Effect of Different Long-Term Potassium Dosages on Crop Yield and Potassium Use Efficiency in the Maize–Wheat Rotation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sampling and Analysis
2.4. Indicator Calculation Methods
2.5. Statistical Analysis
3. Results
3.1. Changes of Crop Yield
3.2. Changes of Potassium Use Efficiency
3.3. Changes of Soil Apparent K Balance
3.4. Soil Available K
4. Discussion
4.1. Potassium Fertilization Rates versus Crop Yield
4.2. Potassium Fertilization Rates versus Potassium Use Efficiency
4.3. Potassium Fertilization Rates versus Soil Potassium Balance
4.4. Soil Available Potassium versus Soil Potassium Balance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Z.; Zoebisch, M.A.; Chen, G.; Feng, Z. Sustainability of farmers’ soil fertility management practices: A case study in the North China Plain. J. Environ. Manag. 2006, 79, 409–419. [Google Scholar]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant 2008, 133, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Murayama, T.; Niino, T.; Nitta, T.; Nanzyo, M. Reduction of phosphatic and potash fertilizer in sweet corn production by pre-transplanting application of potassium phosphate to plug seedlings. Plant Prod. Sci. 2005, 8, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Sun, B.; Zhang, T. Sustainable nutrient management in Chinese agriculture: Challenges and perspective. Pedosphere 2006, 16, 253–263. [Google Scholar] [CrossRef]
- Cao, M.; Yu, H.; Yan, H.; Jiang, C. Difference in tolerance to potassium deficiency between two maize [Zea mays] inbred lines. Plant Prod. Sci. 2007, 10, 42–46. [Google Scholar]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent advances in the chemistry of N, P, K as fertilizer in soil—A review. Pedosphere 2022, in press. [Google Scholar] [CrossRef]
- Tripler, C.E.; Kaushal, S.S.; Likens, G.E.; Walter, M.T. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 2006, 9, 451–466. [Google Scholar] [CrossRef]
- Kubar, G.M.; Talpur, K.H.; Kandhro, M.N.; Khashkhali, S. Effect of potassium (K+) on growth, yield components and macronutrient accumulation in wheat crop. Pure Appl. Biol. 2018, 7, 248–254. [Google Scholar] [CrossRef]
- Atapattu, A.J.; Prasantha, B.D.R.; Amaratunga, K.S.P.; Marambe, B. Increased rate of potassium fertilizer at the time of heading enhances the quality of direct seeded rice. Chem. Biol. Technol. Agric. 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Wang, H.; Ji, J.; Wang, B.; Zhao, P. Effects of long-term potassium application and wheat straw return to cinnamon soil on wheat yields and soil potassium balance in Shanxi. Plant Nutr. Fertil. Sci. 2010, 16, 801–808. [Google Scholar]
- Niu, J.; Zhang, W.; Chen, X.; Li, C.; Zhang, F.; Jiang, L.; Liu, Z.; Xiao, K.; Assaraf, M.; Imas, P. Potassium fertilization on maize under different productionp practices in the North China Plain. Agron. J. 2011, 103, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Zhan, A.; Zou, C.; Ye, Y.; Liu, Z.; Cui, Z.; Chen, X. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Field Crops Res. 2016, 191, 13–19. [Google Scholar] [CrossRef]
- Qiu, S.; Xie, J.; Zhao, S.; Xu, X.; Hou, Y.; Wang, X.; Zhou, W.; He, P.; Johnston, A.M.; Christie, P.; et al. Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crops Res. 2014, 163, 1–9. [Google Scholar] [CrossRef]
- Dhillon, J.S.; Eickhoff, E.M.; Mullen, R.W.; Raun, W.R. World potassium use efficiency in cereal crops. Agron. J. 2019, 111, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wang, J.; Zhang, W.; Cui, Z.; Ma, W.; Chen, X.; Jiang, R. Nuterient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol. Sin. 2008, 45, 916–922. [Google Scholar]
- Zhang, H.; Yang, X.; He, X.; Xu, M.; Huang, S.; Liu, H.; Wang, B. Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat-maize rotation in China. Pedosphere 2011, 21, 154–163. [Google Scholar] [CrossRef]
- He, C.; Zhu, O.; Tian, Z.; Schaffer, H.D. Yield and potassium balance in a wheat–maize cropping system of the North China Plain. Agron. J. 2012, 104, 1016–1022. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, W.; Ru, S.; Chen, X.; Xiao, K.; Zhang, X.; Assaraf, M.; Imas, P.; Magen, H.; Zhang, F. Effects of potassium fertilization on winter wheat under different production practices in the North China Plain. Field Crops Res. 2013, 140, 69–76. [Google Scholar] [CrossRef]
- Sharma, A.; Jalali, V.K.; Arora, S. Non-exchangeable potassium release and its removal in foot-hill soils of North-west Himalayas. Catena 2010, 82, 112–117. [Google Scholar] [CrossRef]
- Moody, P.W.; Bell, M.J. Availability of soil potassium and diagnostic soil tests. Aust. J. Soil Res. 2006, 44, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Syers, J. Potassium in Soils: Current Concepts; Feed the soil to feed the people The role of potash in sustainable agriculture; International Potash Institute: Basel, Switzerland, 2002; p. 301. [Google Scholar]
- Barré, P.; Montagnier, C.; Chenu, C.; Abbadie, L.; Velde, B.J.P. Soil Clay minerals as a soil potassium reservoir: Observation and quantification through X-ray diffraction. Plant Soil 2008, 302, 213–220. [Google Scholar] [CrossRef]
- Barré, P.; Velde, B.; Fontaine, C.; Catel, N.; Abbadie, L. Which 2:1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages. Geoderma 2008, 146, 216–223. [Google Scholar] [CrossRef]
- Römheld, V.; Kirkby, E.A. Research on potassium in agriculture: Needs and prospects. Plant Soil 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Wang, W.; Ye, Z.; Luo, A. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. J. Plant Nutr. 2004, 27, 837–852. [Google Scholar] [CrossRef]
- Zhao, S.; He, P.; Qiu, S.; Jia, L.; Liu, M.; Jin, J.; Johnston, A.M. Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China. Field Crops Res. 2014, 169, 116–122. [Google Scholar] [CrossRef]
- Majumdar, K.; Sanyal, S.K.; Singh, V.K.; Dutta, S.; Satyanarayana, T.; Dwivedi, B.S. Potassium fertiliser management in indian agriculture:current trends and future needs. Indian J. Fertil. 2017, 13, 20–30. [Google Scholar]
- Ali, M.Y.; Waddington, S.R.; Timsina, J.; Hodson, D.; Dixon, J. Maize–rice cropping systems in Bangladesh: Status and research needs. J. Agric. Sci. Technol. 2009, 3, 35–53. [Google Scholar]
- Zhang, H.; Xu, M.; Shi, X.; Li, Z.; Huang, Q.; Wang, X. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China. Nutr. Cycl. Agroecosyst. 2010, 88, 341–349. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Pampolino, M.F.; Johnston, A.M.; Qiu, S.; Zhao, S.; Chuan, L.; Zhou, W. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency. Field Crops Res. 2014, 157, 27–34. [Google Scholar] [CrossRef]
- Heming, S. Potassium balances for arable soils in southern England 1986–1999. Soil Use Manag. 2004, 20, 410–417. [Google Scholar] [CrossRef]
- Dawe, D.; Dobermann, A.; Moya, P.; Abdulrachman, S.; Singh, B.; Lal, P.; Li, S.Y.; Lin, B.; Panaullah, G.; Sariam, O.; et al. How widespread are yield declines in long-term rice experiments in Asia? Field Crops Res. 2000, 66, 175–193. [Google Scholar] [CrossRef]
- Camara, K.M.; Payne, W.; Rasmussen, P.E. Long-term effects of tillage, nitrogen, and rainfall on winter wheat yields in the Pacific Northwest. Agron. J. 2003, 95, 828–835. [Google Scholar] [CrossRef] [Green Version]
- Helmke, P.A.; Sparks, D.L. Lithium, Sodium, Potassium, Rubidiumand Cesium. In Methods of Soil Analysis, Part 3; ASA and SSSA: Madison, WI, USA, 1996. [Google Scholar]
- Dong, H.; Kong, X.; Li, W.; Tang, W.; Zhang, D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res. 2010, 119, 106–113. [Google Scholar] [CrossRef]
- Xie, J.; Zhou, J.; Hardter, R. Potassium and Chinese Agriculture; Hohai University Press: Nanjing, China, 2000. [Google Scholar]
- Singh, V.K.; Dwivedi, B.S.; Singh, S.K.; Majumdar, K.; Jat, M.L.; Mishra, R.P.; Rani, M. Soil physical properties, yield trends and economics after five years of conservation agriculture based rice-maize system in north–western India. Soil Tillage Res. 2016, 155, 133–148. [Google Scholar] [CrossRef]
- Sweeney, D.W.; Granade, G.V.; Eversmeyer, M.G.; Whitney, D.A. Phosphorus, potassium, chloride, and fungicide effects on wheat yield and leaf rust severity. J. Plant Nutr. Soil Sci. 2000, 23, 1267–1281. [Google Scholar] [CrossRef]
- Sharma, S.; Duveiller, E.; Basnet, R.; Karki, C.B.; Sharma, R.C. Effect of potash fertilization on Helminthosporium leaf blight severity in wheat, and associated increases in grain yield and kernel weight. Field Crops Res. 2005, 93, 142–150. [Google Scholar] [CrossRef]
- Rajicic, V.; Milivojevic, J.; Popovic, V.; Brankovic, S.; Djuric, N.; Perisic, V.; Terzic, D. Winter wheat yield and quality depending on the level of nitrogen, phosphorus and potassium fertilization. J. Agric. For. 2019, 65, 79–88. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Huang, Y.; Ye, Y.; Cui, J.; Sokolowski, E. Eeffect of potassium application on yield and soil potassium balance in maize and wheat rotation system. J. Triticeae Crops 2013, 33, 988–995. [Google Scholar]
- Bai, Y.-L.; Wang, L.; Lu, Y.-L.; Yang, L.-P.; Zhou, L.-P.; NI, L.; Cheng, M.-F. Effects of long-term full straw return on yield and potassium response in wheat–maize rotation. J. Integr. Agric. 2015, 14, 2467–2476. [Google Scholar] [CrossRef]
- Rodríguez-Lizana, A.; Carbonell, R.; González, P.; Ordóñez, R. N, P and K released by the field decomposition of residues of a pea–wheat–sunflower rotation. Nutr. Cycl. Agroecosyst. 2009, 87, 199–208. [Google Scholar] [CrossRef]
- Premi, O.; Kandpal, B.; Rathore, S.; Shekhawat, K.; Chauhan, J. Green manuring, mustard residue recycling and fertilizer application affects productivity and sustainability of Indian mustard (Brassica juncea L.) in Indian semi-arid tropics. Ind. Crops Prod. 2013, 41, 423–429. [Google Scholar] [CrossRef]
- Wang, L.; Chen, F. Genotypic variation of potassium uptake and use efficiency in cotton (Gossypium hirsutum). J. Plant Nutr. Soil Sci. 2012, 175, 303–308. [Google Scholar] [CrossRef]
- Ju, X.; Zhang, F.; Bao, X.; Römheld, V.; Roelcke, M. Utilization and management of organic wastes in Chinese agriculture: Past, present and perspectives. Sci. China Ser. C Life Sci. 2005, 48, 965–979. [Google Scholar]
- Yang, S.; Li, F.; Malhi, S.S.; Wang, P.; Suo, D.; Wang, J. Long-Term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in Northwestern China. Agron. J. 2004, 96, 1039–1049. [Google Scholar] [CrossRef]
- Singh, V.K.; Sharma, B.B.; Dwivedi, B.S. The impact of diversification of a rice wheat cropping system on crop productivity and soil fertility. J. Agric. Sci. 2002, 139, 405–412. [Google Scholar] [CrossRef]
- Ju, X.; Kou, C.; Christie, P.; Dou, Z.; Zhang, F. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Ma, Y.; Zhang, R.; Shen, P. Effect of potassium application on transformation of soil potassium in different soils. Chin. J. Soil Sci. 2005, 36, 59–61. [Google Scholar]
- Tan, D.; Jin, J.; Jiang, L.; Huang, S.; Liu, Z. Potassium assessment of grain producing soils in North China. Agric. Ecosyst. Environ. 2012, 148, 65–71. [Google Scholar] [CrossRef]
- Cassman, K.G.; Bryant, D.C.; Higashi, S.L.; Roberts, B.A.; Kerby, T.A. Soil Potassium Balance and Cumulative Cotton Response to Annual Potassium. Soil Sci. Soc. Am. J. 1989, 53, 805–812. [Google Scholar] [CrossRef]
- Portela, E.; Monteiro, F.; Fonseca, M.; Abreu, M.M. Effect of soil mineralogy on potassium fixation in soils developed on different parent material. Geoderma 2019, 343, 226–234. [Google Scholar] [CrossRef]
- Bakker, E. The Impact of Plant Growth and Potassium Uptake on Clay Minerals in Soil; Université Grenoble Alpes (ComUE): Grenoble, France, 2018. [Google Scholar]
- Shakeri, S.; Abtahi, S.A. Potassium forms in calcareous soils as affected by clay minerals and soil development in Kohgiluyeh and Boyer-Ahmad Province, Southwest Iran. J. Arid Land 2018, 10, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Ghiri, M.N.; Abtahi, A. Factors affecting potassium fixation in calcareous soils of southern Iran. Arch. Agron. Soil Sci. 2012, 58, 335–352. [Google Scholar] [CrossRef]
- Dhaliwal, A.K.; Gupta, R.K.; Singh, Y.; Singh, B. Potassium Fixation and Release Characteristics of Some Benchmark Soil Series under Rice-Wheat Cropping System in the Indo-Gangetic Plains of Northwestern India. Commun. Soil Sci. Plant Anal. 2006, 37, 827–845. [Google Scholar] [CrossRef]
- Jiang, C.; Zheng, Q.; Zu, C. Research progress on effects of straw returning on soil potassium and its substitute for potassium fertilizer. Chin. J. Ecol. 2015, 34, 1158–1165. [Google Scholar]
- Yu, W.; Jiang, Z.; Shen, S.; Zhang, L. K fertility and K deficit index of aquic brown soil under different fertilization systems. Chin. J. Appl. Ecol. 2007, 18, 2239–2244. [Google Scholar]
- Lu, D.; Dong, Y.; Chen, X.; Wang, H.; Zhou, J. Comparison of potential potassium leaching associated with organic and inorganic potassium sources in different arable soils in China. Pedosphere 2022, 32, 330–338. [Google Scholar] [CrossRef]
- Tan, D.; Liu, Z.; Jiang, L.; Luo, J.; Li, J. Long-term potash application and wheat straw return reduced soil potassium fixation and affected crop yields in North China. Nutr. Cycl. Agroecosyst. 2017, 108, 121–133. [Google Scholar] [CrossRef]
Year | REK (%) | AEK (kg kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
K0 | K48 | K84 | K120 | K156 | K0 | K48 | K84 | K120 | K156 | |
2010 | - | 49.2 a | 36.5 b | 33.1 bc | 20.5 c | - | 12.5 a | 3.7 b | 4.7 b | 3.7 b |
2011 | - | 57.1 a | 39.7 b | 31.4 bc | 22.6 c | - | 11.8 a | 3.3 b | 4.4 b | 3.5 b |
2012 | - | 58.0 a | 44.3 b | 32.8 c | 20.9 d | - | 3.6 a | 5.8 a | 5.6 a | 3.0 a |
2013 | - | 38.3 a | 27.6 b | 23.0 bc | 14.2 d | - | 16.0 ab | 12.8 ab | 20.6 a | 4.7 b |
2014 | - | 27.0 a | 27.7 a | 22.6 ab | 16.1 b | - | 27.5 a | 14.5 ab | 14.1 ab | 6.5 b |
2015 | - | 24.6 a | 24.4 a | 18.1 b | 13.0 bc | - | 12.7 ab | 12.6 ab | 20.4 a | 5.3 b |
2016 | - | 28.7 a | 22.4 ab | 16.3 b | 11.2 bc | - | 35.4 a | 13.8 b | 16.8 b | 9.5 b |
2017 | - | 32.9 a | 25.7 b | 18.6 c | 12.5 d | - | 16.4 a | 11.7 a | 14.2 a | 7.1 b |
Mean | - | 39.46 a | 31.04 b | 24.49 c | 16.38 d | - | 16.3 a | 9.4 ab | 12.6 a | 5.4 b |
F values | ||||||||||
Treatment | ** | ** | ||||||||
Year | ** | ** | ||||||||
T*Y | ** | ns |
Year | REK (%) | AEK (kg kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
K0 | K48 | K84 | K120 | K156 | K0 | K48 | K84 | K120 | K156 | |
2011 | - | 68.5 a | 63.1 ab | 48.5 c | 35.7 d | - | 16.1 a | 12.5 a | 13.5 a | 2 b |
2012 | - | 72.3 a | 67 bc | 54.1 c | 37.9 d | - | 1.1 d | 9.6 b | 12.8 a | 4.5 c |
2013 | - | 74.5 a | 67.8 ab | 65 bc | 49.3 c | - | 3.8 b | 7.5 a | 6.7 a | 0.2 c |
2014 | - | 75.6 a | 67.5 b | 66.8 b | 49.2 c | - | 24.2 a | 24.2 a | 21.4 a | 13.8 b |
2015 | - | 76.3 a | 66.3 b | 65.8 b | 49.2 c | - | 13.2 b | 23.1 a | 22.1 a | 11.8 b |
2016 | - | 73.7 a | 65.7 b | 58.8 c | 39 d | - | 21.5 a | 20.6 a | 16.4 b | 11.3 bc |
2017 | - | 70.7 a | 68.5 ab | 67.1 ab | 48.1 c | - | 14.4 a | 9.5 b | 10 ab | 4.3 c |
2018 | - | 75.4 a | 71.5 a | 68.5 ab | 50.9 c | - | 3.9 ab | 2.8 b | 6.9 a | 1.2b c |
Mean | - | 73.4 a | 67.2 b | 61.8 c | 44.9 d | - | 12.3 a | 13.7 a | 13.7 a | 6.1 b |
F values | ||||||||||
Treatment | ** | ** | ||||||||
Year | ** | ** | ||||||||
T*Y | * | ns |
Treatment | ARE (%) | |||||||
---|---|---|---|---|---|---|---|---|
2010–2011 | 2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | |
K0 | - | - | - | - | - | - | - | - |
K48 | 58.8 a | 61.8 a | 63.3 a | 61.7 a | 59.7 a | 57.9 a | 56.8 a | 56.4 a |
K84 | 49.8 b | 51.6 b | 53.1 b | 51.7 b | 50.7 b | 49.8 b | 49.2 b | 49.1 b |
K120 | 40.8 c | 41.8 c | 44.2 c | 44.4 c | 44.3 bc | 43.3 bc | 43.1 bc | 43.2 c |
K156 | 28.1 d | 29.2 d | 31.2 d | 31.3 d | 31.6 d | 30.6 d | 30.5 d | 30.6 d |
F values | ||||||||
Treatment | ** | |||||||
Year | ** | |||||||
T*Y | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Xue, C.; Sun, Z.; Ji, Q.; Wei, J.; Ma, W. Effect of Different Long-Term Potassium Dosages on Crop Yield and Potassium Use Efficiency in the Maize–Wheat Rotation System. Agronomy 2022, 12, 2565. https://doi.org/10.3390/agronomy12102565
He B, Xue C, Sun Z, Ji Q, Wei J, Ma W. Effect of Different Long-Term Potassium Dosages on Crop Yield and Potassium Use Efficiency in the Maize–Wheat Rotation System. Agronomy. 2022; 12(10):2565. https://doi.org/10.3390/agronomy12102565
Chicago/Turabian StyleHe, Bing, Cheng Xue, Zhimei Sun, Qingkai Ji, Jing Wei, and Wenqi Ma. 2022. "Effect of Different Long-Term Potassium Dosages on Crop Yield and Potassium Use Efficiency in the Maize–Wheat Rotation System" Agronomy 12, no. 10: 2565. https://doi.org/10.3390/agronomy12102565
APA StyleHe, B., Xue, C., Sun, Z., Ji, Q., Wei, J., & Ma, W. (2022). Effect of Different Long-Term Potassium Dosages on Crop Yield and Potassium Use Efficiency in the Maize–Wheat Rotation System. Agronomy, 12(10), 2565. https://doi.org/10.3390/agronomy12102565