 216, 164–176. [Google Scholar] [CrossRef]
- Williams, M.M.; Masiunas, J.B. Functional relationships between giant ragweed (Ambrosia trifida) interference and sweet corn yield and ear traits. Weed Sci. 2006, 54, 948–953. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef]
- Weraduwagel, S.M.; Chen, J.; Anozie, F.C.; Morales, A.; Weise, S.E.; Sharkey, T.D. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 167. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, Z.; Zhang, L.; Li, S.; Wang, S.; Yang, H.; Liu, X.; Zeng, D.; Liu, Q.; Qian, Q.; et al. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nat. Commun. 2020, 11, 5219. [Google Scholar] [CrossRef]
- Huang, T.; Ju, X.; Yang, H. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management. Sci. Rep. 2017, 7, 42247. [Google Scholar] [CrossRef] [PubMed]
- Hoogenboom, G. Contribution of agrometeorology to the simulation of crop production and its applications. Agric. For. Meteorol. 2000, 103, 137–157. [Google Scholar] [CrossRef]
- Frnda, J.; Durica, M.; Rozhon, J.; Vojtekova, M.; Nedoma, J.; Martinek, R. ECMWF short-660 term prediction accuracy improvement by deep learning. Sci. Rep. 2022, 12, 7898. [Google Scholar] [CrossRef] [PubMed]
Seasons | Treatment | Dates of Sowing (m/d) | Dates of Harvest (m/d) | Growth Period (days) | Total Irrigation Amount (mm) |
---|---|---|---|---|---|
First season | A | 19 March | July 17 | 120 | 286 |
S1 | 207 | ||||
Second season | R | 27 August | December 8 | 103 | 99 |
S2 | 115 |
Parameter | Value | Remarks |
---|---|---|
Pw | 0.00025 | Equation (1) |
Pc | 1 | |
ε | 0.002 | |
1.03 | Equations (2) and (14) | |
−0.37 | ||
0.15 | ||
1.40 × 10−7 | ||
4.6 | ||
φ50 (cm) | −100 | Equation (10) |
φ050 (cm) | −8200 | |
p | 2.9 | |
brt | 1 | Equations (11) and (12) |
grt | 20 | |
zrt | 1 | |
adrt | 40 | |
bdrt | −4 | |
cdrt | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Abd El Baki, H.M.; An, P.; Fujimaki, H. Determining Irrigation Volumes for Enhancing Profit and N Uptake Efficiency of Potato Using WASH_2D Model. Agronomy 2022, 12, 2372. https://doi.org/10.3390/agronomy12102372
Liang S, Abd El Baki HM, An P, Fujimaki H. Determining Irrigation Volumes for Enhancing Profit and N Uptake Efficiency of Potato Using WASH_2D Model. Agronomy. 2022; 12(10):2372. https://doi.org/10.3390/agronomy12102372
Chicago/Turabian StyleLiang, Shuoshuo, Hassan M. Abd El Baki, Ping An, and Haruyuki Fujimaki. 2022. "Determining Irrigation Volumes for Enhancing Profit and N Uptake Efficiency of Potato Using WASH_2D Model" Agronomy 12, no. 10: 2372. https://doi.org/10.3390/agronomy12102372
APA StyleLiang, S., Abd El Baki, H. M., An, P., & Fujimaki, H. (2022). Determining Irrigation Volumes for Enhancing Profit and N Uptake Efficiency of Potato Using WASH_2D Model. Agronomy, 12(10), 2372. https://doi.org/10.3390/agronomy12102372