Effect of Sodium Chloride Salt on Germination, Growth, and Elemental Composition of Alfalfa Cultivars with Different Tolerances to Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design
2.2.1. Germination Study
2.2.2. Greenhouse Study
2.3. Statistical Analyses
3. Results
3.1. Germination Percentage and Germination Rate
3.2. Seedling Length and Seed Vigor
3.3. Plant Height
3.4. Chlorophyll Content
3.5. Plant Injury Score and Plant Survival
3.6. Crude Protein
3.7. Root and Shoot Biomass and Salt Tolerant Index
3.8. Correlation among the Measured Variables
3.9. Elemental Composition of Alfalfa
3.9.1. Leaf
3.9.2. Root
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, S.; Biswas, D.; Fu, Y.-B.; Biligetu, B. Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review. Agronomy 2020, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Steppuhn, H. What is soil salinity? In Proceedings of the Soil Salinity Assessment Workshop, Alberta Agriculture, Lethbridge, AB, Canada, 30 March 1996; pp. 1–5. [Google Scholar]
- Wiebe, B.H.; Eilers, R.G.; Eilers, W.D.; Brierley, J.A. Application of a risk indicator for assessing trends in dryland salinization risk on the Canadian Prairies. Can. J. Soil Sci. 2007, 87, 213–224. [Google Scholar] [CrossRef]
- Steppuhn, H.; Acharya, S.N.; Iwaasa, A.D.; Gruber, M.; Miller, D.R. Inherent responses to root-zone salinity in nine alfalfa populations. Can. J. Plant Sci. 2012, 92, 235–248. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Diaz, F.J.; Grattan, S.R.; Reyes, J.A.; de la Roza-Delgado, B.; Benes, S.E.; Jimenez, C.; Dorta, M.; Tejedor, M. Using saline soil and marginal quality water to produce alfalfa in arid climates. Agric. Water Manag. 2018, 199, 11–21. [Google Scholar] [CrossRef]
- Goplen, B.P.; Baenziger, H.; Bailey, L.D.; Gross, A.T.H.; Hanna, M.R.; Michaud, R.; Richards, K.W.; Waddington, J. Agriculture Canada: Growing and Managing Alfalfa in Canada; Agriculture Canada: Burnaby, BC, USA, 1982; p. 1705. [Google Scholar]
- Yuegao, H.; Cash, D. Global status and development trends of alfalfa. In Alfalfa Management. Guide for Ningxia; Cash, D., Ed.; United Nations Food and Agriculture Organization: Beijing, China, 2009; pp. 1–14. [Google Scholar]
- Peel, M.D.; Waldron, B.L.; Jensen, K.B.; Chatterton, N.J.; Horton, H.; Dudley, L.M. Screening for salinity tolerance in alfalfa. Crop Sci. 2004, 44, 2049–2053. [Google Scholar] [CrossRef]
- Al-Niemi, T.S.; Campbell, W.F.; Rumbaugh, M.D. Response of alfalfa cultivars to salinity during germination and post-germination growth. Crop Sci. 1992, 32, 976–980. [Google Scholar] [CrossRef]
- Johnson, D.W.; Smith, S.E.; Dobrenz, A.K. Selection for increased forage yield in alfalfa at different NaCl levels. Euphytica 1992, 60, 27–35. [Google Scholar] [CrossRef]
- Kapulnik, Y.; Teuber, L.R.; Phillips, D.A. Lucerne (Medicago sativa L.) selected for vigor in a nonsaline environment maintained growth under salt stress. Crop Pasture Sci. 1989, 40, 1253–1259. [Google Scholar] [CrossRef]
- McKimmie, T.; Dobrenz, A.K. Ionic concentrations and water relations of alfalfa seedlings differing in salt tolerance. Agron. J. 1991, 83, 363–367. [Google Scholar] [CrossRef]
- Bhattarai, S.; Liu, N.; Karunakaran, C.; Tanino, K.K.; Fu, Y.-B.; Coulman, B.; Warkentin, T.; Biligetu, B. Tissue specific changes in elements and organic compounds of alfalfa (Medicago sativa L.) cultivars differing in salt tolerance under salt stress. J. Plant Physiol. 2021, 264, 153485. [Google Scholar] [CrossRef]
- Khorshidi, M.B.; Yarnia, M.; Hassanpanah, D. Salinity effect on nutrients accumulation in alfalfa shoots in hydroponic condition. J. Food Agric. Environ. 2009, 7, 787–790. [Google Scholar]
- Li, R.; Shi, F.; Fukuda, K.; Yang, Y. Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.). Soil Sci. Plant Nutr. 2010, 56, 725–733. [Google Scholar] [CrossRef]
- Cornacchione, M.V.; Suarez, D.L. Emergence, forage production, and ion relations of alfalfa in response to saline waters. Crop Sci. 2015, 55, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Ashrafi, E.; Razmjoo, J.M.; Zahedi, M. Effect of salt stress on growth and ion accumulation of alfalfa (Medicago sativa L.) cultivars. J. Plant Nutr. 2018, 41, 818–831. [Google Scholar] [CrossRef]
- Anower, R.M.; Mott, I.W.; Peel, M.D.; Wu, Y. Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiol. Biochem. 2013, 71, 103–111. [Google Scholar] [CrossRef]
- Acharya, S.N.; Steppuhn, H. Bridgeview alfalfa. Can. J. Plant Sci. 2012, 92, 203–206. [Google Scholar] [CrossRef]
- Graber, L.F. Registration of vernal alfalfa. Agronomy J. 1956, 48, 587. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Alam, I.; Kim, Y.G.; Ahn, N.Y.; Heo, S.H.; Lee, D.G.; Liu, G.; Lee, B.H. Screening for salt responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach. Plant Physiol. Biochem. 2015, 89, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, D.H.; Lawrence, T.; McElgunn, J.D. Rangelander alfalfa. Research Note. Can. J. Plant Sci. 1979, 59, 491–492. [Google Scholar] [CrossRef]
- Gruber, M.; Xia, J.; Yu, M.; Steppuhn, H.; Wall, K.; Messer, D.; Sharpe, A.; Acharya, S.; Wishart, D.; Johnson, D.; et al. Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population. Genome 2017, 60, 104–127. [Google Scholar] [CrossRef] [PubMed]
- Maguire, J.D. Speed of germination in selection and evaluation for seedling vigour. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiplication. Crop Sci. 1973, 3, 630–633. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetable and Other Food Crops in Temperature and Water Stress, Taiwan, 13–18 August 1992; Kuo, C.G., Ed.; AVRDC Publication: Tainan, Taiwan, 1992; pp. 257–270. [Google Scholar]
- Bertrand, A.; Dhont, C.; Bipfubusa, M.; Chalifour, F.P.; Drouin, P.; Beauchamp, C.J. Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl. Soil Ecol. 2015, 87, 108–117. [Google Scholar] [CrossRef]
- Santos, C.V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 2004, 103, 93–99. [Google Scholar] [CrossRef]
- Lauchli, A.; Grattan, S.R. Plant growth and development under salinity stress. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Jenks, M.A., Hasegawa, P.M., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–32. [Google Scholar]
- Serrano, R.; Mulet, J.M.; Rios, G.; Marquez, J.A.; Leube, M.P.; Mendizabal, I.; Pascual-Ahuir, A.; Proft, M.; Ros, R.; Montesinos, C. A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 1999, 50, 1023–1036. [Google Scholar] [CrossRef]
- Wang, X.S.; Han, J.G. Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci. Plant Nutr. 2007, 53, 278–285. [Google Scholar] [CrossRef]
- Chen, Z.; Cuin, T.A.; Zhou, M.; Twomey, A.; Naidu, B.P.; Shabala, S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J. Exp. Bot. 2007, 58, 4245–4255. [Google Scholar] [CrossRef] [Green Version]
- Younesi, O.; Chaichi, M.R.; Postini, K. Salt tolerance in alfalfa following inoculation with Pseudomonas. Middle East J. Sci. Res. 2013, 16, 101–107. [Google Scholar]
- Grattan, S.R.; Grieve, C.M. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 1992, 38, 275–300. [Google Scholar] [CrossRef]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Nazar, R.; Iqbal, N.; Masood, A.; Syeed, S.; Khan, N.A. Understanding the significance of sulphur in improving salinity tolerance in plants. Environ. Exp. Bot. 2011, 70, 80–87. [Google Scholar] [CrossRef]
- Tozlu, I.; Moore, G.A.; Guy, C.L. Effect of increasing NaCl concentration on stem elongation, dry mass production, and macro- and micro-nutrient accumulation in Poncirus trifoliata. Aust. J. Plant Physiol. 2000, 27, 35–42. [Google Scholar]
- Cakmak, I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Ducic, T.; Polle, A. Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol. 2005, 17, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Culotta, V.C.; Yang, M.; O’Halloran, T.V. Activation of superoxide dismutases: Putting the metal to the pedal. Biochim. Biophys. Acta. 2006, 1763, 747–758. [Google Scholar] [CrossRef]
Salinity | Cultivar | Plant Injury | Survival | Crude Protein | Dry Shoot Yield | Dry Root Yield |
---|---|---|---|---|---|---|
(%) | (%) | (g Plant−1) | (g Plant−1) | |||
0 dS m−1 | Halo | 1.0l | 100a | 14.0bcd | 4.4ab | 2.5abcdef |
Rugged | 1.1kl | 100a | 13.8cd | 4.0ab | 2.0ab | |
Bridgeview | 1.1kl | 100a | 12.8d | 2.6abc | 1.8abc | |
Rangelander | 1.2jkl | 100a | 13.4cd | 1.8cdef | 1.0efghi | |
Vernal | 1.1jkl | 100a | 14.4abcd | 3.9a | 1.7abcde | |
4 dS m−1 | Halo | 1.7ijk | 100a | 14.6abcd | 2.0cdefg | 1.8abcd |
Rugged | 2.3efgh | 100a | 14.8abcd | 2.1cde | 2.3a | |
Bridgeview | 1.8hijk | 100a | 14.8abcd | 1.4efgh | 1.3bcdef | |
Rangelander | 2.1ghi | 100a | 13.6cd | 1.8defgh | 1.3bcdefg | |
Vernal | 1.8hij | 100a | 13.4cd | 2.2bcd | 2.4ab | |
8 dS m−1 | Halo | 2.1fghi | 97.9a | 18.1abcd | 1.3efgh | 1.0defgh |
Rugged | 2.6bcdefg | 93.8a | 18.7abc | 1.5cdefg | 1.0cdefgh | |
Bridgeview | 2.7bcdefg | 95.8a | 17.1abcd | 1.4defgh | 1.0defgh | |
Rangelander | 2.9bcde | 87.5ab | 17.6abcd | 1.2efgh | 0.6hij | |
Vernal | 2.4defghi | 97.9a | 15.9abcd | 1.2fgh | 1.2defgh | |
12 dS m−1 | Halo | 2.7bcdefg | 60.4d | 21.7a | 1.4defgh | 0.9fghij |
Rugged | 3.3ab | 83.3abc | 18.7abc | 0.9h | 0.5j | |
Bridgeview | 3.1abcd | 68.8bcd | 19.6ab | 0.9h | 0.7ghij | |
Rangelander | 2.8bcdef | 66.7cd | 17.2abcd | 1.2h | 0.7ij | |
Vernal | 2.7cdefg | 87.5ab | 20.0a | 1.2gh | 0.8fghij | |
16 dS m−1 | Halo | 3.0bcde | 64.6cd | - | - | - |
Rugged | 3.6a | 56.3d | - | - | - | |
Bridgeview | 2.7bcdefg | 56.3d | - | - | - | |
Rangelander | 3.1abc | 52.1d | - | - | - | |
Vernal | 3.0bcde | 58.3d | - | - | - | |
Salinity | *** | *** | *** | *** | *** | |
Cultivar | * | ns | ns | * | * | |
Salinity: Cultivar | ns | ns | ns | ns | ns |
Cultivar | 4 dS m−1 | 8 dS m−1 | 12 dS m−1 |
---|---|---|---|
Halo | 0.80 | 0.50 | 0.57 |
Rugged | 0.76 | 0.53 | 0.31 |
Bridgeview | 0.33 | 0.33 | 0.20 |
Rangelander | 0.30 | 0.20 | 0.20 |
Vernal | 0.78 | 0.44 | 0.43 |
PH | CHL | PI | DSY | DRY | GR | SV | |
---|---|---|---|---|---|---|---|
PH | 0.59 | −0.29 | 0.80 | 0.51 | 0.28 | 0.21 | |
CHL | *** | −0.38 | 0.56 | 0.22 | 0.32 | 0.24 | |
PI | *** | *** | -0.29 | −0.29 | −0.34 | −0.16 | |
DSY | *** | *** | ** | 0.51 | 0.11 | 0.04 | |
DRY | *** | * | ** | *** | 0.22 | 0.13 | |
GR | *** | *** | *** | ns | * | 0.79 | |
SV | * | ** | * | ns | ns | *** |
Salinity | 0 dS m−1 | 4 dS m−1 | 8 dS m−1 | 12 dS m−1 | 16 dS m−1 | |||||||||||||||||||||||||
Cultivar | H | Ru | B | Ra | V | P value | H | Ru | B | Ra | V | P value | H | Ru | B | Ra | V | P value | H | Ru | B | Ra | V | P value | H | Ru | B | Ra | V | P value |
Sodium | 944 | 746 | 357 | 310 | 684 | <0.001 | 24,578 | 19,442 | 14,041 | 20,292 | 22,016 | 0.11 | 38,863 | 23,179 | 27,516 | 43,055 | 36,746 | 0.003 | 43,142 | 59,205 | 51,264 | 53,166 | 39,192 | 0.01 | 47,356 | 44,123 | 56,392 | 57,445 | 28,083 | <0.001 |
Chlorine | 625 | 795 | 737 | 790 | 640 | 0.54 | 9779 | 9656 | 7421 | 12398 | 10078 | 0.06 | 16,842 | 9471 | 17,140 | 23,244 | 22,476 | 0.02 | 22,072 | 21,695 | 25,237 | 28,643 | 22,911 | 0.54 | 24,662 | 26,250 | 25,810 | 35,728 | 21,092 | 0.003 |
Phosphorus | 2142 | 2390 | 2274 | 2422 | 2147 | 0.44 | 3847 | 3714 | 3749 | 3834 | 3427 | 0.18 | 5213 | 4382 | 3437 | 6970 | 5151 | <0.001 | 5866 | 7161 | 6928 | 8112 | 7557 | 0.61 | 5398 | 5922 | 5413 | 8062 | 6407 | <0.001 |
Potassium | 19,262 | 21,796 | 21,302 | 21,556 | 19,024 | 0.51 | 29,464 | 29,002 | 34,442 | 40,535 | 25,769 | 0.001 | 30,206 | 41,329 | 35,693 | 30,063 | 31,170 | <0.001 | 31,690 | 27,216 | 33,291 | 36,915 | 40,941 | 0.03 | 29,410 | 28,233 | 32,030 | 29,312 | 39,883 | <0.001 |
Calcium | 17,950 | 19,180 | 21,936 | 15,713 | 18,484 | 0.11 | 11,322 | 11,332 | 12,638 | 13,129 | 11,104 | 0.53 | 10,551 | 10,042 | 10,791 | 8630 | 9254 | 0.13 | 10,663 | 9252 | 10,333 | 10,091 | 9070 | 0.53 | 9700 | 6461 | 8293 | 7501 | 10,448 | <0.001 |
Magnesium | 3976 | 4677 | 4357 | 3612 | 4456 | 0.27 | 2788 | 2640 | 3035 | 3392 | 3009 | 0.23 | 2786 | 2364 | 2145 | 2494 | 2982 | 0.02 | 2854 | 3110 | 3086 | 2349 | 2681 | 0.06 | 2176 | 1734 | 2172 | 1945 | 2316 | 0.23 |
Sulphur | 4392 | 5660 | 4692 | 3135 | 4458 | 0.01 | 7091 | 6182 | 4949 | 4884 | 6033 | 0.03 | 7875 | 6564 | 5974 | 5846 | 8520 | 0.002 | 9049 | 8847 | 9343 | 7706 | 8135 | 0.01 | 9085 | 7352 | 10,499 | 7924 | 7245 | 0.01 |
Iron | 86.9 | 97.8 | 82.6 | 101.1 | 83.3 | 0.09 | 137.1 | 126.2 | 126.2 | 124.6 | 117.2 | 0.01 | 121.0 | 118.7 | 123.0 | 119.0 | 118.5 | 0.95 | 132.3 | 135.0 | 116.6 | 99.2 | 105.9 | 0.45 | 103.2 | 93.1 | 97.1 | 99.0 | 87.8 | 0.39 |
Copper | 6.47 | 7.85 | 7.74 | 7.21 | 6.95 | 0.17 | 10.8 | 11.0 | 10.7 | 12.7 | 10.6 | 0.95 | 14.2 | 14.7 | 10.9 | 11.4 | 11.50 | 0.001 | 14.8 | 16.8 | 19.2 | 15.5 | 16.2 | 0.01 | 16.2 | 12.7 | 15.5 | 15.2 | 17.1 | 0.01 |
Zinc | 28.5 | 31.9 | 33.5 | 27.7 | 28.6 | 0.56 | 51.4 | 45.4 | 47.2 | 48.1 | 51.0 | 0.59 | 61.3 | 58.2 | 46.6 | 57.4 | 69.8 | 0.10 | 94.8 | 89.8 | 114.4 | 98.8 | 107.8 | <0.001 | 59.7 | 57.3 | 59.4 | 57.8 | 59.5 | 0.95 |
Manganese | 27.0 | 30.8 | 38.1 | 28.2 | 34.0 | 0.05 | 45.6 | 55.6 | 61.7 | 59.2 | 71.0 | 0.16 | 92.0 | 84.8 | 78.6 | 78.1 | 77.2 | 0.01 | 179.1 | 183.4 | 244.4 | 167.7 | 145.1 | <0.001 | 78.5 | 84.7 | 100.2 | 73.7 | 116.2 | <0.001 |
Salinity | 0 dS m−1 | 4 dS m−1 | 8 dS m−1 | 12 dS m−1 | 16 dS m−1 | |||||||||||||||||||||||||
Cultivar | H | Ru | B | Ra | V | P value | H | Ru | B | Ra | V | P value | H | Ru | B | Ra | V | P value | H | Ru | B | Ra | V | P value | H | Ru | B | Ra | V | P value |
Sodium | 3466 | 3040 | 4940 | 5002 | 4662 | 0.005 | 21,921 | 19,358 | 21,258 | 23,528 | 22,315 | 0.01 | 24,570 | 17,248 | 16,349 | 24,185 | 19,005 | <0.001 | 29,964 | 29,521 | 33,877 | 40,405 | 38,947 | 0.29 | 35,143 | 33,436 | 34,100 | 29,783 | 30,766 | 0.12 |
Chlorine | 823 | 832 | 939 | 1021 | 929 | 0.64 | 11,491 | 7086 | 8922 | 12,398 | 11,636 | <0.001 | 14,343 | 11,749 | 10,604 | 12,514 | 10,034 | 0.004 | 17,245 | 16,616 | 18,761 | 28,900 | 21,222 | 0.60 | 22,183 | 22,143 | 19,726 | 19,110 | 19,220 | 0.42 |
Phosphorus | 3001 | 2779 | 3292 | 2963 | 2782 | 0.17 | 5490 | 4083 | 5050 | 4156 | 4365 | 0.001 | 5276 | 4185 | 3689 | 5900 | 4573 | 0.001 | 6476 | 7244 | 7385 | 9145 | 8408 | 0.44 | 6750 | 7274 | 7251 | 6680 | 8869 | 0.009 |
Potassium | 20,562 | 13,659 | 21,137 | 17,114 | 15,134 | 0.001 | 23,183 | 16,973 | 20,698 | 18,527 | 20,235 | 0.04 | 14,837 | 15,787 | 13,739 | 13,585 | 13,425 | 0.72 | 16,635 | 15,014 | 14,702 | 16,093 | 18,670 | 0.02 | 11,749 | 13,015 | 13,118 | 11,657 | 14,825 | 0.05 |
Calcium | 2249 | 2660 | 2194 | 2109 | 2800 | 0.29 | 3291 | 2601 | 2569 | 2566 | 3358 | 0.003 | 2956 | 2324 | 1829 | 2689 | 3049 | 0.06 | 3059 | 2723 | 2819 | 3488 | 3323 | 0.06 | 2012 | 2502 | 2128 | 2103 | 2966 | <0.001 |
Magnesium | 5142 | 2608 | 5202 | 4695 | 3320 | <0.001 | 5704 | 4830 | 4922 | 4896 | 5841 | 0.006 | 5401 | 5406 | 3549 | 4265 | 4083 | 0.01 | 5870 | 5092 | 4469 | 5795 | 5407 | 0.20 | 5052 | 4739 | 4460 | 4928 | 4999 | 0.26 |
Sulphur | 7882 | 4726 | 8994 | 7364 | 5791 | 0.009 | 6433 | 4252 | 5403 | 4424 | 5381 | 0.009 | 4970 | 4757 | 3843 | 3317 | 4320 | 0.01 | 4528 | 4073 | 4298 | 5168 | 6097 | 0.003 | 4363 | 5161 | 5597 | 4172 | 5542 | 0.004 |
Iron | 131.8 | 177.0 | 153.2 | 175.6 | 208.5 | 0.37 | 109.1 | 141.0 | 90.8 | 127.5 | 156.0 | 0.15 | 109.9 | 56.5 | 462.0 | 89.2 | 102.6 | <0.001 | 134.0 | 105.1 | 112.1 | 205.2 | 111.5 | <0.001 | 118.8 | 100.8 | 95.6 | 79.5 | 130.1 | 0.09 |
Copper | 13.6 | 14.0 | 13.3 | 13.0 | 13.1 | 0.98 | 26.1 | 17.9 | 20.7 | 18.1 | 19.5 | 0.006 | 25.1 | 18.6 | 18.8 | 25.1 | 15.5 | <0.001 | 124.2 | 102.4 | 90.9 | 181.2 | 152.8 | <0.001 | 22.4 | 25.1 | 22.6 | 21.1 | 31.0 | 0.007 |
Zinc | 15.8 | 20.0 | 15.8 | 17.3 | 22.3 | 0.13 | 64.6 | 28.8 | 30.6 | 30.8 | 52.7 | <0.001 | 65.2 | 48.6 | 51.5 | 59.2 | 34.6 | 0.02 | 268.3 | 239.5 | 190.1 | 545.9 | 380.5 | <0.001 | 69.5 | 106.4 | 73.9 | 44.6 | 100.2 | 0.02 |
Manganese | 18.5 | 17.7 | 19.8 | 25.3 | 16.2 | 0.01 | 52.5 | 30.9 | 48.5 | 33.5 | 34.3 | 0.004 | 122.3 | 84.3 | 66.9 | 113.1 | 55.7 | 0.003 | 590.3 | 436.5 | 392.3 | 978.0 | 697.6 | <0.001 | 140.4 | 167.0 | 134.1 | 116.4 | 219.8 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattarai, S.; Lundell, S.; Biligetu, B. Effect of Sodium Chloride Salt on Germination, Growth, and Elemental Composition of Alfalfa Cultivars with Different Tolerances to Salinity. Agronomy 2022, 12, 2516. https://doi.org/10.3390/agronomy12102516
Bhattarai S, Lundell S, Biligetu B. Effect of Sodium Chloride Salt on Germination, Growth, and Elemental Composition of Alfalfa Cultivars with Different Tolerances to Salinity. Agronomy. 2022; 12(10):2516. https://doi.org/10.3390/agronomy12102516
Chicago/Turabian StyleBhattarai, Surendra, Seth Lundell, and Bill Biligetu. 2022. "Effect of Sodium Chloride Salt on Germination, Growth, and Elemental Composition of Alfalfa Cultivars with Different Tolerances to Salinity" Agronomy 12, no. 10: 2516. https://doi.org/10.3390/agronomy12102516
APA StyleBhattarai, S., Lundell, S., & Biligetu, B. (2022). Effect of Sodium Chloride Salt on Germination, Growth, and Elemental Composition of Alfalfa Cultivars with Different Tolerances to Salinity. Agronomy, 12(10), 2516. https://doi.org/10.3390/agronomy12102516