A New Approach on Making European Agriculture More Efficient under Uncertainty Conditions
Abstract
:1. Introduction
- a financial support package for the producers most affected by the serious consequences of the war in Ukraine;
- more advances of direct payments, payments on animals, and payments for rural development measures, to farmers as of 16 October 2022;
- support for the pig meat market in view of the difficult situation of this sector;
- temporary derogation to allow the production of any crops for food and feed purposes on fallow land;
- temporary flexibilities to existing import requirements on animal feed;
- a new, self-standing Temporary Crisis Framework that also covers farmers, fertiliser producers and the fisheries sector;
- communication of data on private stocks for food and feed on a monthly basis [2].
- O1.
- Identifying vulnerability components of the context in which European farmers operate.
- O2.
- Assessing development opportunities and limiting vulnerabilities in the European agricultural sector.
- O3.
- Developing a scoreboard of viable agricultural development solutions in line with the needs expressed in the current unfavourable context.
Literature Review
2. Data and Methods
2.1. Indicators
- AINCOME—Economic accounts for agriculture—agricultural income [21]
- APRO—Crop production in EU standard humidity [22]
- AQUANTITIES—Unit value statistics for agricultural products: quantities (1000 t) [23]
- UAA—Utilised agricultural area (UAA) managed by low-, medium- and high-input farms [24]
- APRI—Selling prices of crop products (absolute prices)—annual price [25]
- APRIO—Price indices of agricultural products, output (2010 = 100)—annual data [26].
2.2. Linear Regression
3. Results and Discussions
3.1. Modelling Results
3.2. Weaknesses and Vulnerabilities
4. Conclusions
- The predictability of incomes in agriculture is affected by economic crises and unfavourable environmental conditions, and efforts are needed to improve inputs in agriculture by increasing investment with an impact on the sustainable development of agriculture (maximizing organic agriculture less dependent on the chemical and petrochemical industries) (the subject of hypothesis H1 of the research).
- The sustainability and predictability of agricultural production is less vulnerable than that of income in terms of economic predictability and multi-year dynamics, but it is still influenced by adverse environmental and pedo-climatic conditions (the subject of hypothesis H2 of the research).
- Agricultural land use is a sensitive component of the development of the agricultural sector, the dynamics of which are influenced by agricultural policies and by the conjunctural interest of organisations (the subject of hypothesis H3 of the research).
- At EU level, there is a trend towards a reduction in the predictability of sales and output prices, which is strongly influenced by economic conditions and elements of uncertainty (the subject of hypothesis H4 of the research).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Pearson Correlation | AINCOME 2011 | AINCOME 2012 | AINCOME 2013 | AINCOME 2014 | AINCOME 2015 | AINCOME 2016 | AINCOME 2017 | AINCOME 2018 | AINCOME 2019 | AINCOME 2020 | AINCOME 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|
AINCOME 2011 | 0.831 | 0.790 | 0.746 | 0.403 | 0.337 | 0.453 | 0.260 | 0.350 | 0.298 | 0.233 | |
AINCOME 2012 | 0.831 | 0.734 | 0.678 | 0.399 | 0.299 | 0.526 | 0.277 | 0.478 | 0.487 | 0.401 | |
AINCOME 2013 | 0.790 | 0.734 | 0.884 | 0.700 | 0.686 | 0.773 | 0.615 | 0.748 | 0.724 | 0.693 | |
AINCOME 2014 | 0.746 | 0.678 | 0.884 | 0.783 | 0.767 | 0.825 | 0.739 | 0.814 | 0.735 | 0.757 | |
AINCOME 2015 | 0.403 | 0.399 | 0.700 | 0.783 | 0.884 | 0.821 | 0.841 | 0.827 | 0.870 | 0.869 | |
AINCOME 2016 | 0.337 | 0.299 | 0.686 | 0.767 | 0.884 | 0.907 | 0.935 | 0.891 | 0.864 | 0.879 | |
AINCOME 2017 | 0.453 | 0.526 | 0.773 | 0.825 | 0.821 | 0.907 | 0.887 | 0.924 | 0.903 | 0.897 | |
AINCOME 2018 | 0.260 | 0.277 | 0.615 | 0.739 | 0.841 | 0.935 | 0.887 | 0.912 | 0.856 | 0.868 | |
AINCOME 2019 | 0.350 | 0.478 | 0.748 | 0.814 | 0.827 | 0.891 | 0.924 | 0.912 | 0.934 | 0.938 | |
AINCOME 2020 | 0.298 | 0.487 | 0.724 | 0.735 | 0.870 | 0.864 | 0.903 | 0.856 | 0.934 | 0.943 | |
AINCOME 2021 | 0.233 | 0.401 | 0.693 | 0.757 | 0.869 | 0.879 | 0.897 | 0.868 | 0.938 | 0.943 |
Pearson Correlation | APRI 2011 | APRI 2012 | APRI 2013 | APRI 2014 | APRI 2015 | APRI 2016 | APRI 2017 | APRI 2018 | APRI 2019 | APRI 2020 | APRI 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|
APRI 2011 | 0.493 | −0.293 | 0.200 | 0.219 | 0.337 | 0.006 | 0.027 | 0.058 | 0.221 | 0.324 | |
APRI 2012 | 0.493 | −0.832 | 0.353 | 0.186 | −0.060 | 0.405 | 0.311 | −0.418 | 0.502 | 0.088 | |
APRI 2013 | −0.293 | −0.832 | −0.741 | −0.252 | 0.242 | −0.396 | −0.052 | 0.236 | −0.265 | 0.086 | |
APRI 2014 | 0.200 | 0.353 | −0.741 | 0.004 | −0.362 | 0.319 | −0.330 | 0.163 | −0.075 | −0.008 | |
APRI 2015 | 0.219 | 0.186 | −0.252 | 0.004 | 0.070 | −0.034 | −0.194 | 0.031 | −0.081 | −0.118 | |
APRI 2016 | 0.337 | −0.060 | 0.242 | −0.362 | 0.070 | −0.657 | 0.057 | −0.139 | 0.424 | −0.004 | |
APRI 2017 | 0.006 | 0.405 | −0.396 | 0.319 | −0.034 | −0.657 | −0.145 | 0.090 | −0.256 | −0.012 | |
APRI 2018 | 0.027 | 0.311 | −0.052 | −0.330 | −0.194 | 0.057 | −0.145 | −0.791 | 0.214 | 0.225 | |
APRI 2019 | 0.058 | −0.418 | 0.236 | 0.163 | 0.031 | −0.139 | 0.090 | −0.791 | −0.444 | −0.374 | |
APRI 2020 | 0.221 | 0.502 | −0.265 | −0.075 | −0.081 | 0.424 | −0.256 | 0.214 | −0.444 | −0.030 | |
APRI 2021 | 0.324 | 0.088 | 0.086 | −0.008 | −0.118 | −0.004 | −0.012 | 0.225 | −0.374 | −0.030 |
Pearson Correlation | APRIO 2011 | APRIO 2012 | APRIO 2013 | APRIO 2014 | APRIO 2015 | APRIO 2016 | APRIO 2017 | APRIO 2018 | APRIO 2019 | APRIO 2020 | APRIO 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|
APRIO 2011 | 0.678 | 0.902 | 0.765 | 0.843 | 0.836 | 0.873 | 0.842 | 0.814 | 0.779 | 0.736 | |
APRIO 2012 | 0.678 | 0.740 | 0.856 | 0.899 | 0.918 | 0.742 | 0.889 | 0.879 | 0.862 | 0.839 | |
APRIO 2013 | 0.902 | 0.740 | 0.791 | 0.835 | 0.900 | 0.820 | 0.899 | 0.888 | 0.870 | 0.844 | |
APRIO 2014 | 0.765 | 0.856 | 0.791 | 0.945 | 0.909 | 0.861 | 0.947 | 0.938 | 0.921 | 0.897 | |
APRIO 2015 | 0.843 | 0.899 | 0.835 | 0.945 | 0.937 | 0.939 | 0.960 | 0.939 | 0.910 | 0.873 | |
APRIO 2016 | 0.836 | 0.918 | 0.900 | 0.909 | 0.937 | 0.836 | 0.969 | 0.960 | 0.943 | 0.919 | |
APRIO 2017 | 0.873 | 0.742 | 0.820 | 0.861 | 0.939 | 0.836 | 0.891 | 0.859 | 0.820 | 0.773 | |
APRIO 2018 | 0.842 | 0.889 | 0.899 | 0.947 | 0.960 | 0.969 | 0.891 | 0.997 | 0.987 | 0.968 | |
APRIO 2019 | 0.814 | 0.879 | 0.888 | 0.938 | 0.939 | 0.960 | 0.859 | 0.997 | 0.996 | 0.985 | |
APRIO 2020 | 0.779 | 0.862 | 0.870 | 0.921 | 0.910 | 0.943 | 0.820 | 0.987 | 0.996 | 0.996 | |
APRIO 2021 | 0.736 | 0.839 | 0.844 | 0.897 | 0.873 | 0.919 | 0.773 | 0.968 | 0.985 | 0.996 |
Pearson Correlation | APRO 2011 | APRO 2012 | APRO 2013 | APRO 2014 | APRO 2015 | APRO 2016 | APRO 2017 | APRO 2018 | APRO 2019 | APRO 2020 | APRO 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|
APRO2011 | 1.000 | 0.978 | 0.963 | 0.942 | 0.957 | 0.966 | 0.971 | 0.987 | 0.917 | 0.971 | |
APRO2012 | 1.000 | 0.979 | 0.962 | 0.942 | 0.957 | 0.967 | 0.971 | 0.987 | 0.917 | 0.971 | |
APRO2013 | 0.978 | 0.979 | 0.890 | 0.944 | 0.915 | 0.934 | 0.973 | 0.971 | 0.946 | 0.930 | |
APRO2014 | 0.963 | 0.962 | 0.890 | 0.855 | 0.959 | 0.944 | 0.905 | 0.949 | 0.811 | 0.968 | |
APRO2015 | 0.942 | 0.942 | 0.944 | 0.855 | 0.821 | 0.884 | 0.965 | 0.917 | 0.964 | 0.854 | |
APRO2016 | 0.957 | 0.957 | 0.915 | 0.959 | 0.821 | 0.935 | 0.881 | 0.951 | 0.797 | 0.974 | |
APRO2017 | 0.966 | 0.967 | 0.934 | 0.944 | 0.884 | 0.935 | 0.902 | 0.950 | 0.834 | 0.970 | |
APRO2018 | 0.971 | 0.971 | 0.973 | 0.905 | 0.965 | 0.881 | 0.902 | 0.953 | 0.958 | 0.900 | |
APRO2019 | 0.987 | 0.987 | 0.971 | 0.949 | 0.917 | 0.951 | 0.950 | 0.953 | 0.881 | 0.974 | |
APRO2020 | 0.917 | 0.917 | 0.946 | 0.811 | 0.964 | 0.797 | 0.834 | 0.958 | 0.881 | 0.805 | |
APRO2021 | 0.971 | 0.971 | 0.930 | 0.968 | 0.854 | 0.974 | 0.970 | 0.900 | 0.974 | 0.805 |
Pearson Correlation | AQUANTITIES 2011 | AQUANTITIES 2012 | AQUANTITIES 2013 | AQUANTITIES 2014 | AQUANTITIES 2015 | AQUANTITIES 2016 | AQUANTITIES 2017 | AQUANTITIES 2018 | AQUANTITIES 2019 | AQUANTITIES 2020 | AQUANTITIES 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|
AQUANTITIES 2011 | 0.546 | 0.708 | 0.840 | 0.680 | 0.764 | 0.553 | 0.612 | 0.738 | 0.896 | 0.896 | |
AQUANTITIES 2012 | 0.546 | 0.332 | 0.591 | 0.919 | 0.212 | 0.769 | 0.199 | 0.775 | 0.719 | 0.717 | |
AQUANTITIES 2013 | 0.708 | 0.332 | 0.483 | 0.515 | 0.749 | 0.433 | 0.778 | 0.477 | 0.793 | 0.794 | |
AQUANTITIES 2014 | 0.840 | 0.591 | 0.483 | 0.695 | 0.654 | 0.612 | 0.504 | 0.706 | 0.855 | 0.856 | |
AQUANTITIES 2015 | 0.680 | 0.919 | 0.515 | 0.695 | 0.369 | 0.789 | 0.367 | 0.853 | 0.847 | 0.846 | |
AQUANTITIES 2016 | 0.764 | 0.212 | 0.749 | 0.654 | 0.369 | 0.126 | 0.809 | 0.395 | 0.737 | 0.737 | |
AQUANTITIES 2017 | 0.553 | 0.769 | 0.433 | 0.612 | 0.789 | 0.126 | 0.188 | 0.715 | 0.728 | 0.727 | |
AQUANTITIES 2018 | 0.612 | 0.199 | 0.778 | 0.504 | 0.367 | 0.809 | 0.188 | 0.131 | 0.679 | 0.680 | |
AQUANTITIES 2019 | 0.738 | 0.775 | 0.477 | 0.706 | 0.853 | 0.395 | 0.715 | 0.131 | 0.789 | 0.788 | |
AQUANTITIES 2020 | 0.896 | 0.719 | 0.793 | 0.855 | 0.847 | 0.737 | 0.728 | 0.679 | 0.789 | 1.000 | |
AQUANTITIES 2021 | 0.896 | 0.717 | 0.794 | 0.856 | 0.846 | 0.737 | 0.727 | 0.680 | 0.788 | 1.000 |
Pearson Correlation | UAA 2011 | UAA 2012 | UAA 2013 | UAA 2014 | UAA 2015 | UAA 2016 | UAA 2017 | UAA 2018 | UAA 2019 | UAA 2020 | UAA 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|
UAA 2011 | 0.189 | 0.210 | 0.017 | −0.134 | 0.121 | −0.009 | −0.228 | 0.127 | 0.338 | 0.296 | |
UAA 2012 | 0.189 | −0.021 | 0.191 | 0.059 | −0.002 | −0.011 | −0.311 | 0.241 | 0.407 | 0.316 | |
UAA 2013 | 0.210 | −0.021 | 0.239 | 0.028 | 0.426 | −0.035 | 0.260 | −0.121 | 0.495 | 0.611 | |
UAA 2014 | 0.017 | 0.191 | 0.239 | 0.039 | −0.109 | −0.008 | 0.202 | −0.290 | 0.436 | 0.336 | |
UAA 2015 | −0.134 | 0.059 | 0.028 | 0.039 | −0.224 | 0.266 | 0.065 | −0.447 | 0.390 | 0.353 | |
UAA 2016 | 0.121 | −0.002 | 0.426 | −0.109 | −0.224 | −0.748 | −0.320 | 0.014 | 0.427 | 0.498 | |
UAA 2017 | −0.009 | −0.011 | −0.035 | −0.008 | 0.266 | −0.748 | 0.427 | −0.002 | −0.269 | −0.194 | |
UAA 2018 | −0.228 | −0.311 | 0.260 | 0.202 | 0.065 | −0.320 | 0.427 | −0.344 | −0.279 | 0 | |
UAA 2019 | 0.127 | 0.241 | −0.121 | −0.290 | −0.447 | 0.014 | −0.002 | −0.344 | −0.413 | −0.254 | |
UAA 2020 | 0.338 | 0.407 | 0.495 | 0.436 | 0.390 | 0.427 | −0.269 | −0.279 | −0.413 | 0.924 | |
UAA 2021 | 0.296 | 0.316 | 0.611 | 0.336 | 0.353 | 0.498 | −0.194 | −0.159 | −0.254 | 0.924 |
References
- European Commission Commission Acts for Global Food Security and for Supporting EU Farmers and Consumers. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1963 (accessed on 31 August 2022).
- European Commission Ensuring Global Food Supply and Food Security. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/agri-food-supply-chain/contingency-plan_en#efscm (accessed on 31 August 2022).
- European Commission Impact of Russia’s Invasion of Ukraine on Selected Agricultural Sectors. Available online: https://agridata.ec.europa.eu/extensions/Ukraine/Ukraine.html#EU_stocks_header (accessed on 31 August 2022).
- Kissinger, G.; Gupta, A.; Mulder, I.; Unterstell, N. Climate Financing Needs in the Land Sector under the Paris Agreement: An Assessment of Developing Country Perspectives. Land Use Policy 2019, 83, 256–269. [Google Scholar] [CrossRef]
- Noack, F.; Larsen, A. The Contrasting Effects of Farm Size on Farm Incomes and Food Production. Environ. Res. Lett. 2019, 14, 84024. [Google Scholar] [CrossRef]
- Martin, W. Economic Growth, Convergence, and Agricultural Economics. Agric. Econ. 2019, 50, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Kiryluk-Dryjska, E.; Baer-Nawrocka, A. Reforms of the Common Agricultural Policy of the EU: Expected Results and Their Social Acceptance. J. Policy Model. 2019, 41, 607–622. [Google Scholar] [CrossRef]
- Biagini, L.; Antonioli, F.; Severini, S. The Role of the Common Agricultural Policy in Enhancing Farm Income: A Dynamic Panel Analysis Accounting for Farm Size in Italy. J. Agric. Econ. 2020, 71, 652–675. [Google Scholar] [CrossRef]
- Sándor, Z.; Zoltan, Z. Output Value and Productivity of Agricultural Industry in Central-East Europe. Agric. Econ. (Zemědělská Ekon.) 2019, 65, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Sroka, W.; Dudek, M.; Wojewodzic, T.; Król, K. Generational Changes in Agriculture: The Influence of Farm Characteristics and Socio-Economic Factors. Agriculture 2019, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Severini, S.; Di Tommaso, G.; Finger, R. Effects of the Income Stabilization Tool on Farm Income Level, Variability and Concentration in Italian Agriculture. Agric. Food Econ. 2019, 7, 23. [Google Scholar] [CrossRef]
- Loizou, E.; Karelakis, C.; Galanopoulos, K.; Mattas, K. The Role of Agriculture as a Development Tool for a Regional Economy. Agric. Syst. 2019, 173, 482–490. [Google Scholar] [CrossRef]
- Kiryluk-Dryjska, E.; Beba, P.; Poczta, W. Local Determinants of the Common Agricultural Policy Rural Development Funds’ Distribution in Poland and Their Spatial Implications. J. Rural Stud. 2020, 74, 201–209. [Google Scholar] [CrossRef]
- Streimikis, J.; Baležentis, T. Agricultural Sustainability Assessment Framework Integrating Sustainable Development Goals and Interlinked Priorities of Environmental, Climate and Agriculture Policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Burja, V.; Tamas-Szora, A.; Dobra, I.B. Land Concentration, Land Grabbing and Sustainable Development of Agriculture in Romania. Sustainability 2020, 12, 2137. [Google Scholar] [CrossRef] [Green Version]
- Streimikis, J.; Miao, Z.; Balezentis, T. Creation of Climate-Smart and Energy-Efficient Agriculture in the European Union: Pathways Based on the Frontier Analysis. Bus. Strateg. Environ. 2021, 30, 576–589. [Google Scholar] [CrossRef]
- Guth, M.; Smedzik-Ambrozy, K.; Czyzewski, B.; Stepien, S. The Economic Sustainability of Farms under Common Agricultural Policy in the European Union Countries. Agriculture 2020, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Negra, C.; Remans, R.; Attwood, S.; Jones, S.; Werneck, F.; Smith, A. Sustainable Agri-Food Investments Require Multi-Sector Co-Development of Decision Tools. Ecol. Indic. 2020, 110, 105851. [Google Scholar] [CrossRef]
- Maier, D.; Remete, A.-N.; Corda, A.-M.; Nastasoiu, I.-A.; Lazăr, P.-S.; Pop, I.-A.; Luca, T.-I. Territorial Distribution of EU Funds Allocation for Developments of Rural Romania during 2014–2020. Sustainability 2022, 14, 506. [Google Scholar] [CrossRef]
- Feher, A.; Stanciu, S.; Iancu, T.; Adamov, T.C.; Ciolac, R.M.; Pascalau, R.; Banes, A.; Raicov, M.; Gosa, V. Design of the Macroeconomic Evolution of Romania’s Agriculture 2020–2040. Land Use Policy 2022, 112, 105815. [Google Scholar] [CrossRef]
- Eurostat Economic Accounts for Agriculture -Agricultural Income. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=aact_eaa06&lang=en (accessed on 30 August 2022).
- Eurostat Crop Production in EU Standard Humidity. Available online: https://ec.europa.eu/eurostat/databrowser/view/apro_cpsh1/default/table?lang=en (accessed on 30 August 2022).
- Eurostat Unit Value Statistics for Agricultural Products. Available online: https://ec.europa.eu/eurostat/databrowser/view/EF_LUS_MAIN/default/table?lang=e&category=agr.ef.ef_landuse (accessed on 30 August 2022).
- Eurostat Utilised Agricultural Area (UAA) Managed by Low-, Medium- and High-Input Farms. Available online: https://ec.europa.eu/eurostat/databrowser/view/aei_ps_inp/default/table?lang=en (accessed on 30 August 2022).
- Eurostat Selling Prices of Crop Products (Absolute Prices)—Annual Price. Available online: https://ec.europa.eu/eurostat/databrowser/view/apri_ap_crpouta/default/table?lang=en (accessed on 30 August 2022).
- Eurostat Price Indices of Agricultural Products, Output (2010 = 100)—Annual Data. Available online: https://ec.europa.eu/eurostat/databrowser/view/apri_pi10_outa/default/table?lang=en (accessed on 30 August 2022).
Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2011 | −0.968452 | 0.409108 | −2.367 | 0.0267 | Yes (**) |
AQUANTITIES2011 | 0.226684 | 0.260886 | 0.8689 | 0.3939 | No |
UAA2011 | 0.264675 | 0.172440 | 1.535 | 0.1385 | No |
APRI2011 | 0.601323 | 0.208895 | 2.879 | 0.0085 | Yes (***) |
APRIO2011 | 0.669875 | 0.230780 | 2.903 | 0.0080 | Yes (***) |
Mean dependent var | 103.7993 | S.D. dependent var | 16.60433 | ||
Sum squared resid | 4414.117 | S.E. of regression | 13.85345 | ||
Uncentered R-squared | 0.985721 | Centered R-squared | 0.407024 | ||
F(5, 23) | 317.5417 | p-value(F) | 2.02 × 10−20 | ||
Log-likelihood | −110.5753 | Akaike criterion | 231.1506 | ||
Schwarz criterion | 237.8116 | Hannan–Quinn | 233.1869 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 1.18265 | Test statistic: LM = 24.0834 | ||||
with p-value = 0.553593 | with p-value = P(Chi-square(20) > 24.0834) = 0.238768 |
Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2012 | 0.636496 | 0.563205 | 1.130 | 0.2701 | No |
AQUANTITIES2012 | 0.116683 | 0.256785 | 0.4544 | 0.6538 | No |
UAA2012 | 0.198443 | 0.376173 | 0.5275 | 0.6029 | No |
APRI2012 | 0.477337 | 0.355286 | 1.344 | 0.1922 | No |
APRIO2012 | −0.346336 | 0.345533 | −1.002 | 0.3266 | No |
Mean dependent var | 112.1432 | S.D. dependent var | 20.76597 | ||
Sum squared resid | 10,470.48 | S.E. of regression | 21.33631 | ||
Uncentered R-squared | 0.971217 | Centered R-squared | 0.100713 | ||
F(5, 23) | 155.2170 | p-value(F) | 6.27 × 10−17 | ||
Log-likelihood | −122.6678 | Akaike criterion | 255.3356 | ||
Schwarz criterion | 261.9967 | Hannan-Quinn | 257.3720 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 2.2667 | Test statistic: LM = 18.5219 | ||||
with p-value = 0.321953 | with p-value = P(Chi-square(20) > 18.5219) = 0.55307 |
Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2013 | 0.0314601 | 0.554940 | 0.05669 | 0.9553 | No |
AQUANTITIES2013 | 0.211359 | 0.262806 | 0.8042 | 0.4295 | No |
UAA2013 | 0.337874 | 0.300131 | 1.126 | 0.2719 | No |
APRI2013 | 0.453754 | 0.332429 | 1.365 | 0.1855 | No |
APRIO2013 | 0.115918 | 0.553976 | 0.2092 | 0.8361 | No |
Mean dependent var | 112.0721 | S.D. dependent var | 22.56939 | ||
Sum squared resid | 11,340.62 | S.E. of regression | 22.20519 | ||
Uncentered R-squared | 0.968967 | Centered R-squared | 0.175419 | ||
F(5, 23) | 143.6294 | p-value(F) | 1.48 × 10−16 | ||
Log-likelihood | −123.7855 | Akaike criterion | 257.5709 | ||
Schwarz criterion | 264.2320 | Hannan-Quinn | 259.6073 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 2.17183 | Test statistic: LM = 18.1553 | ||||
with p-value = 0.337593 | with p-value = P(Chi-square(20) > 18.1553) = 0.577179 |
Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2014 | 0.426433 | 0.488214 | 0.8735 | 0.3914 | No |
AQUANTITIES2014 | 0.268791 | 0.325317 | 0.8262 | 0.4172 | No |
UAA2014 | 0.672484 | 0.404801 | 1.661 | 0.1102 | No |
APRI2014 | 0.0744243 | 0.448632 | 0.1659 | 0.8697 | No |
APRIO2014 | −0.363719 | 0.527195 | −0.6899 | 0.4972 | No |
Mean dependent var | 114.1582 | S.D. dependent var | 23.71958 | ||
Sum squared resid | 12,554.05 | S.E. of regression | 23.36297 | ||
Uncentered R-squared | 0.966971 | Centered R-squared | 0.173570 | ||
F(5, 23) | 134.6707 | p-value(F) | 3.03 × 10−16 | ||
Log-likelihood | −125.2086 | Akaike criterion | 260.4172 | ||
Schwarz criterion | 267.0782 | Hannan-Quinn | 262.4535 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 1.3407 | Test statistic: LM = 24.732 | ||||
with p-value = 0.51153 | with p-value = P(Chi-square(20) > 24.732) = 0.211877 |
Indicators | Coefficient | Std. Error | T-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2015 | −0.317066 | 0.695275 | −0.4560 | 0.6526 | No |
AQUANTITIES2015 | 0.106224 | 0.450614 | 0.2357 | 0.8157 | No |
UAA2015 | 0.377653 | 0.537068 | 0.7032 | 0.4890 | No |
APRI2015 | 0.559240 | 0.579764 | 0.9646 | 0.3448 | No |
APRIO2015 | 0.416054 | 0.705016 | 0.5901 | 0.5609 | No |
Mean dependent var | 111.1450 | S.D. dependent var | 22.51190 | ||
Sum squared resid | 13,008.31 | S.E. of regression | 23.78189 | ||
Uncentered R-squared | 0.963823 | Centered R-squared | 0.049324 | ||
F(5, 23) | 122.5523 | p-value(F) | 8.60 × 10−16 | ||
Log-likelihood | −125.7062 | Akaike criterion | 261.4124 | ||
Schwarz criterion | 268.0735 | Hannan–Quinn | 263.4488 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 0.733421 | Test statistic: LM = 21.0764 | ||||
with p-value = 0.69301 | with p-value = P(Chi-square(20) > 21.0764) = 0.392649 |
Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2016 | −1.02381 | 0.811608 | −1.261 | 0.2198 | No |
AQUANTITIES2016 | 0.970362 | 0.354996 | 2.733 | 0.0118 | Yes (**) |
UAA2016 | 0.437008 | 0.514698 | 0.8491 | 0.4046 | No |
APRI2016 | 0.198051 | 0.646533 | 0.3063 | 0.7621 | No |
APRIO2016 | 0.633251 | 0.995933 | 0.6358 | 0.5312 | No |
Mean dependent var | 112.0093 | S.D. dependent var | 32.42338 | ||
Sum squared resid | 17,828.94 | S.E. of regression | 27.84190 | ||
Uncentered R-squared | 0.953042 | Centered R-squared | 0.371876 | ||
F(5, 23) | 93.35888 | p-value(F) | 1.70 × 10−14 | ||
Log-likelihood | −130.1195 | Akaike criterion | 270.2390 | ||
Schwarz criterion | 276.9001 | Hannan–Quinn | 272.2754 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 3.94516 | Test statistic: LM = 21.6787 | ||||
with p-value = 0.139098 | with p-value = P(Chi-square(20) > 21.6787) = 0.358197 |
C Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2017 | 1.94869 | 1.09155 | 1.785 | 0.0874 | Yes (*) |
AQUANTITIES2017 | −0.373748 | 0.347235 | −1.076 | 0.2929 | No |
UAA2017 | −0.122838 | 0.482634 | −0.2545 | 0.8014 | No |
APRI2017 | 0.754218 | 0.506963 | 1.488 | 0.1504 | No |
APRIO2017 | −0.846068 | 0.973493 | −0.8691 | 0.3938 | No |
Mean dependent var | 126.3046 | S.D. dependent var | 33.28816 | ||
Sum squared resid | 22,333.60 | S.E. of regression | 31.16129 | ||
Uncentered R-squared | 0.953140 | Centered R-squared | 0.253525 | ||
F(5, 23) | 93.56398 | p-value(F) | 1.66 × 10−14 | ||
Log-likelihood | −133.2733 | Akaike criterion | 276.5466 | ||
Schwarz criterion | 283.2076 | Hannan–Quinn | 278.5829 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 3.86384 | Test statistic: LM = 19.2981 | ||||
with p-value = 0.14487 | with p-value = P(Chi-square(20) > 19.2981) = 0.502534 |
Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2018 | 0.302708 | 1.13344 | 0.2671 | 0.7918 | No |
AQUANTITIES2018 | 0.762434 | 0.388521 | 1.962 | 0.0619 | Yes (*) |
UAA2018 | 0.213233 | 0.504415 | 0.4227 | 0.6764 | No |
APRI2018 | 0.384524 | 0.465997 | 0.8252 | 0.4178 | No |
APRIO2018 | −0.528565 | 1.40144 | −0.3772 | 0.7095 | No |
Mean dependent var | 121.6543 | S.D. dependent var | 34.52418 | ||
Sum squared resid | 28,313.29 | S.E. of regression | 35.08579 | ||
Uncentered R-squared | 0.936599 | Centered R-squared | 0.120208 | ||
F(5, 23) | 67.95413 | p-value(F) | 5.24 × 10−13 | ||
Log-likelihood | −136.5946 | Akaike criterion | 283.1893 | ||
Schwarz criterion | 289.8503 | Hannan–Quinn | 285.2256 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 2.37582 | Test statistic: LM = 25.0483 | ||||
with p-value = 0.304858 | with p-value = P(Chi-square(20) > 25.0483) = 0.199589 |
Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2019 | 0.925642 | 0.917041 | 1.009 | 0.3233 | No |
AQUANTITIES2019 | −0.0983778 | 0.391549 | −0.2513 | 0.8038 | No |
UAA2019 | −0.300189 | 0.683475 | −0.4392 | 0.6646 | No |
APRI2019 | 1.08178 | 0.690180 | 1.567 | 0.1307 | No |
APRIO2019 | −0.342206 | 1.11143 | −0.3079 | 0.7609 | No |
Mean dependent var | 131.0236 | S.D. dependent var | 34.89645 | ||
Sum squared resid | 27,172.27 | S.E. of regression | 34.37154 | ||
Uncentered R-squared | 0.947090 | Centered R-squared | 0.173582 | ||
F(5, 23) | 82.34080 | p-value(F) | 6.65 × 10−14 | ||
Log-likelihood | −136.0187 | Akaike criterion | 282.0375 | ||
Schwarz criterion | 288.6985 | Hannan–Quinn | 284.0738 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 9.5755 | Test statistic: LM = 19.6987 | ||||
with p-value = 0.0083312 | with p-value = P(Chi-square(20) > 19.6987) = 0.476911 |
Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2020 | 1.42206 | 1.31868 | 1.078 | 0.2920 | No |
AQUANTITIES2020 | 0.574991 | 1.27602 | 0.4506 | 0.6565 | No |
UAA2020 | 1.42754 | 0.649063 | 2.199 | 0.0382 | Yes (**) |
APRI2020 | −0.777136 | 0.672762 | −1.155 | 0.2599 | No |
APRIO2020 | −1.71065 | 1.67811 | −1.019 | 0.3186 | No |
Mean dependent var | 135.7129 | S.D. dependent var | 43.93218 | ||
Sum squared resid | 37,141.78 | S.E. of regression | 40.18532 | ||
Uncentered R-squared | 0.934588 | Centered R-squared | 0.287256 | ||
F(5, 23) | 65.72368 | p-value(F) | 7.48 × 10−13 | ||
Log-likelihood | −140.3944 | Akaike criterion | 290.7888 | ||
Schwarz criterion | 297.4498 | Hannan–Quinn | 292.8251 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 0.474262 | Test statistic: LM = 22.8845 | ||||
with p-value = 0.788888 | with p-value = P(Chi-square(20) > 22.8845) = 0.294503 |
Indicators | Coefficient | Std. Error | t-Ratio | p-Value | High Significance |
---|---|---|---|---|---|
APRO2021 | −4.42078 | 2.23101 | −1.982 | 0.0596 | Yes (*) |
AQUANTITIES2021 | 6.44469 | 3.05941 | 2.107 | 0.0463 | Yes (**) |
UAA2021 | 1.99409 | 0.874612 | 2.280 | 0.0322 | Yes (**) |
APRI2021 | −1.16797 | 0.688347 | −1.697 | 0.1032 | No |
APRIO2021 | −1.87320 | 1.76124 | −1.064 | 0.2986 | No |
Mean dependent var | 138.0568 | S.D. dependent var | 57.34250 | ||
Sum squared resid | 59,254.48 | S.E. of regression | 50.75709 | ||
Uncentered R-squared | 0.904805 | Centered R-squared | 0.332572 | ||
F(5, 23) | 43.72168 | p-value(F) | 5.36 × 10−11 | ||
Log-likelihood | −146.9338 | Akaike criterion | 303.8675 | ||
Schwarz criterion | 310.5286 | Hannan–Quinn | 305.9039 | ||
Test for normality of residual— | White’s test for heteroskedasticity— | ||||
Null hypothesis: error is normally distributed | Null hypothesis: heteroskedasticity not present | ||||
Test statistic: Chi-square(2) = 12.9269 | Test statistic: LM = 17.5745 | ||||
with p-value = 0.00155941 | with p-value = P(Chi-square(20) > 17.5745) = 0.615415 |
CAP Targets 2023–2027 | Vulnerabilities | Development Opportunities |
---|---|---|
Ensuring a fair income for farmers; Encouraging knowledge and innovation. | Economic crises and adverse environmental conditions affect the predictability of farm incomes. | Increasing investments with an impact on the sustainable development of agriculture (maximising organic farming less dependent on the chemical and petro-chemical industries). |
Actions on climate change; Environmental protection; Conserving landscapes and biodiversity; Protecting food quality and health. | Vulnerability of sustainable agricultural production is lower than that of agricultural futures. | Implementing of sustainable agriculture and application of circular economy principles; Reducing the impact of environmental conditions (protected agriculture); Increasing the share of organic products in total agricultural production. |
Improving the position of farmers in the food chain; Vibrant rural areas. | The use of agricultural land is influenced by agricultural policies and the short-term interest of organisations. | Intensification of the agricultural association phenomenon; Increasing share of large holding companies; Diversification of industrial agricultural production. |
Increasing competitiveness; Supporting the renewal of generations. | At EU level, there is a trend towards reduced predictability of selling and output prices. | Implementing of new agricultural technologies; Smart management in agriculture; Attracting additional rural development funding; Facilitating farmers’ access to commodity exchanges. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionescu, R.V.; Zlati, M.L.; Antohi, V.M. A New Approach on Making European Agriculture More Efficient under Uncertainty Conditions. Agronomy 2022, 12, 2559. https://doi.org/10.3390/agronomy12102559
Ionescu RV, Zlati ML, Antohi VM. A New Approach on Making European Agriculture More Efficient under Uncertainty Conditions. Agronomy. 2022; 12(10):2559. https://doi.org/10.3390/agronomy12102559
Chicago/Turabian StyleIonescu, Romeo Victor, Monica Laura Zlati, and Valentin Marian Antohi. 2022. "A New Approach on Making European Agriculture More Efficient under Uncertainty Conditions" Agronomy 12, no. 10: 2559. https://doi.org/10.3390/agronomy12102559
APA StyleIonescu, R. V., Zlati, M. L., & Antohi, V. M. (2022). A New Approach on Making European Agriculture More Efficient under Uncertainty Conditions. Agronomy, 12(10), 2559. https://doi.org/10.3390/agronomy12102559