Improving Nutrients Uptake and Productivity of Stressed Olive Trees with Mono-Ammonium Phosphate and Urea Phosphate Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location, Weather Conditions, and Plant Materials
2.2. Treatment and Experimental Design
2.3. Soil sampling and Determination
2.4. Physiological and Growth Parameters
2.5. Leaf Nutrient Measurements
2.6. Total Olive Yield (kg tree−1)
2.7. Fruits’ Physical and Chemical Characteristics
2.8. Statistical Analysis
3. Results
3.1. Leaf Nutrient Contents
3.2. Physiological and Growth Attributes
3.3. Olive Fruit Quality
3.4. Table and Oil Olive Yield
3.5. Regression and Stepwise Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aboukila, E.F.; Nassar, I.N.; Rashad, M.; Hafez, M.; Norton, J.B. Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. J. Saudi Soc. Agric. Sci. 2018, 17, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Wahba, M.M.; Labib, F.; Zaghloul, A. Management of calcareous soils in arid region. Int. J. Environ. Pollut. Environ. Model. 2019, 2, 248–258. [Google Scholar]
- FAO. Soils Portal: Management of Calcareous Soils; Food and Agriculture Organization of United Nations: Rome, Italy, 2016; Available online: http://www.fao.org/soils-portal/soilmanagement/managementof-someproblem-soils/calcareous-soils/ar/ (accessed on 1 April 2016).
- Saad El-Dein, A.A.; Galal, M.E. Prediction of Reclamation Processes in Some Saline Soils of Egypt. Egypt. J. Soil Sci. 2017, 57, 293–301. [Google Scholar]
- Agbna, G.H.M.; Ali, A.B.; Bashir, A.K.; Eltoum, F.; Hassan, M.M. Influence of biochar amendment on soil water characteristics and crop growth enhancement under salinity stress. Int. J. Eng. Works 2017, 4, 49–53. [Google Scholar]
- Sun, J.; Yang, R.; Li, W.; Pan, Y.; Zheng, M.; Zhang, Z. Effect of biochar amendment on water infiltration in a coastal saline soil. J. Soil Sediment 2018, 18, 3271–3279. [Google Scholar] [CrossRef]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Wandruszka, R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem. Trans. 2006, 7, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates: Sunderland, MA, USA, 2015. [Google Scholar]
- Barłóg, P.; Grzebisz, W.; Feć, M.; Łukowiak, R.; Szczepaniak, W. Row method of sugar beet (Beta vulgaris L.) fertilization with multicomponent fertilizer based on urea-ammonium nitrate solution as a way to increase nitrogen efficiency. J. Cent. Eur. Agric. 2010, 11, 225–234. [Google Scholar]
- Salimpour, S.; Khavazi, K.; Nadian, H.; Besharati, H.; Miransari, M. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust. J. Crop Sci. 2010, 4, 330–334. [Google Scholar]
- Uygar, V.; Şen, M. The effect of phosphorus application on nutrient uptake and translocation in wheat cultivars. Int. J. Agric. For. Life Sci. 2018, 2, 171–179. [Google Scholar]
- Faye, I.; Diouf, O.; Guisse, A.; Sene, M.; Diallo, N. Characterizing root responses to low phosphorus in pearl millet [Pennisetum glaucum (L.) R. Br.]. Agron. J. 2006, 98, 1187–1194. [Google Scholar] [CrossRef]
- Awad, A.A.M.; Sweed, A.A.A. Influence of organic manures on soil characteristics and yield of Jerusalem artichoke. Commun. Soil Sci. Plant Anal. 2020, 51, 1101–1113. [Google Scholar] [CrossRef]
- Farrag, H.M.; Bakr, A.A.A. Biological reclamation of a calcareous sandy soil with improving wheat growth using farmyard manure, acid producing bacteria and yeast. Int. J. Agric. Sci. 2021, 3, 53–71. [Google Scholar] [CrossRef]
- Ringeval, B.; Augusto, L.; Monod, H.; van Apeldoorn, D.; Bouwman, L.; Yang, X.; Achat, D.L.; Chini, L.P.; Van Oost, K.; Guenet, B.; et al. Phosphorus in agricultural soils: Drivers of its distribution at the global scale. Glob. Chang. Biol. 2017, 23, 3418–3432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Bucio, J.; Vega, O.M.; Guevara-García, A.; Herrera-Estrella, L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 2000, 18, 450–453. [Google Scholar] [CrossRef]
- Adesemoye, A.; Kloepper, J. Plant–microbes interactions in enhanced fertilizer use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Moreira, A.; and Castro, C. Response of soybean to phosphorus fertilization in Brazilian Oxisol. Commun. Soil Sci. Plant Anal. 2011, 42, 2716–2723. [Google Scholar] [CrossRef]
- Bargaz, A.; Noyce, G.L.; Fulthorpe, R.; Carlsson, G.; Furze, J.R.; Jensen, E.S.; Dhiba, D.; Isaac, M.E. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Appl. Soil Ecol. 2017, 120, 179–188. [Google Scholar] [CrossRef]
- Osborne, S.L.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agron. J. 2002, 94, 1215. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.M.; Lee, C.W. Influence of elevated phosphorus levels in nutrient solution on micronutrient uptake and deficiency symptom development in strawberry cultured with fertigation system. J. Plant Nutr. 2012, 35, 1349–1358. [Google Scholar] [CrossRef]
- Viégas, I.J.M.; Cordeiro, R.A.M.; Almeida, G.M.; Silva, D.A.S.; De Silva, B.C.; Okumura, R.S.; Junior, M.L.S.; De Silva, S.P.; De Freitas, J.M.N. Growth and visual symptoms of nutrients deficiency in Mangosteens (Garcinia mangostana L.). Am. J. Plant Sci. 2018, 9, 1014–1028. [Google Scholar] [CrossRef] [Green Version]
- Bagayoko, M.; George, E.; Romheld, V.; Buerkert, A.B. Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a west African soil. J. Agric. Sci. 2000, 135, 399407. [Google Scholar] [CrossRef]
- Tang, J.W.; Mu, R.Z.; Zhang, B.L.; Fan, X.S. Solubility of urea phosphate in water + phosphoric acid from (277.00 to 354.50) K. J. Chem. Eng. Data 2007, 52, 1179–1181. [Google Scholar] [CrossRef]
- Navizaga, C.; Boecker, J.; Sviklas, A.M.; Galeckiene, J.; Baltrusaitis, J. Adjustable N:P2O5 ratio urea phosphate fertilizers for sustainable phosphorus and nitrogen use: Liquid phase equilibria via solubility measurements and raman Spectroscopy. ACS Sustain. Chem. Eng. 2017, 5, 1747–1754. [Google Scholar] [CrossRef]
- Kucharski, J.; Wyszkowska, J.; Borowik, A. Biological effects produced by urea phosphate in soil. J. Res. Appl. Agric. Eng. 2013, 58, 25–28. [Google Scholar]
- Zhang, H.Y.; Huang, Z.H.; Wang, J.; Zhang, J.; Meng, C.R.; Wei, C.Z. Effects of different acidifiers on pH and phosphorus availability in calcareous soil. Soils Fert. Sci. China 2019, 1, 145–150. [Google Scholar]
- Diego, B.; Ercan, H.; Munoz, C.; Arquero, O. Factors influencing the efficiency of mono-potassium phosphate in the olive. Intl. J. Plant Prod. 2010, 4, 235–240. [Google Scholar]
- Shaheen, A.A. Effect of Using Some Sources of Phosphorus on Flowering, Fruiting and Productivity of Olive Trees. World J. Agric. Sci. 2019, 15, 103–113. [Google Scholar]
- Barone, E.; Mantia, M.; La-Marchese, A.; Marra, F.P. Improvement in yield and fruit size and quality of table olive cvs. Sci. Agric. 2014, 71, 52–57. [Google Scholar] [CrossRef]
- Ran, E.U.; Yasuor, H.C.; Schwartz, D.A.; Gal1, A.B.; Dag, A. Phosphorous nutritional level, carbohydrate reserves and flower quality in olives. J. Plant Sci. Genet. Isr. 2016, 16, 1–19. [Google Scholar]
- Hopkins, B.G. Russet Burbank potato phosphorus fertilization with dicarboxylic acid copolymer additive (AVAIL®). J. Plant Nutr. 2011, 33, 1422–1434. [Google Scholar] [CrossRef]
- Rosen, C.J.; Kelling, A.K.; Stark, J.C.; Gregory, A.P. Optimizing Phosphorus Fertilizer Management in Potato Production. Am. J. Potato Res. 2014, 91, 145–160. [Google Scholar] [CrossRef]
- Carl, J.R.; Mcnearney, M.; Peter, B. Effect of liquid fertilizer sources and avail on potato yield and quality. In Proceedings of the Idaho Potato Conference, Poccatelo, ID, USA, 19–20 January 2011. [Google Scholar]
- Abdel-Razzak, H.S.; Moussa, A.G.; Abd El-Fattah, M.A.; El-Morabet, G.A. Response of sweet potato to integrated effect of chemical and natural phosphorus fertilizer and their levels in combination with mycorrhizal Inoculation. J. Biol. Sci. 2013, 13, 112–122. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAOSTAT; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://www.fao.org/faostat/en/ (accessed on 10 December 2019).
- Mahmoud, T.M.; Emam, S.; Mohamed, A.; El-Sharony, T.F. Influence of foliar application with potassium and magnesium on growth, yield and oil quality of “Koroneiki” olive trees. Am. J. Food Technol 2017, 12, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Stan, K.; David, H. Producing Table Olives; Land links Press: Collingwood, Australia, 2007; p. 3066. [Google Scholar]
- Abo Arab, D.E.A.A. Effects of Bio and Mineral Phosphorus Fertilization on the Quality and Yield of Melon (Cantaloupe). M.Sc. Thesis, High Institute of Public Health, Alexandia University, Alexandria, Egypt, 2014. [Google Scholar]
- Gregoriou, C.; El-Kholy, M. Fertilization. In Olive GAP Manual: Good Agricultural Practices for the Near East & North Africa Countries; FAO: Rome, Italy, 2010. [Google Scholar]
- Fernandez-Escobar, R. Fertilization. In El Cultivo del Olive, 7th ed.; Barranco, D., Fernandez-Escobar, R., Rallo, I., Eds.; Mundi-Prensa: Madrid, Spain, 2017; pp. 419–460. [Google Scholar]
- Bouyoucos, C.J. Hydrometer method improved for making particle size analysis of soil. Soil Sci. Soc. Proc. 1981, 26, 446–465. [Google Scholar]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Method of Soil Analysis. Part 2. Chemical and Microbiological Methods; American Society of Agronomy: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar]
- Allison, L.E. Organic carbon. In Methods of Soil Analysis. Part II; Dans, C., Black, A., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; Chapter 90; pp. 1372–1376. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Constable and Co. Ltd.: London, UK, 1962. [Google Scholar]
- Pregl, F. Quantitative Organic Micro-Analysis, 4th ed.; Churchill, A., Ed.; P. Blakiston’s Son & Company: London, UK, 1945; pp. 126–129. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Bicarbonate; Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Chapman, H.D. Cation-exchange capacity. In Methods of Soil Analysis. Part II; Dans, C., Black, A., Eds.; American Society of Agronomy Inc.: Madison, WI, USA, 1965; Chapter 57–58; pp. 891–903. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of ADTPA-Soil test for zinc, iron, manganese and cooper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, E.D.; Rice, E.W. Standard Methods for the Examination of Water and Waste Water, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Fouad, M.M.; Omima, A.K.; El-Said, M. Comparative studies on flowering fruit set and yield of some olive cultivars under Giza conditions. Egypt J. Appl. Sci. 1992, 7, 630–644. [Google Scholar]
- A.O.A.C. Association of Agriculture Chemicals. Official Methods of Analysis of Association of Official Analytical Chemicals, 17th ed.; Association of Agriculture Chemicals: Washington, DC, USA, 2000. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat versiόn. Group InfoStat, FCA, Universidad Nacional de Cόrdoba, Argentina. 2011. Available online: http://www.infostat.com.ar (accessed on 29 September 2020).
- Zaki, M.E.; Mohamed, M.H.M.; Abd El-Wanis, M.M.; Glala, A.A.A.; Hamoda, A.H.M.; Shams, A.S. Implications of applied P-Sources with calcium super phosphate, phosphoric acid and rock phosphate, and phosphate dissolving bacteria on snap bean grown under greenhouses conditions. In Proceedings of the 5th International Conference on Biotechnology Applications in Agriculture (ICBAA), Benha University, Benha, Egypt, 8 April 2021. [Google Scholar]
- El-zeiny, O.A.H. Effect of bio-fertilizers and root exudates of two weeds as a source of natural growth regulators on growth and productivity of bean plants (phaseolus vulgaris L.). J. Agric. Biol. Sci. 2007, 3, 440–446. [Google Scholar]
- Gharib, A.A.; Shahen, M.M.; Ragab, A.A. Influence of rhizobium inoculation combined with Azotobacter chrococcum and Bacillus megaterium var phosphaticum on growth, nodulation, yield and quality of two snap bean (Phasealus vulgaris, L.) Cultivers. In Proceedings of the 4th Conference on Recent Technologies in Agriculture, Giza, Egypt, 3–5 November 2009; pp. 650–660. [Google Scholar]
- Massoud, O.N.; Morsy, E.M.; Nadia, H.E. Field response of snap bean (Phaseolus vulgaris L.) to N2-fixers bacillus circulans and arbuscular mycorrhizal fungi inoculation through accelerating rock phosphate and feldspar weathering. Aust. J. Basic Appl. Sci. 2009, 3, 844–852. [Google Scholar]
- Ahmed, A.M.; Gheeth, R.H.M.; Galal, R.M. Influence of organic manures and rock phosphate combined with feldspar on growth, yield and yield components of bean (Phaseolus vulgaris L.). Assiut J. Agric. Sci. 2013, 44, 71–89. [Google Scholar]
- Sabry, M.Y.; Gamal, S.R.; Salama, A.A. Effect of phosphorus sources and arbuscular mycorrhizal inoculation on growth and productivity of snap bean (Phaseolus vulgaris L.). Gesunde Pflanzen. 2017, 69, 139–148. [Google Scholar]
- Bouhafa, K.; Moughli, L.; Bouabid, R.; Douaik, A.; Taarabt, Y. Dynamics of macronutrients in olive leaves. J. Plant Nutr. 2018, 41, 956–968. [Google Scholar] [CrossRef]
- Gimenez, M.; Nieves, M.; Gimeno, H.; Martinez, J.; Martinez-Nicola, J.J. Nutritional diagnosis norms for three olive tree cultivars in superhigh density orchards. Int. J. Agric. Nat. Resour. 2021, 48, 34–44. [Google Scholar] [CrossRef]
- Zipori, I.; Yermiyahu, U.; Ben-Gal, A.; Dag, A. Sustainable Management of Olive Orchard Nutrition: A Review. Agriculture 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- El-Tohamy, W.A.; Ghoname, A.A.; Abou-Hussein, S.D. Improvement of pepper growth and productivity in sandy soil by different fertilization treatments under protected cultivation. J. Appl. Sci. Res. 2006, 2, 8–12. [Google Scholar]
- Nardi, S.; Tosoni, M.; Pizzeghello, D.; Provenzano, M.R.; Cilenti, A.; Sturaro, R.; Vianello, A. A comparison between humic substances extracted by root exudates and alkaline solution. Soil Sci. Soc. Am. J. 2005, 69, 2012–2019. [Google Scholar] [CrossRef] [Green Version]
- Chien, S.H.; Prochnow, L.I.; Tu, S.; Snyder, C.S. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: An update review. Nutr. Cycl. Agroecosyst. 2011, 89, 229–255. [Google Scholar] [CrossRef]
- Leytem, A.B.; Dungan, R.S.; Moore, A. Nutrient availability to corn from dairy manures and fertilizer in a calcareous soil. Soil Sci. 2011, 176, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.A.M.; Ahmed, H.M.H. Impact of organic manure combinations on performance and rot infection of stressed-Jerusalem artichoke plants. Egypt J. Soil Sci. 2018, 58, 417–433. [Google Scholar] [CrossRef]
- Awad, A.A.M.; Ahmed, H.M.H. Response of Jerusalem artichoke plants grown under saline calcareous soil to application of different combined organic manures. Egypt J. Soil Sci. 2019, 59, 117–130. [Google Scholar] [CrossRef]
- Pramanik, K.; Bera, A.K. Effect of seedling age and nitrogen fertilizer on growth, chlorophyll content, yield and economics of hybrid rice. Intl. J. Agron. Plant Prod. 2013, 4, 34893499. [Google Scholar]
- Tari, D.B.; Daneshian, J.; Amiri, E.; Rad, A.H.S.; Moumeni, A. Investigation chlorophyll condition at different nitrogen fertilization methods in rice by applied mathematics relations. J. Sci. Res. 2013, 14, 1056–1058. [Google Scholar]
- Pradhan, P.P.; Dash, A.K.; Panda, N.; Samant, P.K.; Mishra, A.P. Effect of graded doses of neem coated urea on productivity of low land rice. ORYZA Int. J. Rice 2019, 56, 68–74. [Google Scholar] [CrossRef]
- Awad, A.A.M.; Ahmed, A.I.; Abd Elazem, A.H.; Sweed, A.A.A. Mitigation of CaCO3 influence on Ipomoea batatas plants using Bacillus megaterium DSM 2894. Agronomy 2022, 12, 1571. [Google Scholar] [CrossRef]
- Sarrwy, S.M.A.; Enas, A.M.; Hassan, H.S.A. Effect of Foliar Sprays with Potassium Nitrate and Mono-potassium Phosphate on leaf mineral contents, fruit set, yield and fruit quality of picual olive trees grown under sandy soil conditions. Am. Eurasian J. Agric. Environ. Sci. 2010, 8, 420–430. [Google Scholar]
- Ben Mimoun, M.; Loumi, O.; Ghrab, M.; Latiri, K.; Hellali, R. Foliar potassium application on olive tree. In Proceedings of the Regional Workshop on Potassium and Fertigation Development in West Asia and North Africa, Rabat, Morocco, 24–28 November 2004. [Google Scholar]
- Ramezani, S.; Shekafandeh, A. Role of gibberellic acid and zinesulphate in increasing size and weight of olive fruit. Afr. J. Biotechnol. 2009, 8, 6791–6794. [Google Scholar]
- Gobarah, M.E.; Mohamed, M.H.; Tawfik, M.M. Effect of phosphorus fertilizer and foliar spraying with zinc on growth, yield and quality of groundnut under reclaimed sandy soils. J. Appl. Sci. Res. 2006, 2, 491496. [Google Scholar]
- El-Habbasha, S.F.; Kandil, A.A.; Abu-Hagaza, N.S.; Abdel-Haleem, A.K.; Khalafallah, M.A.; Behiary, T.G. Effect of phosphorus levels and some biofertilizers on dry matter, yield and yield attributes of groundnut. Bull. Fac. Agric. Cairo Univ. 2005, 56, 237–252. [Google Scholar]
- Kumar, S.; Dhar, S.; Kumar, A.; Kumar, D. Yield and nutrient uptake of maize (Zea mays)–wheat (Triticum aestivum) cropping system as influenced by integrated potassium management. Indian J. Agron. 2015, 60, 511–515. [Google Scholar]
Month | AD | AN | ARH | AWS | AM-PEC-A | AP |
---|---|---|---|---|---|---|
(°C) | (%) | (ms−1) | (mmd−1) | (mm d−1) | ||
January | 25.04 | 2.94 | 61.81 | 2.44 | 3.43 | 0.08 |
February | 26.74 | 3.87 | 60.63 | 2.35 | 4.32 | 0.96 |
March | 32.58 | 5.00 | 55.56 | 2.81 | 5.04 | 0.46 |
April | 37.45 | 7.48 | 45.13 | 3.26 | 5.58 | 0.04 |
May | 43.86 | 13.89 | 35.22 | 3.54 | 6.87 | 0.00 |
June | 41.92 | 16.84 | 35.60 | 3.78 | 7.56 | 0.00 |
July | 42.15 | 19.68 | 37.03 | 3.42 | 6.88 | 0.00 |
August | 41.32 | 20.83 | 38.84 | 3.30 | 6.78 | 0.00 |
September | 42.32 | 18.84 | 45.35 | 3.64 | 8.64 | 0.00 |
October | 37.30 | 15.52 | 50.85 | 3.25 | 6.61 | 0.02 |
November | 30.47 | 10.22 | 58.60 | 2.36 | 4.63 | 0.28 |
December | 25.22 | 5.75 | 61.72 | 2.30 | 3.49 | 0.15 |
Symbol | Phosphorus Fertilizer Applied | Composition Treatment (kg tree−1) | Replication | Applying Time |
---|---|---|---|---|
GCSP | Granular calcium super-phosphate | 5.0 kg of AS + 1.75 kg GCSP + 1.5 kg K2SO4 + 0.4kg MgSO4.7H2O | These quantities are equally added five times in four plots | All treatments were performed five times in the middle of March, April, May, June, and July |
MAP1 | Mono-ammonium phosphate | 4.81 kg of AS + 0.336 kg MAP + 1.5 kg K2SO4 + 0.4kg MgSO4.7H2O | ||
MAP2 | 4.74 kg of AS + 0.445 kg MAP + 1.5 kg K2SO4 + 0.4kg MgSO4.7H2O | |||
MAP3 | 4.67 kg of AS + 0.555 kg MAP + 1.5 kg K2SO4 + 0.4kg MgSO4.7H2O | |||
UP1 | Urea phosphate | 4.60 kg of AS + 0.465 kg UP + 1.5 kg K2SO4 + 0.4kg MgSO4.7H2O | ||
UP2 | 4.47 kg of AS + 0.616 UP + 1.5 kg K2SO4 + 0.4kg MgSO4.7H2O | |||
UP3 | 4.34 kg of AS + 0.770 UP + 1.5 kg K2SO4 + 0.4kg MgSO4.7H2O |
Properties | GCSP | MAP | UP |
---|---|---|---|
Chemical formula | Ca(H2PO4)2 | NH4H2PO4 | CO(NH2)2.H3PO4 |
pH (1% solution) | 7.5 | 4.5 | 1.8 |
N (%) | 0.0 | 12.00 | 17.72 |
P2O5 (%) | 15.5 | 61.00 | 44.00 |
Soil Property | 2020 | 2021 |
---|---|---|
Particle size distribution (%) | ||
Sand | 47.32 | 48.49 |
Silt | 19.56 | 20.20 |
Clay | 33.12 | 31.31 |
Soil texture | Sandy clay loam | Sandy clay loam |
pH (in soil paste) | 7.78 | 7.89 |
ECe (dS m−1) | 6.4 | 7.2 |
Organic matter (%) | 0.63 | 0.52 |
CaCO3 (%) | 8.8 | 9.2 |
Soluble ions (mmol L−1) | ||
CO3−− | - | - |
HCO3− | 2.8 | 3.7 |
Cl− | 53.4 | 55.3 |
SO4−− | 19.3 | 21.1 |
Ca++ | 39.6 | 41.2 |
Mg++ | 7.8 | 8.4 |
Na+ | 22.4 | 24.3 |
K+ | 5.7 | 6.2 |
Macronutrients (mg kg−1) | ||
Total N | 414 | 640 |
Extractible P NaHCO3 pH = 8.5 | 4520 | 4830 |
Extractible K NH4OAC pH = 7.0 | 1337 | 1415 |
DTPA Extractible micronutrients (mg kg−1) | ||
Fe | 10.7 | 11.2 |
Mn | 4.5 | 6.3 |
Zn | 0.15 | 0.14 |
Cu | 0.48 | 0.38 |
Treatment | LNU | LPU | LKU | LCaU | LMgU | LNaU |
---|---|---|---|---|---|---|
(%, in DM of Leaves) | ||||||
2020 Season | ||||||
GCSP | 1.63d ± 0.03 | 0.13e ± 0.03 | 0.66bc ± 0.01 | 0.85b ± 0.20 | 0.47cd ± 0.01 | 0.41f ± 0.01 |
MAP1 | 1.36d ± 0.05 | 0.14f ± 0.06 | 0.72a ± 0.03 | 1.41ab ± 0.01 | 0.63b ± 0.01 | 0.45e ± 0.01 |
MAP2 | 2.04ab ± 0.03 | 0.17d ± 0.16 | 0.71ab ± 0.04 | 1.39ab ± 0.01 | 0.41e ± 0.01 | 0.66c ± 0.01 |
MAP3 | 1.53e ± 0.03 | 0.19c ± 0.12 | 0.70ab ± 0.02 | 1.18ab ± 0.01 | 0.52c ± 0.03 | 0.76a ± 0.01 |
UP1 | 2.27a ± 0.03 | 0.17d ± 0.03 | 0.61c ± 0.01 | 1.42ab ± 0.24 | 0.43de ± 0.03 | 0.73b ± 0.01 |
UP2 | 1.55e ± 0.03 | 0.21b ± 0.03 | 0.71ab ± 0.01 | 1.12ab ± 0.01 | 0.69a ± 0.01 | 0.56d ± 0.01 |
UP3 | 1.76c ± 0.04 | 0.23a ± 0.06 | 0.63c ± 0.01 | 1.67a ± 0.17 | 0.40e ± 0.01 | 0.64c ± 0.01 |
2021 season | ||||||
GCSP | 2.04d ± 0.09 | 0.14f ± 0.05 | 0.69b ± 0.04 | 0.74f ± 0.01 | 0.84f ± 0.02 | 0.39e ± 0.01 |
MAP1 | 2.66b ± 0.05 | 0.26b ± 0.06 | 0.64c ± 0.09 | 0.95e ± 0.01 | 1.19a ± 0.01 | 0.37f ± 0.01 |
MAP2 | 1.19e ± 0.06 | 0.21de ± 0.06 | 0.61c ± 0.09 | 1.48a ± 0.03 | 0.91e ± 0.01 | 0.47d ± 0.01 |
MAP3 | 2.97a ± 0.4 | 0.20e ± 0.09 | 0.65bc ± 0.07 | 0.96de ± 0.05 | 0.80g ± 0.01 | 0.62b ± 0.01 |
UP1 | 1.98b ± 0.07 | 0.22cd ± 0.12 | 0.71a ± 0.09 | 1.38b ± 0.01 | 1.06c ± 0.01 | 0.67a ± 0.01 |
UP2 | 2.23c ± 0.05 | 0.31a ± 0.08 | 0.71a ± 0.07 | 1.06c ± 0.01 | 1.13b ± 0.01 | 0.33g ± 0.01 |
UP3 | 2.55b ± 0.06 | 0.24bc ± 0.06 | 0.72a ± 0.06 | 1.03cd ± 0.02 | 0.94d ± 0.02 | 0.51c ± 0.02 |
2020 Season | ||||
---|---|---|---|---|
Treatment | LFeU | LMnU | LZnU | LCuU |
Leaves (mgkg−1) | ||||
GCSP | 195.00c ± 2.89 | 19.59cd ± 0.63 | 37.10b ± 0.62 | 6.33a ± 0.03 |
MAP1 | 168.84e ± 1.59 | 18.34d ± 0.72 | 49.86a ± 0.16 | 1.67d ± 0.07 |
MAP2 | 208.83b ± 2.17 | 20.42b–d ± 0.38 | 31.48c ± 0.25 | 2.34c ± 0.10 |
MAP3 | 177.42d ± 2.55 | 15.92e ± 0.58 | 31.78c ± 0.13 | 3.50b ± 0.02 |
UP1 | 162.25e ± 1.06 | 23.58a ± 0.77 | 30.81cd ± 0.43 | 3.42b ± 0.04 |
UP2 | 165.75e ± 2.02 | 21.17bc ± 0.82 | 24.49e ± 0.29 | 2.34c ± 0.02 |
UP3 | 234.42a ± 4.28 | 22.00ab ± 0.05 | 29.90d ± 0.68 | 3.34b ± 0.14 |
2021 season | ||||
GCSP | 196.00c ± 1.44 | 21.09d ± 0.63 | 38.10b ± 0.53 | 2.50d ± 0.29 |
MAP1 | 184.34d ± 2.50 | 22.34d ± 0.77 | 49.36a ± 0.15 | 3.09b–d ± 0.24 |
MAP2 | 218.77b ± 2.08 | 25.77bc ± 0.82 | 34.48c ± 0.58 | 2.84cd ± 0.10 |
MAP3 | 188.92d ± 8.90 | 21.28d ± 0.34 | 34.78c ± 1.83 | 4.00a ± 0.29 |
UP1 | 176.50e ± 2.89 | 28.42a ± 0.72 | 32.81c ± 1.00 | 4.02a ± 0.24 |
UP2 | 169.509a ± 0.72 | 24.57c ± 0.67 | 28.99d ± 1.12 | 3.34a–c ± 0.67 |
UP3 | 239.42a ± 3.99 | 27.50ab ± 0.87 | 33.06c ± 0.42 | 3.67ab ± 0.10 |
Treatment | TFrW | SeW | FlW | FrFlW | FPR | FrL | FrD | LD |
---|---|---|---|---|---|---|---|---|
(g) | (%) | (mm) | ||||||
2020 Season | ||||||||
GCSP | 1.47b ± 0.01 | 0.29c ± 0.01 | 1.18b ± 0.01 | 80.39ab ± 0.70 | 4.11ab ± 0.18 | 13.33cd ± 0.07 | 11.55cd ± 0.19 | 1.16cd ± 0.02 |
MAP1 | 1.52b ± 0.03 | 0.32bc ± 0.01 | 1.20b ± 0.03 | 78.99ab ± 0.75 | 3.77ab ± 0.17 | 14.24b ± 0.16 | 11.62b–d ± 0.19 | 1.23ab ± 0.01 |
MAP2 | 1.36c ± 0.01 | 0.31bc ± 0.02 | 1.05c ± 0.02 | 77.14b ± 0.93 | 3.40b ± 0.23 | 13.17d ± 0.06 | 11.28d ± 0.12 | 1.19a–d ± 0.01 |
MAP3 | 1.55b ± 0.06 | 0.35b ± 0.01 | 1.20b ± 0.06 | 77.47b ± 0.89 | 3.45b ± 0.17 | 15.02a ± 0.24 | 12.14a ± 0.18 | 1.21a–c ± 0.03 |
UP1 | 1.52b ± 0.02 | 0.32bc ± 0.04 | 1.20b ± 0.04 | 78.85ab ± 0.71 | 3.84ab ± 0.49 | 14.16b ± 0.08 | 11.91a–c ± 0.14 | 1.17b–d ± 0.02 |
UP2 | 1.52b ± 0.03 | 0.44a ± 0.02 | 1.07c ± 0.02 | 70.75c ± 0.85 | 2.43c ± 0.10 | 13.68c ± 0.18 | 12.00a–c ± 0.12 | 1.14d ± 0.01 |
UP3 | 1.63a ± 0.06 | 0.30bc ± 0.01 | 1.32a ± 0.01 | 81.26a ± 0.65 | 4.35a ± 0.19 | 15.11a ± 0.10 | 12.13ab ± 0.37 | 1.24a ± 0.03 |
2021 season | ||||||||
GCSP | 1.50c ± 0.03 | 0.40a ± 0.01 | 1.10b ± 0.04 | 73.35d ± 0.82 | 2.77c ± 0.17 | 14.09d ± 0.06 | 11.90b–d ± 0.25 | 1.19bc ± 0.03 |
MAP1 | 1.61a ± 0.04 | 0.30d ± 0.01 | 1.31a ± 0.03 | 81.32a ± 0.29 | 4.36a ± 0.08 | 15.05bc ± 0.10 | 12.35a–c ± 0.18 | 1.22a–c ± 0.02 |
MAP2 | 1.49c ± 0.02 | 0.35bc ± 0.01 | 1.14b ± 0.06 | 76.40c ± 0.33 | 3.24bc ± 0.06 | 13.79d ± 0.06 | 11.47d ± 0.21 | 1.21a–c ± 0.03 |
MAP3 | 1.61a ± 0.03 | 0.36b ± 0.02 | 1.25a ± 0.03 | 77.73bc ± 0.56 | 3.50b ± 0.12 | 15.43b ± 0.15 | 12.20a–d ± 0.43 | 1.29a ± 0.05 |
UP1 | 1.53bc ± 0.01 | 0.30d ± 0.02 | 1.24a ± 0.03 | 80.63ab ± 0.87 | 4.24a ± 0.42 | 14.63c ± 0.16 | 11.62cd ± 0.27 | 1.26ab ± 0.02 |
UP2 | 1.58ab ± 0.01 | 0.33b–d ± 0.01 | 1.25a ± 0.02 | 79.01a–c ± 0.94 | 3.78ab ± 0.22 | 14.76c ± 0.31 | 12.58ab ± 0.17 | 1.17c ± 0.01 |
UP3 | 1.65a ± 0.01 | 0.32cd ± 0.01 | 1.31a ± 0.01 | 80.65ab ± 0.54 | 4.17a ± 0.01 | 16.08a ± 0.15 | 12.86a ± 0.33 | 1.25a–c ± 0.03 |
Treatment | FrDrM | OTY | TOY | OOC |
---|---|---|---|---|
(%) | (kg tree−1) | (ton ha−1) | (%, DM) | |
2020 Season | ||||
GCSP | 29.84e ± 0.45 | 38.67b ± 0.67 | 9.74b ± 0.13 | 35.92d ± 0.24 |
MAP1 | 30.88d ± 0.85 | 39.33b ± 0.67 | 9.91b ± 0.14 | 37.43cd ± 0.36 |
MAP2 | 29.22e ± 0.38 | 38.33d ± 0.88 | 9.66b ± 0.14 | 36.15cd ± 0.31 |
MAP3 | 32.99a ± 0.26 | 42.33a ± 0.58 | 10.67a ± 0.12 | 41.18a ± 0.47 |
UP1 | 32.49ab ± 0.46 | 41.67a ± 0.67 | 10.50a ± 0.12 | 38.99b ± 0.50 |
UP2 | 31.98bc ± 0.57 | 39.00b ± 0.58 | 9.83b ± 0.13 | 37.46c ± 0.42 |
UP3 | 31.39cd ± 0.51 | 42.67a ± 0.58 | 10.75a ± 0.13 | 40.72a ± 0.28 |
2021 season | ||||
GCSP | 29.22e ± 0.30 | 37.67d ± 0.67 | 9.49d ± 0.14 | 35.45d ± 0.62 |
MAP1 | 30.88de ± 0.11 | 38.33cd ± 0.58 | 9.66cd ± 0.11 | 36.01cd ± 0.22 |
MAP2 | 29.84de ± 0.27 | 37.33d ± 0.67 | 9.41d ± 0.11 | 37.96bc ± 0.44 |
MAP3 | 32.99cd ± 0.39 | 41.67a ± 0.33 | 10.50a ± 0.13 | 41.42a ± 0.26 |
UP1 | 32.49bc ± 0.70 | 39.33bc ± 0.67 | 9.91bc ± 0.14 | 37.10b–d ± 0.89 |
UP2 | 31.98ab ± 0.46 | 39.67b ± 0.58 | 10.00b ± 0.14 | 38.87b ± 0.26 |
UP3 | 31.39a ± 0.26 | 42.83a ± 0.33 | 10.79a ± 0.14 | 42.71a ± 0.23 |
r | R2 | Adjusted R2 | SEE | Significance | Fitted Equation |
---|---|---|---|---|---|
2020 season | |||||
0.821 | 0.673 | 0.637 | 1.192 | *** | OTY = 8.008+2.172FrL + 16.209LNC |
0.960 | 0.922 | 0.909 | 0.626 | *** | OOC = −8.245 + 2.237FrL + 0.443FrDrM% + 2.906LMgC |
2021 season | |||||
0.934 | 0.872 | 0.840 | 0.810 | *** | OTY = 0.298 + 1.838FrL + 0.642FrDrM% − 0.203FrFlW + 8.541LD |
0.647 | 0.419 | 0.388 | 2.197 | *** | OOC = 3.758 + 2.343FrL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, H.A.Z.; Awad, A.A.M.; Beheiry, H.R. Improving Nutrients Uptake and Productivity of Stressed Olive Trees with Mono-Ammonium Phosphate and Urea Phosphate Application. Agronomy 2022, 12, 2390. https://doi.org/10.3390/agronomy12102390
Hussein HAZ, Awad AAM, Beheiry HR. Improving Nutrients Uptake and Productivity of Stressed Olive Trees with Mono-Ammonium Phosphate and Urea Phosphate Application. Agronomy. 2022; 12(10):2390. https://doi.org/10.3390/agronomy12102390
Chicago/Turabian StyleHussein, Hamdy A. Z., Ahmed A. M. Awad, and Hamada R. Beheiry. 2022. "Improving Nutrients Uptake and Productivity of Stressed Olive Trees with Mono-Ammonium Phosphate and Urea Phosphate Application" Agronomy 12, no. 10: 2390. https://doi.org/10.3390/agronomy12102390
APA StyleHussein, H. A. Z., Awad, A. A. M., & Beheiry, H. R. (2022). Improving Nutrients Uptake and Productivity of Stressed Olive Trees with Mono-Ammonium Phosphate and Urea Phosphate Application. Agronomy, 12(10), 2390. https://doi.org/10.3390/agronomy12102390