Diversification of Rice-Based Cropping System for Improving System Productivity and Soil Health in Eastern Gangetic Plains of India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Soil Sampling and Analysis
2.4. Rice Equivalent Yield, System Production Efficiency, Land Use Efficiency and Economics
2.5. Statistical Analysis
3. Results and Discussion
3.1. Rice Equivalent Yield as Affected by the Diversified Cropping System
3.2. System Production Efficiency, Relative System Production Efficiency and Land Use Efficiency as Affected by the Diversified Cropping System
3.3. Effect of Diversification in Rice–Wheat Cropping System on Economic Benefit
3.4. Bulk Density, pH, EC and Soil Organic Carbon
3.5. Available Macronutrients
3.6. Available Micronutrients
3.7. Soil Microbial Properties
3.8. Soil Enzyme Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banjara, T.R.; Bohra, J.S.; Kumar, S.; Ram, A.; Pal, V. Diversification of rice–wheat cropping system improves growth, productivity and energetics of rice in the Indo-Gangetic Plains of India. Agric. Res. 2022, 11, 45–87. [Google Scholar] [CrossRef]
- Ladha, J.K.; Kumar, V.; Alam, M.M.; Sharma, S.; Gathala, M.K.; Chandna, P.; Saharawat, Y.; Balasubramanian, V. Integrating crop and resource management technologies for enhanced productivity, profitability and sustainability of the rice–wheat system in South Asia. In Integrated Crop and Resource Management in the Rice–Wheat System of South Asia; Ladha, J.K., Singh, Y., Erenstein, O., Hardy, B., Eds.; International Rice Research Institute: Los Banos, Philippines, 2009; pp. 69–108. [Google Scholar]
- Banjara, T.R.; Bohra, J.S.; Kumar, S.; Singh, T.; Shori, A.; Prajapat, K. Sustainable alternative crop rotations to the irrigated rice-wheat cropping system of Indo-Gangetic Plains of India. Arch. Agron. Soil Sci. 2021, 67, 1568–1585. [Google Scholar] [CrossRef]
- Sarkar, S. Management practices for enhancing fertilizer use efficiency under rice-wheat cropping system in the Indo-Gangetic Plains. Innovare J. Agric. Sci. 2015, 3, 5–10. [Google Scholar]
- Reddy, B.N.; Suresh, G. Crop diversification with oilseed crops for maximizing productivity, profitability and resource conservation. Indian J. Agron. 2009, 54, 206–214. [Google Scholar]
- Chauhan, B.S.; Mahajany, G.; Sardanay, V.; Timsina, J.; Jat, M.L. Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic plains of the Indian subcontinent: Problems, opportunities, and strategies. Adv. Agron. 2013, 117, 315–369. [Google Scholar]
- Gangwar, B.; Prasad, K. Cropping system management for mitigation of second-generation problems in agriculture. Indian J. Agric. Sci. 2005, 75, 65–78. [Google Scholar]
- Singh, R.D. Food security for increasing rural livelihood under limited water supply through adoption of diversified crops and crop sequences. In Resource Conservation Technologies for Food Security and Rural Livelihood; Khan, A.R., Singh, S.S., Bharti, R.C., Srivastava, T.K., Khan, M.A., Eds.; Agrotech Publishing Academy: Udaipur, India, 2010; pp. 342–355. [Google Scholar]
- Dalal, S.; Shankar, T. Diversification and its importance in agriculture: A Review. Indian J. Nat. Sci. 2022, 13, 44540–44548. [Google Scholar]
- Liua, X.; Tanb, S.; Songa, X.; Wua, X.; Zhaoa, G.; Lia, S.; Liang, G. Response of soil organic carbon content to crop rotation and its controls: A global synthesis. Agric. Ecosyst. Environ. 2022, 335, 108017. [Google Scholar] [CrossRef]
- Rathore, S.S.; Shekhawat, K.; Rajanna, G.A.; Upadhyay, P.K.; Singh, V.K. Crop diversification for resilience in agriculture and doubling farmers’ income. In Diversification of Rice-Wheat Cropping System for Sustainability and Livelihood Security; ICAR: New Delhi, India, 2019; pp. 78–91. [Google Scholar]
- Foyer, C.H.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: Importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Pandey, D.S.; Rana, N.S. Economics and yield potential of wheat (Triticum aestivum) as affected by tillage, rice (Oryza sativa) residue and nitrogen management options under rice-wheat system. Indian J. Agron. 2005, 50, 102–105. [Google Scholar]
- Sajjad, M.R.; Rafique, R.; Bibi, R.; Umair, A.; Afzal, A.; Ali, A.; Rafique, T. Performance of green manuring for soil health and crop yield improvement. Pure Appl. Biol. 2019, 8, 1543–1553. [Google Scholar] [CrossRef]
- Saleem, M.; Akram, M.; Ihsan Akhtar, M.; Ashraf, M. Rice Production Hand Book; PARC: Islamabad, Pakistan, 2003; pp. 42–45. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; Hans Publisher: Bombay, India, 1950. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Walkely, A.; Black, I.A. An experiment of the Degtareff method for determination of soil organic matter and a proposed modification of the chronic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, C.R.; Cole, C.V.; Wantanable, F.S.; Dean, L.A. Estimation of Available P in Soil by Extraction with Sodium Bicarbonate; USDA: Washington, DC, USA, 1954; p. 19. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for Zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Parkinson, D.; Gray, T.R.G.; Williams, S.T. Methods for studying the ecology of soil microorganisms. In International Biological Programme Handbook 19; Blackwell Scientist Publications: Oxford, UK, 1971. [Google Scholar]
- Pikovskaya, A.I. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 1948, 17, 362–370. [Google Scholar]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Academic Press: New York, NY, USA, 1982; pp. 903–947. [Google Scholar]
- Schnurer, J. Rosswall, T. Fluorescein di-acetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microb. 1982, 43, 1256–1261. [Google Scholar] [CrossRef] [Green Version]
- Tabatabai, M.A.; Bremner, J.M. Assay of Urease Activity in Soils. Am. J. Soil Sci. Soc. 1972, 41, 350–352. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Rangnamei, K.L.; Das, A.; Meena, K.L.; Rajkhowa, D.J. Crop diversification for enhancing the productivity for food and nutritional security under the Eastern Himalayas. Indian J. Agric. Sci. 2019, 89, 1157–1161. [Google Scholar]
- Directorate of Economics and Statistics, Ministry of Agriculture & Farmers Welfare, Govt. of India. Available online: https://agricoop.nic.in (accessed on 15 July 2022).
- Cocharan, W.G.; Cox, G.M. Experimental Designs, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1957; p. 611. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Singapore, 1984. [Google Scholar]
- Singh, R.D.; Shivani Khan, A.R.; Chandra, N. Sustainable productivity and profitability of diversified rice-based cropping systems in an irrigated ecosystem. Arch. Agron. Soil Sci. 2011, 58, 859–869. [Google Scholar] [CrossRef]
- Rathore, S.S.; Bhatt, B.P. Productivity improvement in jhum fields through integrated farming systems. Indian J. Agron. 2008, 53, 167–171. [Google Scholar]
- Mandal, K.G.; Kannan, K.; Thakur, A.K.; Kundu, D.K.; Brahmanand, P.S.; Kumar, A. Performance of rice systems, irrigation and organic carbon storage. Cereal Res. Commun. 2014, 42, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K.; Kundu, D.K. Legumes for sustaining soil fertility in low land rice. In Extending Nitrogen Fixation Research to Farmer’s Fields: Proceeding of an International Workshop on Managing Legume Nitrogen Fixation in the Cropping System of Asia; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT): Patancheru, India, 1997; pp. 76–102. [Google Scholar]
- Dwevedi, B.S.; Shukla, A.K.; Singh, V.K.; Yadav, R.L. Improving nitrogen and phosphorus use efficiency through inclusion of forage cowpea in rice-wheat cropping sequence in Indo-Gangetic plain. Field Crop Res. 2003, 80, 167–193. [Google Scholar] [CrossRef]
- Mishra, M.M.; Nanda, S.S.; Mohanty, M.; Pradhan, K.C.; Mishra, S.S. Crop diversification under rice based cropping system in western Orissa. In Proceedings of the 3rd National Symposium on Integrated Farming Systems, Meerut, India, 26–28 October 2007. [Google Scholar]
- Kumar, R. Productivity, profitability and nutrient uptake of maize (Zea mays) as influenced by management practices in North–East India. Indian J. Agron. 2015, 60, 273–278. [Google Scholar]
- Olekar, J.N.; Venkatraman Naik, A.D.; Kerur, N.M.; Hiremath, G.M. An economic analysis of rice-based crop sequences. Karnataka J. Agril. Sci. 2000, 13, 897–900. [Google Scholar]
- Sharma, R.P.; Pathak, S.K.; Haque, M.; Raman, K.R. Diversification of traditional rice (Oryza sativa)-based cropping systems for sustainable production in south Bihar alluvial plains. Indian J. Agron. 2004, 49, 218–222. [Google Scholar]
- Kumar, A.; Tripathi, H.P.; Yadav, R.A.; Yadav, S.R. Diversification of rice (Oryza sativa)—wheat (Triticum aestivum) cropping system for sustainable production in eastern Uttar Pradesh. Indian J. Agron. 2008, 53, 18–21. [Google Scholar]
- Sharma, A.K.; Thakur, N.P.; Koushal, S.; Kachroo, D. Profitable and energy efficient ricebased cropping system under subtropical irrigated conditions of Jammu. In Proceedings of the 3rd National Symposium on Integrated Farming Systems, Durgapura, India, 26–28 October 2007; Project Directorate for Cropping System Research: Meerut, India, 2007. [Google Scholar]
- Tomar, S.S.; Tiwari, A.S. Production potential and economics of different crop sequences. Indian J. Agron. 1990, 35, 30–35. [Google Scholar]
- Samant, T.K. System productivity, profitability, sustainability and soil health as influenced by rice based cropping systems under mid central table land zone of Odisha. Indian J. Agric. Sci. 2015, 7, 746–749. [Google Scholar]
- Wu, G.L.; Liu, Y.; Tian, F.P.; Shi, Z.H. Legumes Functional Group Promotes Soil Organic Carbon and Nitrogen Storage by Increasing Plant Diversity. Land Degrad. Dev. 2017, 28, 1336–1344. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H.; Alves, J.R.B.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: A review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Spohn, M.; Pötsch, E.M.; Eichorst, S.A.; Woebken, D.; Wanek, W.; Richter, A. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 2016, 97, 168–175. [Google Scholar] [CrossRef]
- Noordwijk, M.V.; Lawson, G.; Soumare, A.; Groot, J.J.R.; Hairiah, K. Root distribution of trees and crops: Competition and/or complementarity (Chap 8). In Tree-Crop Interactions: Agroforestry in a Changing Climate, 2nd ed.; Ong, C.K., Black, C.R., Wilson, J., Eds.; CAB International: Wallingford, UK, 2015. [Google Scholar]
- Sharma, A.R.; Behera, U.K. Recycling of legume residue for nitrogen economy and higher productivity in maize (Zea mays)–wheat (Triticum aestivum) cropping system. Nutr. Cycl. Agroecosyst. 2009, 83, 197–210. [Google Scholar] [CrossRef]
- Ali, R.I.; Awan, T.H.; Ahmad, M.; Saleem, M.U.; Akhta, M. Diversification of rice-based cropping systems to improve soil fertility, sustainable productivity and economics. J. Anim. Plant Sci. 2012, 22, 108–112. [Google Scholar]
- Gangwar, B.; Ram, B. Effect of crop diversification on productivity and profitability of rice (Oryza sativa)-wheat (Triticum aestivum) system. Indian J. Agric. Sci. 2005, 75, 435–438. [Google Scholar]
- Porpavai, S.; Devasenapathy, P.; Siddeswaran, K.; Jayaraj, T. Impact of various rice based cropping systems on soil fertility. J. Cereals Oilseeds 2011, 2, 43–46. [Google Scholar]
- Kanwar, K. Legumes—the soil fertility improver. Indian Farming 2000, 50, 9. [Google Scholar]
- Thakur, H.C.; Sharma, N.N. Effect of various cropping patterns including cereals, pulses and oilseeds on chemical properties of the soil. Indian J. Agric. Sci. 1988, 58, 708–709. [Google Scholar]
- Mishra, P.K.; Mishra, S.; Selvakumar, G.; Bisht, J.K.; Kundu, S.; Gupta, H.S. Co-inoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J. Microbiol. Biotechnol. 2009, 25, 753–761. [Google Scholar] [CrossRef]
- Zhao, S.; Li, K.; Zhou, W.; Qiu, S.; Huang, S.; He, P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 2016, 216, 82–88. [Google Scholar] [CrossRef]
- Gianfreda, L.; Ruggiero, P. Enzyme activities in soil. In Nucleic Acids and Proteins in Soil; Nannipieri, P., Smalla, K., Eds.; Springer: Berlin, Germany, 2006; pp. 257–311. [Google Scholar]
- Wander, M.M.; Bollero, G.A. Soil quality assessment of tillage impacts to Illinois. Soil Sci. Soc. Am. J. 1999, 63, 961–971. [Google Scholar] [CrossRef]
Parameters | Value | Interpretation | Methods Used |
---|---|---|---|
Bulk density (Mg m−3) | 1.38 | Moderate | Core sampler method [17] |
pH | 8.32 | Calcareous | Glass electrode pH meter [18] (Soil:Water, 1:2.5) |
EC (dS/m) | 0.34 | Moderate | Conductivity Bridge [18] (Soil:Water, 1:2.5) |
Organic Carbon (%) | 0.46 | Low | Walkley and Black method [19] |
Available N (kg ha−1) | 172.35 | Low | Alkaline potassium permanganate method [20] |
Available P (kg ha−1) | 16.75 | Low | Olsen’s method [21] |
Available K (kg ha−1) | 129.40 | Low | Flame photometric method [18] |
Fe (ppm) | 9.87 | High | DTPA Extractable method [22] |
Mn (ppm) | 4.67 | Moderate | DTPA Extractable method [22] |
Zn (ppm) | 0.52 | Low | DTPA Extractable method [22] |
Crops | Variety | Sowing Time | Seed Rate (kg ha−1) | Spacing (cm × cm) | Fertilisers (N:P:K:S kg ha−1) | Irrigation Depth (mm) | Harvesting Time |
---|---|---|---|---|---|---|---|
Rice | Sahbhagi | 20 June–30 June | 25 | 20 | 120:60:40 100% P & K + 50% N as basal + 25% N at active tillering and 25% at Panicle Initiation stage | 360 | 10 October–20 October |
Wheat | HD 2967 | 1 November–10 November | 100 | 22.5 | 120:60:40 100% P & K + 50% N as basal +25% N at CRI stage and 25% N at Panicle Initiation stage | 180 | 20 March–30 March |
Greengram | IPM 2-3 | 25 March–30 March | 20 | 30 × 10 | 20:40:20:20 100% NPKS as basal | 100 | 10 June–20 June |
Mustard | Rajendra Suflam | 20 October–25 October | 5 | 30 × 10 | 20:20:0:15 100% P, K & S + 50% N as basal + 50 % N at flowering stage | 100 | 5 March–15 March |
Lentil | HUL 57 | 25 October–5 November | 30 | 30 × 10 | 20:45:20:20 100% NPKS as basal | 50 | 25 February–5 March |
Okra | Kashi Bhairav | 1 March–10 March | 15 | 30 × 15 | 120:60:60 100% P & K + 50% N as basal + 50 % N at earthing up | 150 | 5 June–10 June |
Finger millet | RAU 8 | 20 June–30 June | 8 | 22.5 × 10 | 40:20:20 100% P & K + 50% N as basal +25% N at tillering stage and 25% N at panicle initiation stage | - | 10 October–20 October |
Maize (kharif) | Shaktiman 5 | 20 June–30 June | 20 | 60 × 20 | 120:60:40 100% P & K + 50% N as basal +25% N at knee high stage and 25% at silking stage | 100 | 15 October–25 October |
Maize (Rabi) | Shaktiman 5 | 20 June–30 June | 20 | 60 × 20 | 120:60:40 100% P & K + 50% N as basal +25% N at knee high stage and 25% at silking stage | 180 | 20 March–30 March |
Potato | Kufri Jyoti | 10 October–20 October | 2000 | 60 × 20 | 150:90:100 100% P & K + 50% N as basal and 50%N at earthing up stage | 180 | 10 February–20 February |
Sesbania | Local | 15 April–20 April | 30 | Broadcast | - | - | 5 June–15 June |
Red gram | Rajendra Arhar1 | 25 June–5 July | 15 | 60 × 20 | 20:45:20:20 100% NPKS as basal | 100 | 15 March–25 March |
Turmeric | Rajendra Sonia | 25 June–5 July | 2200 | 30 × 20 | 120:60:100 100% P & K + 50% N as basal and 50%N at earthing up stage | 120 | 5 February–15 February |
Cabbage | Express Green | 20 October–30 October | - | 60 × 40 | 120:80:60 100% P & K + 50% N as basal and 50 % at earthing up stage | 150 | 25 February–5 March |
Sesamum | Krishna | 25 March–5 April | 4 | 30 × 10 | 40:20:20:20 100% P & K + 50% N as basal and 50%N at flowering stage | 100 | 10 June–20 June |
Black gram (Kharif) | Pant U31 | 25 June–5 July | 20 | 30 × 10 | 20:45:20:20 100% NPKS as basal | - | 25 September–5 October |
Black gram (Summer) | Pant U31 | 25 March–30 March | 20 | 30 × 10 | 20:45:20:20 100% NPKS as basal | 50 | 15 June–25 June |
Chick pea | GNG-1958 | 25 October–5 November | 75 | 30 × 10 | 20:45:20:20 100% NPKS as basal | 50 | 20 March–30 March |
Vegetable pea | Azad P-3 | 20 October–25 October | 75 | 20 × 5 | 20:45:20:20 100% NPKS as basal | 100 | 25 December–5 January |
Crops | 2019–2020 (Rs t−1) | 2020–2021 (Rs t−1) | 2021–2022 (Rs t−1) |
---|---|---|---|
Rice | 18,150 | 18,680 | 19,400 |
Wheat | 19,250 | 19,750 | 20,150 |
Green gram | 70,500 | 71,960 | 72,750 |
Mustard | 44,250 | 46,500 | 50,500 |
Lentil | 48,000 | 51,000 | 55,000 |
Okra | 20,000 | 22,000 | 25,000 |
Finger millet | 31,500 | 32,950 | 33,770 |
Maize | 17,600 | 18,500 | 18,700 |
Potato | 12,000 | 15,000 | 15,000 |
Red gram | 58,000 | 60,000 | 63,000 |
Turmeric | 30,000 | 30,000 | 35,000 |
Cabbage | 12,000 | 10,000 | 15,000 |
Sesamum | 64,850 | 68,550 | 73,070 |
Black gram | 57,000 | 60,000 | 63,000 |
Chickpea | 48,750 | 51,000 | 52,300 |
Vegetable pea | 40,000 | 45,000 | 52,000 |
Cropping Systems | REY (t ha−1) (Pooled) |
---|---|
Rice − Wheat (Farmer’s practice) | 8.70 |
Direct seeded rice (DSR) − Wheat − Green gram | 12.72 |
Direct seeded rice (DSR) − Mustard/Rai − Green gram | 12.98 |
Direct seeded rice (DSR) − Lentil − Okra | 13.35 |
Finger millet − Maize + Potato − Sesbania | 19.37 |
Red gram + Turmeric − Green gram | 22.62 |
Maize − Cole crops − Sesame | 24.95 |
Maize − Wheat − Black gram | 14.24 |
Maize + Black gram − Chick pea − Sesbania | 13.48 |
Black gram − Maize + Vegetable pea − Sesbania | 12.09 |
SEM (±) | 0.813 |
LSD (p ≤ 0.05) | 2.429 |
Cropping Systems | System Production Efficiency (kg ha−1/day) | Relative System Production Efficiency (%) | Land Use Efficiency (%) |
---|---|---|---|
Rice − Wheat (Farmer’s practice) | 33.19 | 0.00 | 71.78 |
Direct seeded rice (DSR)−Wheat−Green gram | 39.39 | 46.29 | 88.49 |
Direct seeded rice (DSR)−Mustard/Rai−Green gram | 42.71 | 49.31 | 83.29 |
Direct seeded rice (DSR)−Lentil−Okra | 39.63 | 53.57 | 92.33 |
Finger millet−Maize + Potato−Sesbania | 60.53 | 122.77 | 87.67 |
Red gram + Turmeric−Green gram | 65.57 | 160.14 | 94.52 |
Maize−Cole crops−Sesame | 81.79 | 186.85 | 83.56 |
Maize−Wheat−Black gram | 43.16 | 63.80 | 90.41 |
Maize + Black gram−Chick pea−Sesbania | 42.78 | 55.00 | 86.30 |
Black gram−Maize + Vegetable pea−Sesbania | 40.99 | 39.06 | 80.82 |
SEM (±) | 2.37 | 5.38 | - |
LSD (p ≤ 0.05) | 7.10 | 16.12 | - |
Cropping Systems | Gross Returns (Rsha−1) | Net Returns (Rsha−1) | Benefit-Cost Ratio | Profitability (Rs/ha/day) | Relative Economics Efficiency (%) |
---|---|---|---|---|---|
Rice−Wheat (Farmer’s practice) | 161,868 | 91,118 | 1.29 | 249.64 | 0.00 |
Direct seeded rice (DSR)−Wheat−Green gram | 236,808 | 148,808 | 1.69 | 407.69 | 63.31 |
Direct seeded rice (DSR)−Mustard/Rai−Green gram | 241,713 | 165,363 | 2.17 | 453.05 | 81.47 |
Direct seeded rice (DSR)−Lentil−Okra | 248,591 | 147,341 | 1.46 | 403.67 | 61.70 |
Finger millet−Maize + Potato−Sesbania | 360,709 | 196,209 | 1.19 | 537.56 | 115.30 |
Red gram + Turmeric−Green gram | 421,137 | 258,387 | 1.59 | 707.91 | 183.56 |
Maize−Cole crops−Sesame | 464,274 | 364,024 | 3.63 | 997.33 | 299.52 |
Maize−Wheat−Black gram | 265,186 | 166,186 | 1.68 | 455.30 | 82.37 |
Maize + Black gram−Chick pea−Sesbania | 250,993 | 159,743 | 1.75 | 437.65 | 75.29 |
Black gram−Maize + Vegetable pea−Sesbania | 225,137 | 134,637 | 1.49 | 368.87 | 47.75 |
SEM (±) | 10,632 | 10,633 | 0.10 | 30.15 | 7.12 |
LSD (p ≤ 0.05) | 31,835 | 31,836 | 0.30 | 86.28 | 21.31 |
Cropping Systems | Bulk Density (Mg m−3) | EC (dSm−1) | pH | Organic Carbon (%) |
---|---|---|---|---|
Rice − Wheat (Farmer’s practice) | 1.38 | 0.34 | 8.33 | 0.45 |
Direct seeded rice (DSR) − Wheat − Green gram | 1.38 | 0.35 | 8.32 | 0.47 |
Direct seeded rice (DSR) − Mustard/Rai − Green gram | 1.38 | 0.34 | 8.32 | 0.47 |
Direct seeded rice (DSR) − Lentil − Okra | 1.37 | 0.35 | 8.33 | 0.46 |
Finger millet − Maize + Potato − Sesbania | 1.36 | 0.33 | 8.31 | 0.49 |
Red gram + Turmeric − Green gram | 1.37 | 0.34 | 8.32 | 0.48 |
Maize − Cole crops − Sesame | 1.38 | 0.35 | 8.32 | 0.45 |
Maize − Wheat − Black gram | 1.38 | 0.35 | 8.32 | 0.46 |
Maize + Black gram − Chick pea − Sesbania | 1.36 | 0.33 | 8.30 | 0.49 |
Black gram − Maize + Vegetable pea − Sesbania | 1.36 | 0.33 | 8.31 | 0.49 |
SEM (±) | 0.052 | 0.014 | 0.404 | 0.007 |
LSD (p ≤ 0.05) | NS | NS | NS | 0.021 |
Cropping Systems | Macronutrients | Micronutrients | ||||
---|---|---|---|---|---|---|
Available N (kg ha−1) | Available P (kg ha−1) | Available K (kg ha−1) | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | |
Rice−Wheat (Farmer’s practice) | 170.6 | 15.45 | 126.5 | 9.82 | 4.65 | 0.68 |
Direct seeded rice (DSR)−Wheat−Green gram | 187.3 | 17.36 | 135.2 | 9.90 | 4.75 | 0.73 |
Direct seeded rice (DSR)−Mustard/Rai−Green gram | 184.5 | 17.54 | 134.7 | 9.86 | 4.77 | 0.72 |
Direct seeded rice (DSR)−Lentil−Okra | 180.3 | 17.10 | 130.8 | 10.05 | 4.78 | 0.70 |
Finger millet−Maize + Potato−Sesbania | 191.3 | 22.78 | 130.5 | 10.50 | 4.96 | 0.76 |
Red gram + Turmeric−Green gram | 192.4 | 17.87 | 136.4 | 10.12 | 4.79 | 0.75 |
Maize−Cole crops−Sesame | 178.6 | 16.25 | 128.3 | 9.96 | 4.68 | 0.70 |
Maize−Wheat−Black gram | 183.6 | 17.48 | 134.2 | 9.81 | 4.72 | 0.71 |
Maize + Black gram−Chick pea−Sesbania | 201.5 | 24.55 | 139.3 | 10.62 | 5.05 | 0.78 |
Black gram−Maize + Vegetable pea−Sesbania | 198.3 | 23.06 | 138.5 | 10.55 | 5.02 | 0.78 |
SEM (±) | 5.514 | 0.547 | 1.737 | 0.143 | 0.086 | 0.01 |
LSD (p ≤ 0.05) | 16.51 | 1.638 | 5.20 | 0.428 | 0.257 | 0.03 |
Cropping Systems | Bacteria (106 cfu/g Soil) | Azotobacter (104 cfu/g Soil) | PSB (106 cfu/g Soil) |
---|---|---|---|
Rice−Wheat (Farmer’s practice) | 33.29 | 31.74 | 15.41 |
Direct seeded rice (DSR)−Wheat − Green gram | 38.34 | 33.68 | 16.25 |
Direct seeded rice (DSR)−Mustard/Rai−Green gram | 38.67 | 33.92 | 16.57 |
Direct seeded rice (DSR)−Lentil−Okra | 38.16 | 33.26 | 16.08 |
Finger millet−Maize + Potato−Sesbania | 43.58 | 39.71 | 18.96 |
Red gram + Turmeric−Green gram | 39.26 | 35.49 | 16.84 |
Maize−Cole crops−Sesame | 34.48 | 32.53 | 15.36 |
Maize−Wheat−Black gram | 38.09 | 33.01 | 16.05 |
Maize + Black gram−Chickpea−Sesbania | 45.92 | 41.57 | 20.24 |
Black gram − Maize + Vegetable pea−Sesbania | 47.85 | 42.96 | 20.72 |
SEM (±) | 2.40 | 1.67 | 0.93 |
LSD (p ≤ 0.05) | 7.19 | 5.01 | 2.78 |
Cropping Systems | DHA (µg TPF/g/h) | FDA (µg Fluoresce in/g/h) | AcP (µg pNP/g/h) | Urease (µg NH4+/g/h) |
---|---|---|---|---|
Rice − Wheat (Farmer’s practice) | 3.12 | 14.56 | 402.68 | 32.92 |
Direct seeded rice (DSR) − Wheat − Green gram | 3.98 | 16.28 | 421.87 | 35.16 |
Direct seeded rice (DSR) − Mustard/Rai − Green gram | 4.01 | 16.53 | 428.56 | 35.71 |
Direct seeded rice (DSR) − Lentil − Okra | 3.84 | 15.92 | 419.28 | 34.18 |
Finger millet − Maize + Potato − Sesbania | 4.26 | 16.95 | 439.21 | 41.26 |
Red gram + Turmeric − Green gram | 4.02 | 16.71 | 430.94 | 37.63 |
Maize − Cole crops − Sesame | 3.10 | 14.52 | 401.49 | 32.85 |
Maize − Wheat − Black gram | 3.42 | 15.86 | 412.78 | 33.94 |
Maize + Black gram − Chick pea − Sesbania | 4.36 | 17.09 | 446.23 | 45.76 |
Black gram − Maize + Vegetable pea − Sesbania | 4.39 | 17.28 | 451.46 | 47.21 |
SEM (±) | 0.11 | 0.10 | 6.43 | 3.12 |
LSD (p ≤ 0.05) | 0.34 | 0.31 | 19.25 | 9.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhaya, B.; Kishor, K.; Kumar, V.; Kumar, N.; Kumar, S.; Yadav, V.K.; Kumar, R.; Gaber, A.; Laing, A.M.; Brestic, M.; et al. Diversification of Rice-Based Cropping System for Improving System Productivity and Soil Health in Eastern Gangetic Plains of India. Agronomy 2022, 12, 2393. https://doi.org/10.3390/agronomy12102393
Upadhaya B, Kishor K, Kumar V, Kumar N, Kumar S, Yadav VK, Kumar R, Gaber A, Laing AM, Brestic M, et al. Diversification of Rice-Based Cropping System for Improving System Productivity and Soil Health in Eastern Gangetic Plains of India. Agronomy. 2022; 12(10):2393. https://doi.org/10.3390/agronomy12102393
Chicago/Turabian StyleUpadhaya, Bharati, Kaushal Kishor, Vipin Kumar, Navnit Kumar, Sanjay Kumar, Vinod Kumar Yadav, Randhir Kumar, Ahmed Gaber, Alison M. Laing, Marian Brestic, and et al. 2022. "Diversification of Rice-Based Cropping System for Improving System Productivity and Soil Health in Eastern Gangetic Plains of India" Agronomy 12, no. 10: 2393. https://doi.org/10.3390/agronomy12102393
APA StyleUpadhaya, B., Kishor, K., Kumar, V., Kumar, N., Kumar, S., Yadav, V. K., Kumar, R., Gaber, A., Laing, A. M., Brestic, M., & Hossain, A. (2022). Diversification of Rice-Based Cropping System for Improving System Productivity and Soil Health in Eastern Gangetic Plains of India. Agronomy, 12(10), 2393. https://doi.org/10.3390/agronomy12102393