Techniques Used to Determine Botanical Composition, Intake, and Digestibility of Forages by Ruminants
Abstract
:1. Introduction
2. Methods of Estimating the Botanical Composition of Selected Diets
2.1. Utilisation Technique
2.2. Direct Observation
2.3. Microhistogical Procedures
2.3.1. Faecal Analysis Technique
2.3.2. DNA Sequencing of Faecal Samples
3. Analytical Procedures in Estimating Diet Intake in Grazing Animals
3.1. Plant Cuticular Wax Compounds
3.2. Evaluation of Multiple Internal Biomarkers
3.3. Near-Infrared Reflectance Spectroscopy (NIRS)
3.4. Estimating Feed Intake in Grazing Ruminants Using Diet Digestibility
3.5. Estimation of Intake in Grazing Animals Using Double n-alkanes
3.6. Estimating Diet Intake Using Supplement Proportion
4. Estimating Nutrient Digestibility in Grazing Animals
4.1. Estimating Digestibility Using Biomarkers
4.2. Using Faecal Output to Estimate Digestibility in Grazing Animals
5. Application of Dietary Component Predictions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salem, H.; Smith, T. Feeding strategies to increase small ruminant production in dry environments. Small Rumin. Res. 2008, 77, 174–194. [Google Scholar] [CrossRef]
- Ferreira, L.M.M.; Celaya, R.; Benavides, R.; Jáuregui, B.M.; García, U.; Santos, A.S.; García, R.R.; Rodrigues, M.A.M.; Osoro, K. Foraging behaviour of domestic herbivore species grazing on heathlands associated with improved pasture areas. Livest. Sci. 2013, 155, 373–383. [Google Scholar] [CrossRef]
- Macoon, B.; Sollenberger, L.E.; Moore, J.E.; Staples, C.R.; Fike, J.H.; Portier, K.M. Comparison of three techniques for estimating the forage intake of lactating dairy cows on pasture. J. Anim. Sci. 2003, 81, 2357–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnyder, H.; Locher, F.; Agroecosystems, K.A.-N.C. Nutrient redistribution by grazing cattle drives patterns of topsoil N and P stocks in a low-input pasture ecosystem. Nutr. Cycl. Agroecosystems 2010, 88, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Pepeta, B.; Moyo, M.; Hassen, A.; Nsahlai, I.V. Stocking Rate Has No Confounding Effect on the Use of Internal and Inert Markers to Predict Botanical Composition, Diet Quality, Degradability and Passage Rate. Animals 2020, 10, 2232. [Google Scholar] [CrossRef]
- Grant, R.C.C.; Botha, J.; Grant, T.C.; Peel, M.J.S.; Smit, I.P.J. When less is more: Heterogeneity in grass patch height supports herbivores in counter-intuitive ways. Afr. J. Range Forage Sci. 2019, 36, 1–8. [Google Scholar] [CrossRef]
- Mellado, M.; Villarreal-Quintanilla, J.A.; Medina-Morales, M.A.; Arevalo, J.; Garcia, J.; Meza-Herrera, C. Seasonal diet composition and forage selectivity of Boer goats in a semi-arid gypsophilous grassland. Afr. J. Range Forage Sci. 2017, 34, 191–199. [Google Scholar] [CrossRef]
- Ferreira, L.M.M.; Hervás, G.; Belenguer, A.; Celaya, R.; Rodrigues, M.A.M.; García, U.; Frutos, P.; Osoro, K. Comparison of feed intake, digestion and rumen function among domestic ruminant species grazing in upland vegetation communities. J. Anim. Physiol. Anim. Nutr. 2017, 101, 846–856. [Google Scholar] [CrossRef]
- Whalley, R.D.B.; Hardy, M.B. Measuring the Botanical Composition of Grasslands. Field and Laboratory Methods for Grassland and Animal Production Research; CABI: Wallingford, UK, 2000. [Google Scholar]
- Chirat, G.; Groot, J.C.; Messad, S.; Bocquier, F.; Ickowicz, A. Instantaneous intake rate of free-grazing cattle as affected by herbage characteristics in heterogeneous tropical agro-pastoral landscapes. Appl. Anim. Behav. Sci. 2014, 157, 48–60. [Google Scholar] [CrossRef]
- Ketshabile, W.; Moyo, M.; Ahmed, M.A.; Nsahlai, I.V. Daily Variation in Feeding and Ingestive Behaviour of Sheep and Goats Grazing and Browsing on Grass-Legume Pastures. Anim. Nutr. Feed Technol. 2019, 19, 217–227. [Google Scholar] [CrossRef]
- Peiretti, P.; Meineri, G.; Miraglia, N.; Mucciarelli, M.; Bergero, D. Intake and apparent digestibility of hay or hay plus concentrate diets determined in horses by the total collection of feces and n-alkanes as internal markers. Livest. Sci. 2006, 100, 189–194. [Google Scholar] [CrossRef]
- Williams, M.; Prendiville, R.; O’Sullivan, K.; McCabe, S.; Kennedy, E.; Liddane, M.; Buckley, F. Developing and validating a model to predict the dry matter intake of grazing lactating beef cows. Animal 2019, 13, 2639–2649. [Google Scholar] [CrossRef] [PubMed]
- Leyequien, E.; Verrelst, J.; Slot, M.; Schaepman-Strub, G.; Heitkönig, I.M.A.; Skidmore, A. Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 1–20. [Google Scholar] [CrossRef]
- Ruuska, S.; Kajava, S.; Mughal, M.; Zehner, N.; Mononen, J. Validation of a pressure sensor-based system for measuring eating, rumination and drinking behaviour of dairy cattle. Appl. Anim. Behav. Sci. 2016, 174, 19–23. [Google Scholar] [CrossRef]
- Sanon, H.O.; Kaboré-Zoungrana, C.; Ledin, I. Behaviour of goats, sheep and cattle and their selection of browse species on natural pasture in a Sahelian area. Small Rumin. Res. 2007, 67, 64–74. [Google Scholar] [CrossRef]
- Parkes, D.; Newell, G.; Cheal, D. Assessing the quality of native vegetation: The “habitat hectares” approach. Ecol. Manag. Restor. 2003, 4, S29–S38. [Google Scholar] [CrossRef]
- Damiran, D.; DelCurto, T.; Findholt, S.L.; Johnson, B.K.; Vavra, M. Comparison of bite-count and rumen evacuation techniques to estimate cattle diet quality. Range Ecol. Manag. 2013, 66, 106–109. [Google Scholar] [CrossRef] [Green Version]
- Gilhossein, M.; Mahjoubi, E.; Zahmatkesh, D.; Yazdi, M. Exposure to sunlight results in lower concentrate intake during the hot hours of day in a cafeteria feeding of chopped alfalfa hay and concentrate in Afshari lambs. Small Rumin. Res. 2017, 157, 8–13. [Google Scholar] [CrossRef]
- Bingham, G.; Friend, T.; Lancaster, P.; Carstens, G. Relationship between feeding behavior and residual feed intake in growing Brangus heifers. J. Anim. Sci. 2009, 87, 2685–2689. [Google Scholar] [CrossRef] [Green Version]
- Clauss, M.; Streich, W.; Nunn, C.; Ortmann, S.; Hohmann, G.; Schwarm, A.; Hummel, J. The influence of natural diet composition, food intake level, and body size on ingesta passage in primates. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 150, 274–281. [Google Scholar] [CrossRef]
- Bonnet, O.J.F.; Meuret, M.; Tischler, M.R.; Cezimbra, I.M.; Azambuja, J.C.R.; Carvalho, P.C.F. Continuous bite monitoring: A method to assess the foraging dynamics of herbivores in natural grazing conditions. Anim. Prod. Sci. 2015, 55, 339–349. [Google Scholar] [CrossRef]
- Greenwood, P.L.; Paull, D.R.; McNally, J.; Kalinowski, T.; Ebert, D.; Little, B.; Smith, D.V.; Rahman, A.; Valencia, P.; Ingham, A.B.; et al. Use of sensor-determined behaviours to develop algorithms for pasture intake by individual grazing cattle. Crop. Pasture Sci. 2017, 68, 1091–1099. [Google Scholar] [CrossRef]
- Martínez, M.; De La Barra, R. Diet composition of two sheep breeds grazing in Chiloe Archipelago, Chile. Chile J. Anim. Vet. Adv. 2014, 13, 871–876. [Google Scholar]
- Soininen, E.M.; Gauthier, G.; Bilodeau, F.; Berteaux, D.; Gielly, L.; Taberlet, P.; Gussarova, G.; Bellemain, E.; Hassel, K.; Stenøien, H.K.; et al. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS ONE 2015, 10, e0115335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habiba, U.; Anwar, M.; Khatoon, R.; Hussain, M.; Khan, K.A.; Khalil, S.; Bano, S.A.; Hussain, A. Feeding habits and habitat use of barking deer (Muntiacus vaginalis) in Himalayan foothills, Pakistan. PLoS ONE 2021, 16, e0245279. [Google Scholar] [CrossRef]
- Morrison, J.I.; Smith, S.R.; Aiken, G.E.; Lawrence, L.M. Composition of Horse Diets on Cool-Season Grass Pastures using Microhistological Analysis. Forage Grazinglands 2009, 7, 1–9. [Google Scholar] [CrossRef]
- Morrison, J.; Smith, S.; Aiken, G.; Huo, C. Using Microhistological Techniques to Predict Botanical Composition of Horse Diets on Cool-Season Grass Pasture. In Proceedings of the Joint IGC/IRC International Meetings; China Grassland Society, Hohhot, China, 29 June–5 July 2008. [Google Scholar]
- Wilson, D.E.; Hirst, S.M.; Ellis, R.P. Determination of Feeding Preferences in Wild Ruminants from Trocar Samples. J. Wildl. Manag. 1977, 41, 70. [Google Scholar] [CrossRef]
- Altangerel, N.; Walker, J.; González, P.; Bailey, D.; Estell, R.; Scully, M. Comparison of near infrared reflectance spectroscopy and Raman spectroscopy for predicting botanical composition of cattle diets. Range Ecol. Manag. 2017, 70, 781–786. [Google Scholar] [CrossRef]
- Scasta, J.; Jorns, T.; Derner, J.; Lake, S.; Augustine, D.; Windh, J.; Smith, T. Validation of DNA metabarcoding of fecal samples using cattle fed known rations. Anim. Feed Sci. Technol. 2019, 255, 114219. [Google Scholar] [CrossRef]
- Orellana, C.; Hugo Parraguez, V.; Arana, W.; Escanilla, J.; Zavaleta, C.; Castellaro, G. Use of fecal indices as a non-invasive tool for nutritional evaluation in extensive-grazing sheep. Animals 2020, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Bradley, B.J.; Stiller, M.; Doran-Sheehy, D.M.; Harris, T.; Chapman, C.A.; Vigilant, L.; Poinar, H. Plant DNA sequences from feces: Potential means for assessing diets of wild primates. Am. J. Primatol. 2007, 69, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, F.; Squartini, A.; Barcaccia, G.; Macolino, S.; Pornaro, C.; Pindo, M.; Sturaro, E.; Ramanzin, M. A multi-kingdom metabarcoding study on cattle grazing Alpine pastures discloses intra-seasonal shifts in plant selection and faecal microbiota. Sci. Rep. 2021, 11, 889. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.M.; Clare, E.L.; Hayden, B.; Brett, M.T.; Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 2018, 9, 278–291. [Google Scholar] [CrossRef]
- Selvaraj, D.; Sarma, R.K.; Sathishkumar, R. Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation 2008, 3, 24–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, D.L.; Reed, E.; Ramachandran, P.; Bourg, N.A.; McShea, W.J.; Ottesen, A. Reconstructing a herbivore’s diet using a novel rbc L DNA mini-barcode for plants. AoB Plants 2017, 9, plx015. [Google Scholar] [CrossRef] [Green Version]
- Gebremedhin, B.; Flagstad, Ø.; Bekele, A.; Chala, D.; Bakkestuen, V.; Boessenkool, S.; Popp, M.; Gussarova, G.; Schroder-Nielsen, A.; Nemomissa, S.; et al. DNA metabarcoding reveals diet overlap between the endangered walia ibex and domestic goats-Implications for conservation. PLoS ONE 2016, 11, e0159133. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, R.; Wójcik, J.M.; Taberlet, P.; Kamiński, T.; Miquel, C.; Valentini, A.; Craine, J.M.; Coissac, E. Foraging plasticity allows a large herbivore to persist in a sheltering forest habitat: DNA metabarcoding diet analysis of the European bison. For. Ecol. Manag. 2019, 449, 117474. [Google Scholar] [CrossRef]
- Velasquez, A.V. Evaluation of Internal and External Markers for Estimating Dry Matter Intake and Digestibility in Cattle; Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo: São Paulo, Brazil, 2017. [Google Scholar]
- Pellikaan, W.F.; Verstegen, M.W.A.; Tamminga, S.; Dijkstra, J.; Hendriks, W.H. δ13C as a marker to study digesta passage kinetics in ruminants: A combined in vivo and in vitro study. Animal 2013, 7, 754–767. [Google Scholar] [CrossRef]
- Marais, J. Use of Markers. In Farm Animal Metabolism and Nutrition: Critical Reviews; D’mello, J.P.F., Ed.; CABI: Wallingford, UK, 2000; ISBN 0851993788. [Google Scholar]
- Martínez, M.; Benavente, A.; Morales, R. Potential of n-alkanes as biomarkers in grass-feeding steers. Cienc. E Investig. Agrar. Rev. Latinoam. Cienc. La Agric. 2017, 44, 239–251. [Google Scholar]
- Goulart, R.S.; Vieira, R.A.M.; Daniel, J.L.P.; Amaral, R.C.; Santos, V.P.; Toledo Filho, S.G.; Cabezas-Garcia, E.H.; Tedeschi, L.O.; Nussio, L.G. Effects of source and concentration of neutral detergent fiber from roughage in beef cattle diets: Comparison of methods to measure the effectiveness of fiber. J. Anim. Sci. 2020, 98, 1–9. [Google Scholar] [CrossRef]
- Dove, H.; Mayes, R.W. Protocol for the analysis of n-alkanes and other plant-wax compounds and for their use as markers for quantifying the nutrient supply of large mammalian herbivores. Nat. Protoc. 2006, 1, 1680–1697. [Google Scholar] [CrossRef] [PubMed]
- Genro, T.; Trindade, J.; de Carvalho, P.F. Use of N-Alkanes to Estimate the Intake of Beef Heifers on Natural Grassland in Southern Brazil. In Proceedings of the International Grassland Congress Proceedings, Nairobi, Kenya, 25–29 October 2021. [Google Scholar]
- Andriarimalala, H.J.; Dubeux, J.C.; Jaramillo, D.M.; Rakotozandriny, J.N.; Salgado, P. Using n-alkanes to estimate herbage intake and diet composition of cattle fed with natural forages in Madagascar. Anim. Feed Sci. Technol. 2021, 273, 114795. [Google Scholar] [CrossRef]
- Dove, H.; Mayes, R.W. Using n-alkanes and other plant wax components to estimate intake, digestibility and diet composition of grazing/browsing sheep and goats. Small Rumin. Res. 2005, 59, 123–139. [Google Scholar] [CrossRef]
- Charmley, E.; Dove, H.; Charmley, E.; Dove, H. Using plant wax markers to estimate diet composition and intakes of mixed forages in sheep by feeding a known amount of alkane-labelled supplement. Aust. J. Agric. Res. 2007, 58, 1215–1225. [Google Scholar] [CrossRef]
- Dove, H. Keynote: Assessment of Intake and Diet Composition of Grazing Livestock. In Proceedings of the 4th Grazing Livestock Nutrition Conference, Estes Park, CO, USA, 9–10 July 2010; Hess, B., Del Curto, T., Bowman, J., Waterman, R., Eds.; Western Section American Society of Animal Science: Champaign, IL, USA, 2010; pp. 31–54. [Google Scholar]
- Dawson, L.A.; Mayes, R.W.; Elston, D.A.; Smart, T.S. Root hydrocarbons as potential markers for determining species composition. Plant. Cell Environ. 2000, 23, 743–750. [Google Scholar] [CrossRef]
- Savian, J.V.; Genro, T.C.M.; Neto, A.B.; Bremm, C.; Azevedo, E.B.; David, D.B.; Gonda, H.L.; Carvalho, P.C.F. Comparison of faecal crude protein and n-alkanes techniques to estimate herbage intake by grazing sheep. Anim. Feed Sci. Technol. 2018, 242, 144–149. [Google Scholar] [CrossRef]
- Fraser, M.D.; Theobald, V.J.; Moorby, J.M. Determining diet composition on complex swards using n-alkanes and long-chain fatty alcohols. Ecol. Appl. 2006, 16, 1901–1910. [Google Scholar] [CrossRef]
- López López, C.; Celaya, R.; Santos, A.S.; Rodrigues, M.A.M.; Osoro, K.; Ferreira, L.M.M. Application of long-chain alcohols as faecal markers to estimate diet composition of horses and cattle fed with herbaceous and woody species. Animal 2015, 9, 1786–1794. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.A.M.; Mayes, R.W.; Hector, B.L.; Orskov, E.R. Assessment of n-alkanes, long-chain fatty alcohols and long-chain fatty acids as diet composition markers: The concentrations of these compounds in rangeland species from Sudan. Anim. Feed Sci. Technol. 2005, 121, 257–271. [Google Scholar] [CrossRef]
- Ferreira, L.M.M.; Celaya, R.; Falco, V.; Oliván, M.; Santos, A.S.; Guedes, C.; Rodrigues, M.A.M.; Osoro, K. Evaluation of very long-chain fatty acids and n-alkane epicuticular compounds as markers for estimating diet composition of sheep fed heathland vegetation species. Anim. Feed Sci. Technol. 2010, 156, 75–88. [Google Scholar] [CrossRef]
- Roumet, C.; Picon-Cochard, C.; Dawson, L.A.; Joffre, R.; Mayes, R.; Blanchard, A.; Brewer, M.J. Quantifying species composition in root mixtures using two methods: Near-infrared reflectance spectroscopy and plant wax markers. New Phytol. 2006, 170, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.A.M.; Mayes, R.W.; Lamb, C.S.; Hector, B.L.; Verma, A.K.; Ørskov, E.R. The potential of long-chain fatty alcohols and long-chain fatty acids as diet composition markers: Development of methods for quantitative analysis and faecal recoveries of these compounds in sheep fed mixed diets. J. Agric. Sci. 2004, 142, 71–78. [Google Scholar] [CrossRef]
- Bugalho, M.N.; Mayes, R.W.; Milne, J.A. The effects of feeding selectivity on the estimation of diet composition using the n-alkane technique. Grass Forage Sci. 2002, 57, 224–231. [Google Scholar] [CrossRef]
- Ferreira, L.M.M.; Celaya, R.; Santos, A.S.; Falco, V.; Guedes, C.; Rodrigues, M.A.M.; Osoro, K. The utilization of long-chain fatty acids as markers for diet composition estimates in ruminants: Effects of animal species, diet composition and marker combination. Grass Forage Sci. 2011, 66, 183–195. [Google Scholar] [CrossRef]
- Lin, L.J.; Zhu, X.Y.; Jiang, C.; Luo, H.L.; Wang, H.; Zhang, Y.J.; Hong, F.Z. The potential use of n-alkanes, long-chain alcohols and long-chain fatty acids as diet composition markers: Indoor validation with sheep and herbage species from the rangeland of Inner Mongolia of China. Animal 2012, 6, 449–458. [Google Scholar] [CrossRef]
- Keli, A.; Andueza, D.; de Vega, A.; Guada, J.A. Validation of the n-alkane and NIRS techniques to estimate intake, digestibility and diet composition in sheep fed mixed lucerne: Ryegrass diets. Livest. Sci. 2008, 119, 42–54. [Google Scholar] [CrossRef]
- Decruyenaere, V.; Lecomte, P.; Demarquilly, C.; Aufrere, J.; Dardenne, P.; Stilmant, D.; Buldgen, A. Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration. Anim. Feed Sci. Technol. 2009, 148, 138–156. [Google Scholar] [CrossRef]
- Merchant, M. The intake of grass and rush (Juncus effusus L.) by goats grazing rush-infested grass pasture. Grass Forage Sci. 1996, 51, 81–87. [Google Scholar] [CrossRef]
- Newman, J.A.; Thompson, W.A.; Penning, P.D.; Mayes, R.W. Least-squares estimation of diet composition from n-alkanes in herbage and faeces using matrix mathematics. Aust. J. Agric. Res. 1995, 46, 793–805. [Google Scholar] [CrossRef]
- Barcia, P.; Bugalho, M.N.; Campagnolo, M.L.; Cerdeira, J.O. Using n-alkanes to estimate diet composition of herbivores: A novel mathematical approach. Animal 2007, 1, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Urra, J.D.A.; Noziere, P.; Herremans, S.; de la Torre Capitan, A.; Froidmont, E.; Picard, F.; Pourrat, J.; Constant, I.; Martin, C.; Hijar, G.C. Faecal-NIRS for Predicting Digestibility and Intake in Cattle: Efficacy of Two Calibration Strategy. In Proceedings of the Annual Meeting of the European Association for Animal Production (EAAP), Brussels, Belgium, 26–30 August 2019. [Google Scholar]
- Boval, M.; Coates, D.B.; Lecomte, P.; Decruyenaere, V.; Archimède, H. Faecal near infrared reflectance spectroscopy (NIRS) to assess chemical composition, in vivo digestibility and intake of tropical grass by Creole cattle. Anim. Feed Sci. Technol. 2004, 114, 19–29. [Google Scholar] [CrossRef]
- Tolleson, D.; Schafer, D. Application of fecal near-infrared spectroscopy and nutritional balance software to monitor diet quality and body condition in beef cows grazing Arizona rangeland. J. Anim. Sci. 2014, 92, 349–358. [Google Scholar] [CrossRef]
- Kneebone, D.G.; Dryden, G.M.; Kneebone, D.G.; Dryden, G.M. Prediction of diet quality for sheep from faecal characteristics: Comparison of near-infrared spectroscopy and conventional chemistry predictive models. Anim. Prod. Sci. 2014, 55, 1–10. [Google Scholar] [CrossRef]
- Smart, A.; Schacht, W.; Pedersen, J.; Undersander, D.; Moser, L. Prediction of leaf:stem ratio in grasses using near infrared reflectance spectroscopy. J. Range Manag. Arch. 1998, 51, 447–449. [Google Scholar] [CrossRef] [Green Version]
- Coates, D.B.; Dixon, R.M. Developing Robust Faecal near Infrared Spectroscopy Calibrations to Predict Diet Dry Matter Digestibility in Cattle Consuming Tropical Forages. J. Near Infrared Spectrosc. 2011, 19, 507–519. [Google Scholar] [CrossRef]
- Byron, B. Use of n-Alkane and Fecal Near Infrared Reflectance Spectroscopy (fNIRS) Methods and Traditional Prediction Equations to Estimate Intake of RFI-Divergent Beef Cattle Grazing Annual and Perennial Pastures. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2018. [Google Scholar]
- Hilburger, E.J. Assessing Plant-Wax Markers as a Tool to Estimate Intake and Diet Composition in Beef Cattle. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, 2017. [Google Scholar]
- Duncan, A.J.; Mayes, R.W.; Lamb, C.S.; Young, S.A.; Castillo, I. The use of naturally occurring and artificially applied n-alkanes as markers for estimation of short-term diet composition and intake in sheep. J. Agric. Sci. 1999, 132, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Tayyab, U. Evaluation of Physically Effective Fibre in Forages and Its Interaction with Concentrate Supplementation on Rumen Function, Performance and Health of UK Dairy Cows—Harper Adams University Repository. Ph.D. Thesis, Haroer Adams University, Newport, UK, 2019. [Google Scholar]
- Elwert, C.; Dove, H. Estimation of roughage intake in sheep using a known daily intake of a labelled supplement. Anim. Sci. 2005, 81, 47–56. [Google Scholar] [CrossRef]
- Dove, H.; Olivan, M. Using synthetic or beeswax alkanes for estimating supplement intake in sheep. Anim. Prod. Aust. 1998, 22, 189–192. [Google Scholar]
- Cottle, D.J. The trials and tribulations of estimating the pasture intake of grazing animals. Anim. Prod. Sci. 2013, 53, 1209–1220. [Google Scholar] [CrossRef]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef]
- Boval, M.; Archimède, H.; Fleury, J.; Xandé, A. The ability of faecal nitrogen to predict digestibility for goats and sheep fed with tropical herbage. J. Agric. Sci. 2003, 140, 443–450. [Google Scholar] [CrossRef]
- Leslie, D.M.; Starkey, E.E. Fecal Indices to Dietary Quality of Cervids in Old-Growth Forests. J. Wildl. Manag. 1985, 49, 142. [Google Scholar] [CrossRef] [Green Version]
- Leslie, D.M.; Bowyer, R.T.; Jenks, J.A. Facts From Feces: Nitrogen Still Measures Up as a Nutritional Index for Mammalian Herbivores. J. Wildl. Manag. 2008, 72, 1420–1433. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the In vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Holden, L.A. Comparison of Methods of In Vitro Dry Matter Digestibility for Ten Feeds. J. Dairy Sci. 1999, 82, 1791–1794. [Google Scholar] [CrossRef]
- Adesogan, A.T. What are feed worth? A critical evaluation of selected nutritive value techniques. In Proceedings of the Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 15–17 February 2002; pp. 33–47. [Google Scholar]
- Van Wyngaard, J.D.V.; Meeske, R.; Erasmus, L.J. Effect of concentrate feeding level on methane emissions, production performance and rumen fermentation of Jersey cows grazing ryegrass pasture during spring. Anim. Feed Sci. Technol. 2018, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Wegi, T.; Hassen, A.; Bezabih, M.; Nurfeta, A.; Yigrem, S.; Tolera, A. Estimation of feed intake and digestibility in Zebu type Arsi steers fed natural pasture using the n-alkane technique. Anim. Feed Sci. Technol. 2021, 271, 114765. [Google Scholar] [CrossRef]
- Mayes, R.W.; Beresford, N.A.; Lamb, C.S.; Barnett, C.L.; Howard, B.J.; Jones, B.E.V.; Eriksson, O.; Hove, K.; Pedersen, Ø.; Staines, B.W. Novel approaches to the estimation of intake and bioavailability of radiocaesium in ruminants grazing forested areas. Sci. Total Environ. 1994, 157, 289–300. [Google Scholar] [CrossRef]
- Ferreira, L.M.M.; Garcia, U.; Rodrigues, M.A.M.; Celaya, R.; Dias-da-Silva, A.; Osoro, K. Estimation of feed intake and apparent digestibility of equines and cattle grazing on heathland vegetation communities using the n-alkane markers. Livest. Sci. 2007, 110, 46–56. [Google Scholar] [CrossRef]
- Ferreira, L.M.M.; Oliván, M.; Rodrigues, M.A.M.; Osoro, K.; Dove, H.; Dias-da-Silva, A. Estimation of feed intake by cattle using controlled-release capsules containing n-alkanes or chromium sesquioxide. J. Agric. Sci. 2004, 142, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Berry, N.R.; Scheeder, M.R.; Sutter, F.; Kröber, T.F.; Kreuzer, M. The accuracy of intake estimation based on the use of alkane controlled-release capsules and faeces grab sampling in cows. Ann. Zootech. 2000, 49, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Adejoro, F.A.; Hassen, A.; Akanmu, A.M. Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Animals 2019, 9, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibbald, A.; Davidson, G.C.; Mayes, R.W. Effect of dosing regime on intake estimation using the n-alkane technique in sheep fed pelleted grass meal. J. Sci. Food Agric. 2000, 80, 1206–1210. [Google Scholar] [CrossRef]
- Valiente, O.L.; Delgado, P.; De Vega, A.; Guada, J.A. Validation of the n-alkane technique to estimate intake, digestibility, and diet composition in sheep consuming mixed grain: Roughage diets. Aust. J. Agric. Res. 2003, 54, 693–702. [Google Scholar] [CrossRef]
- Dove, H.; Freer, M.; Foot, J.Z. The nutrition of grazing ewes during pregnancy and lactation: A comparison of alkane-based and chromium/in vitro-based estimates of herbage intake. Aust. J. Agric. Res. 2000, 51, 765–777. [Google Scholar] [CrossRef]
- Dove, H.; Mayes, R.W. Plant Wax Components: A New Approach to Estimating Intake and Diet Composition in Herbivores. J. Nutr. 1996, 126, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Bois, B.; Morgavi, D.P.; González-García, E.; Genestoux, L.; Lecomte, P.; Ickowicz, A.; Doreau, M. Indirect measures of methane emissions of Sahelian zebu cattle in West Africa, role of environment and management. Trop. Anim. Health Prod. 2020, 52, 1953–1960. [Google Scholar] [CrossRef]
Class | C-Length | Properties | Abundance | References |
---|---|---|---|---|
N-alkanes | C21-C37 | Odd-numbered C-chains | Highly common | [55] |
Branched n-alkanes | C28-C32 | Iso- and ante-iso-branched chain | Rare | [45] |
1st-OH | C20-C34 | Saturated even-numbered C-chain | Common in high concentrations | [55] |
2nd-OH | C29 | Odd-numbered C-chain, mainly C29 | High concentrations in conifer leaves | [45] |
LCFA | C20-C34 | Even-numbered C-chains | Common in higher plants | [56] |
Diet | Animals | Method 1 | Feeding System | Accuracy | Reference |
---|---|---|---|---|---|
Aristida multicaulis, Urochloa brizantha, Hyparrhenia rufa, Imperata cylindrica and Stylosanthes guyanensis | Cattle (237 ± 16 kg BW) | ALK | Indoor (mixed diet) | KSI = 70.75% | [47] |
Themeda triandra, Zea mays and Sorghum bicolor hay | Sheep (46.5 ± 3.3 kg BW) | MADF, ADL and AIA | Indoor (cafeteria) | KSI = 90.90% | [5] |
Ryegrass and heather | Cattle (499 ± 36 kg BW) | LCOH | Indoor (cafeteria) | KSI = 97.2% | [54] |
Ryegrass and heather | Cattle (499 ± 36 kg BW) | LCOH and ALK | Indoor (cafeteria) | KSI = 96.50% | [54] |
Ryegrass and heather | Cattle (499 ± 36 kg BW) | LCOH and LCFA | Indoor (cafeteria) | KSI = 98.90% | [54] |
Lolium multiflorum and Calluna vulgaris | Cattle (499 ± 36 kg BW) | LCOH, ALK and LCFA | Indoor (cafeteria) | KSI = 92.00% | [54] |
Medicago sativa and Lolium rigidum | Sheep (64.6 ± 2.48) | NIRS | Indoor (mixed diet) | R2cv = 0.98 | [62] |
Poaceae, Trifolium and Cynodon dactylon | Sheep (52.5 ± 7.5) | NIRS | Indoor (mixed diet) | R2 = 0.83 | [63] |
Lolium perenne and Ulex gallii | Goats |
Component | Regression Slope 1 | Different from y = x? |
---|---|---|
Nitrogen | 0.997 ± 0.011 | NS |
Ash | 0.985 ± 0.074 | NS |
Herbage n-alkanes | ||
C27 | 0.990 ± 0.012 | NS |
C29 | 1.004 ± 0.010 | NS |
C31 | 1.003 ± 0.005 | NS |
C33 | 0.939 ± 0.041 | NS |
Dosed n-alkanes | ||
C28 | 0.968 ± 0.024 | NS |
C32 | 0.975 ± 0.022 | NS |
Chromium | 0.904 ± 0.023 | p < 0.01 |
Chromium 2 | 0.879 ± 0.019 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepeta, B.N.; Moyo, M.; Adejoro, F.A.; Hassen, A.; Nsahlai, I.V. Techniques Used to Determine Botanical Composition, Intake, and Digestibility of Forages by Ruminants. Agronomy 2022, 12, 2456. https://doi.org/10.3390/agronomy12102456
Pepeta BN, Moyo M, Adejoro FA, Hassen A, Nsahlai IV. Techniques Used to Determine Botanical Composition, Intake, and Digestibility of Forages by Ruminants. Agronomy. 2022; 12(10):2456. https://doi.org/10.3390/agronomy12102456
Chicago/Turabian StylePepeta, Bulelani Nangamso, Mehluli Moyo, Festus Adeyemi Adejoro, Abubeker Hassen, and Ignatius Verla Nsahlai. 2022. "Techniques Used to Determine Botanical Composition, Intake, and Digestibility of Forages by Ruminants" Agronomy 12, no. 10: 2456. https://doi.org/10.3390/agronomy12102456
APA StylePepeta, B. N., Moyo, M., Adejoro, F. A., Hassen, A., & Nsahlai, I. V. (2022). Techniques Used to Determine Botanical Composition, Intake, and Digestibility of Forages by Ruminants. Agronomy, 12(10), 2456. https://doi.org/10.3390/agronomy12102456