Global Root Traits Research during 2000–2021: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results and Discussion
3.1. Quantity of Articles and Citations
3.2. Analysis of Publication Journals
3.3. Anaysis of Authors, Institutions and Countries
3.4. Analysis of Keywords
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bardgett, R.D.; Mommer, L.; de Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C.; Comas, L.H.; Weemstra, M.; Bengough, A.G.; Rewald, B.; Bardgett, R.D.; de Deyn, G.B.; Johnson, D.; Klimešová, J.; et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 2021, 232, 1123–1158. [Google Scholar] [CrossRef] [PubMed]
- Ristova, D.; Busch, W. Natural Variation of Root Traits: From Development to Nutrient Uptake. Plant Physiol. 2014, 166, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Lambers, H.; Raven, J.A.; Shaver, G.R.; Smith, S.E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef]
- Comas, L.H.; Becker, S.R.; Cruz, V.M.V.; Byrne, P.F.; Dierig, D.A. Root traits contributing to plant productivity under drought. Front. Plant Sci. 2013, 4, 442. [Google Scholar] [CrossRef] [Green Version]
- Poirier, V.; Roumet, C.; Munson, A.D. The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biol. Biochem. 2018, 120, 246–259. [Google Scholar] [CrossRef]
- Freschet, G.T.; Pagès, L.; Iversen, C.M.; Comas, L.H.; Rewald, B.; Roumet, C.; Klimešová, J.; Zadworny, M.; Poorter, H.; Postma, J.A.; et al. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol. 2021, 232, 973–1122. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; de Forest, J.L.; Burton, A.J.; Allen, M.F.; Ruess, R.W.; Hendrick, R.L. Fine root architecture of nine North American trees. Ecol. Monogr. 2002, 72, 293–309. [Google Scholar] [CrossRef]
- Wells, C.E.; Eissenstat, D.M. Beyond the roots of young seedlings: The influence of age and order on fine root physiology. J. Plant Growth Regul. 2002, 21, 324–334. [Google Scholar] [CrossRef]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmisaari, H.S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef]
- Semchenko, M.; Lepik, A.; Abakumova, M.; Zobel, K. Different sets of below-ground traits predict the ability of plant species to suppress and tolerate their competitors. Plant Soil 2018, 424, 157–169. [Google Scholar] [CrossRef]
- Eissenstat, D.M. On the relationship between specific root length and the rate of root proliferation: A field study using citrus rootstocks. New Phytol. 1991, 118, 63–68. [Google Scholar] [CrossRef]
- Robinson, D.; Linehan, D.J.; Caul, S. What limits nitrate uptake from soil. Plant Cell Environ. 1991, 14, 77–85. [Google Scholar] [CrossRef]
- Robinson, D.; Hodge, A.; Griffiths, B.S.; Fitter, A.H. Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proc. R. Soc. B: Biol. Sci. 1999, 266, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Wasson, A.P.; Richards, R.A.; Chatrath, R.; Misra, S.C.; Prasad, S.V.; Rebetzke, G.J.; Kirkegaard, J.A.; Christopher, J.; Watt, M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 2012, 63, 3485–3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, E.I.; Vilagrosa, A.; Pausas, J.G.; Bellot, J. Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol. 2010, 207, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Henry, A.; Cal, A.J.; Batoto, T.C.; Torres, R.O.; Serraj, R. Root attributes affecting water uptake of rice (Oryza sativa) under drought. J. Exp. Bot. 2012, 63, 4751–4763. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.; LaForgia, M. Seedling traits predict drought-induced mortality linked to diversity loss. Proc. Natl. Acad. Sci. USA 2019, 116, 5576–5581. [Google Scholar] [CrossRef] [Green Version]
- Horton, J.L.; Clark, J.L. Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. For. Ecol. Manag. 2001, 140, 239–247. [Google Scholar] [CrossRef]
- Stella, J.C.; Battles, J.J. How do riparian woody seedlings survive seasonal drought? Oecologia 2010, 164, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramos, I.M.; Roumet, C.; Cruz, P.; Blanchard, A.; Autran, P.; Garnier, E. Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J. Ecol. 2012, 100, 1315–1327. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; He, Y.X.; Siri, M.J.; Wang, B.J.; Liu, K.S. Research progress on the effects of root niche differences on ecosystems. Pratacultural Sci. 2021, 38, 501–513. (In Chinese) [Google Scholar]
- Larson, J.E.; Sheley, R.L.; Hardegree, S.P.; Doescher, P.S.; James, J.J. Seed and seedling traits affecting critical life stage transitions and recruitment outcomes in dryland grasses. J. Appl. Ecol. 2014, 52, 199–209. [Google Scholar] [CrossRef]
- Zirbel, C.R.; Brudvig, L.A. Trait-environment interactions affect plant establishment success during restoration. Ecology 2020, 101, e02971. [Google Scholar] [CrossRef] [Green Version]
- Fort, F.; Cruz, P.; Jouany, C. Hierarchy of root functional trait values and plasticity drive early–Stage competition for water and phosphorus among grasses. Funct. Ecol. 2014, 28, 1030–1040. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R–tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Eck, N.J.V.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar]
- Abejón, R. A bibliometric study of scientific publications regarding hemicellulose valorization during the 2000–2016 period: Identification of alternatives and hot topics. Chem Eng. 2018, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Zhao, Y.D.; Wang, B. A bibliometric analysis of climate change adaptation based on massive research literature data. J. Clean. Prod. 2018, 199, 1072–1082. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Molinari, J.F.; Molinari, A. A new methodology for ranking scientific institutions. Scientometrics 2008, 75, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Mommer, L.; Kirkegaard, J.; Ruijven, J. Root-root interactions: Towards a rhizosphere framework. Trends Plant Sci. 2016, 21, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sun, J.H.; Zhang, F.S.; Guo, T.W.; Bao, X.G.; Smith, F.A.; Smith, S.E. Root distribution and interactions between intercropped species. Oecologia 2006, 147, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; Bauer, S.; Bartelheimer, M. Should I stay or should I go? Roots segregate in response to competition intensity. Plant Soil 2015, 391, 283–291. [Google Scholar] [CrossRef]
- Semchenko, M.; John, E.A.; Hutchings, M.J. Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytol. 2007, 176, 644–654. [Google Scholar] [CrossRef]
- Semchenko, M.; Saar, S.; Lepik, A. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytol. 2014, 204, 631–637. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. Fems Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kardol, P.; Cornips, N.J.; Kempen, M.M.L.; Bakx-Schotman, J.M.T.; Putten, W.H. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecol. Monogr. 2007, 77, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Heijden, M.G.A.; Bardgett, R.D.; Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Cahill, J.F.J.; Mcnickle, G.G. The behavioral ecology of nutrient foraging by plants. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 289–311. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 2004, 162, 9–24. [Google Scholar] [CrossRef]
- Ravenek, J.M.; Bessler, H.; Engels, C.; Scherer-Lorenzen, M.; Gessler, A.; Gockele, A.; Mommer, L. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 2014, 123, 1528–1536. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, Y.; Sheng, J.; Yuan, Y.J.; Zhang, W.H.; Bai, W.M. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytol. 2022, 234, 422–434. [Google Scholar] [CrossRef]
- Kroon, H.; Hendriks, M.; Ruijven, J.; Ravenek, J.; Padilla, F.M.; Jongejans, E.; Visser, E.J.W.; Mommer, L. Root responses to nutrients and soil biota: Drivers of species coexistence and eco-system productivity. J. Ecol. 2012, 100, 6–15. [Google Scholar] [CrossRef]
- Mommer, L.; Ruijven, J.; Caluwe, H. Unveiling below-ground species abundance in a biodiversity experiment: A test of vertical niche differentiation among grassland species. J. Ecol. 2010, 98, 1117–1127. [Google Scholar] [CrossRef]
- Fransen, B.; Blijjenberg, J.; Kroon, H. Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches. Plant Soil 1999, 211, 179–189. [Google Scholar] [CrossRef]
- Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72–76. [Google Scholar] [CrossRef]
Ranking | Source Journal | Number of Articles | 2020 Impact Factor | % of 16,233 | Quartile in Category |
---|---|---|---|---|---|
1 | Plant and Soil | 529 | 4.192 | 3.26 | Q1 |
2 | Frontiers in Plant Science | 472 | 5.754 | 2.91 | Q1 |
3 | PLoS One | 383 | 3.24 | 2.36 | Q2 |
4 | New Phytologist | 272 | 10.152 | 1.68 | Q1 |
5 | Euphytica | 257 | 1.895 | 1.58 | Q2 |
6 | Theoretical and Applied Genetics | 236 | 5.699 | 1.45 | Q1 |
7 | Crop Science | 231 | 2.319 | 1.42 | Q2 |
8 | Journal of Experimental Botany | 217 | 6.992 | 1.34 | Q1 |
9 | Agronomy-Basel | 215 | 3.417 | 1.32 | Q1 |
10 | Science Reports | 200 | 4.38 | 1.23 | Q1 |
11 | Field Crops Research | 188 | 5.224 | 1.16 | Q1 |
12 | Journal of Ecology | 164 | 6.256 | 1.01 | Q1 |
13 | Annals of Botany | 161 | 4.357 | 0.99 | Q1 |
14 | Plants-Basel | 146 | 3.935 | 0.9 | Q1 |
15 | Plant Physiology | 145 | 8.34 | 0.89 | Q1 |
16 | Scientia Horticulturae | 145 | 3.463 | 0.89 | Q1 |
17 | Environmental and Experimental Botany | 129 | 5.545 | 0.79 | Q1 |
18 | BMC Plant Biology | 127 | 4.215 | 0.78 | Q1 |
19 | Functional Ecology | 123 | 5.608 | 0.76 | Q1 |
20 | Functional Plant Biology | 119 | 3.101 | 0.73 | Q2 |
Ranking | Author | Number of Articles | % of 16,233 | H Index | TC | TC/N |
---|---|---|---|---|---|---|
1 | Wang Yan | 172 | 1.06 | 28 | 3307 | 19.23 |
2 | Zhang Yajun | 162 | 0.998 | 26 | 2061 | 12.72 |
3 | Wang Xinxin | 155 | 0.955 | 23 | 1977 | 12.75 |
4 | Li Yan | 154 | 0.949 | 26 | 2706 | 17.57 |
5 | Zhang Xiao | 144 | 0.887 | 24 | 1959 | 13.6 |
6 | Li Xianglin | 141 | 0.869 | 25 | 2536 | 17.99 |
7 | Wang Jun | 136 | 0.838 | 27 | 2754 | 20.25 |
8 | Zhang Jing | 134 | 0.825 | 26 | 2372 | 17.7 |
9 | Li Jia | 132 | 0.813 | 24 | 2385 | 18.07 |
10 | Li Zizhao | 120 | 0.739 | 24 | 2569 | 21.41 |
11 | Wang Houmiao | 115 | 0.708 | 24 | 2206 | 19.18 |
12 | Liu Ying | 114 | 0.702 | 24 | 2317 | 20.32 |
13 | Zhang Hao | 114 | 0.702 | 26 | 2232 | 19.58 |
14 | Wang Zhi | 110 | 0.678 | 22 | 2073 | 18.85 |
15 | Liu Jia | 91 | 0.561 | 20 | 1602 | 17.6 |
16 | Zhang Zhi | 90 | 0.554 | 16 | 1023 | 11.37 |
17 | Chen Yinglong | 89 | 0.548 | 21 | 1445 | 16.24 |
18 | Li Hongbo | 88 | 0.542 | 27 | 2103 | 23.9 |
19 | Wang Li | 88 | 0.542 | 20 | 1268 | 14.41 |
20 | Kumar Arvind | 86 | 0.53 | 19 | 1553 | 18.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Siri, M.; Wang, B.; He, Y.; Liu, C.; Feng, C.; Liu, K. Global Root Traits Research during 2000–2021: A Bibliometric Analysis. Agronomy 2022, 12, 2471. https://doi.org/10.3390/agronomy12102471
Li H, Siri M, Wang B, He Y, Liu C, Feng C, Liu K. Global Root Traits Research during 2000–2021: A Bibliometric Analysis. Agronomy. 2022; 12(10):2471. https://doi.org/10.3390/agronomy12102471
Chicago/Turabian StyleLi, Hui, Muji Siri, Baojie Wang, Yixuan He, Cheng Liu, Changliang Feng, and Kesi Liu. 2022. "Global Root Traits Research during 2000–2021: A Bibliometric Analysis" Agronomy 12, no. 10: 2471. https://doi.org/10.3390/agronomy12102471
APA StyleLi, H., Siri, M., Wang, B., He, Y., Liu, C., Feng, C., & Liu, K. (2022). Global Root Traits Research during 2000–2021: A Bibliometric Analysis. Agronomy, 12(10), 2471. https://doi.org/10.3390/agronomy12102471