Effects of Hydraulic Retention Time of Aquaculture Effluent on Nutrient Film Technique Lettuce Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aquaculture System Overview
2.2. Filtration of Aquaculture Effluent
2.3. Germination
2.4. Experimental Design
2.5. Plant Measurements
2.6. Water Measurements
2.7. Statistical Analysis
3. Results
3.1. Without Iron Supplementation
3.2. With Iron Supplementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Endut, A.; Jusoh, A.; Ali, N.; Wan Nik, W.B.; Hassan, A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour. Technol. 2010, 101, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Suhl, J.; Dannehl, D.; Kloas, W.; Baganz, D.; Jobs, S.; Scheibe, G.; Schmidt, U. Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric. Water Manag. 2016, 178, 335–344. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Castillo-Castellanos, D.; Zavala-Leal, I.; Ruiz-Velazco, J.M.J.; Radilla-García, A.; Nieto-Navarro, J.T.; Romero-Bañuelos, C.A.; González-Hernández, J. Implementation of an experimental nutrient film technique-type aquaponic system. Aquac. Int. 2016, 24, 637–646. [Google Scholar] [CrossRef]
- Greenfeld, A.; Becker, N.; McIlwain, J.; Fotedar, R.; Bornman, J.F. Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Rev. Aquac. 2019, 11, 848–862. [Google Scholar] [CrossRef]
- Tyson, R.; Treadwell, D.; Simonne, E. Opportunities and Challenges to Sustainability in Aquaponic Systems. Horttechnology 2011, 21, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Wahyuningsih, S.; Effendi, H.; Wardiatno, Y. AACL BIOFLUX Nitrogen Removal of Aquaculture Wastewater in Aquaponic Recirculation System. Aquac. Aquar. Conserv. Legis. 2015, 8, 491–499. [Google Scholar]
- Seawright, D.E.; Stickney, R.R.; Walker, R.B. Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture 1998, 160, 215–237. [Google Scholar] [CrossRef]
- Monsees, H.; Kloas, W.; Wuertz, S. Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes. PLoS ONE 2017, 12, e0183056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.; Jijakli, H.; Thorarinsdottir, R.; Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; et al. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef] [Green Version]
- Maucieri, C.; Nicoletto, C.; Junge, R.; Schmautz, Z.; Sambo, P.; Borin, M. Hydroponic systems and water management in aquaponics: A review. Ital. J. Agron. 2018, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schmautz, Z.; Loeu, F.; Liebisch, F.; Graber, A.; Mathis, A.; Bulc, T.G.; Junge, R.; Griessler Bulc, T.; Junge, R. Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods. Water 2016, 8, 533. [Google Scholar] [CrossRef]
- Lennard, W.A.; Leonard, B.V. A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system. Aquac. Int. 2006, 14, 539–550. [Google Scholar] [CrossRef]
- Goddek, S.; Espinal, C.A.; Delaide, B.; Jijakli, M.H.; Schmautz, Z.; Wuertz, S.; Keesman, K.J. Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water 2016, 8, 303. [Google Scholar] [CrossRef]
- Ayipio, E.; Wells, D.E.; McQuilling, A.; Wilson, A.E. Comparisons between Aquaponic and Conventional Hydroponic Crop Yields: A Meta-Analysis. Sustainability 2019, 11, 6511. [Google Scholar] [CrossRef] [Green Version]
- Walters, K.J.; Behe, B.K.; Currey, C.J.; Lopez, R.G. Historical, current, and future perspectives for controlled environment hydroponic food crop production in the United States. HortScience 2020, 55, 758–767. [Google Scholar] [CrossRef]
- Mattson, N.S.; Peter, C. A Recipe for Hydroponic Success. Insid. Grow. Ball Publ. 2014, 2014, 16–19. [Google Scholar]
- Matter, F.; Foods, F.; Detection, U. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2012. [Google Scholar]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B., Jr.; Barker, A.V. Plant Analysis Handbook III: A Guide to Sampling, Preparation, Analysis, and Interpretation for Agronomic and Horticultural Crops; Micro-Macro Publishing, Inc: Athens, Greece, 2014. [Google Scholar]
- Mahlangu, R.I.S.; Maboko, M.M.; Sivakumar, D.; Soundy, P.; Jifon, J. Lettuce (Lactuca sativa L.) growth, yield and quality response to nitrogen fertilization in a non-circulating hydroponic system. J. Plant Nutr. 2016, 39, 1766–1775. [Google Scholar] [CrossRef]
- Kasozi, N.; Tandlich, R.; Fick, M.; Kaiser, H.; Wilhelmi, B. Iron supplementation and management in aquaponic systems: A review. Aquac. Rep. 2019, 15, 100221. [Google Scholar] [CrossRef]
- Blanchard, C.; Wells, D.E.; Pickens, J.M.; Blersch, D.M. Effect of pH on cucumber growth and nutrient availability in a decoupled aquaponic system with minimal solids removal. Horticulturae 2020, 6, 10. [Google Scholar] [CrossRef]
Hydraulic Retention Time (d) z | Size Index y | Plant Length x | Plant Width w | Plant Height | SPAD v Index |
---|---|---|---|---|---|
cm | |||||
7 DAP | |||||
4 | 6.6 | 8.5 | 8.7 | 2.6 | |
8 | 6.8 | 8.8 | 9.0 | 2.4 | |
12 | 6.4 | 8.2 | 8.6 | 2.4 | |
16 | 6.8 | 9.0 | 8.8 | 2.5 | |
Polynomial trends | NS | NS | NS | NS | |
14 DAP | |||||
4 | 12.8 | 16.6 | 17.0 | 4.9 | 14.9 u |
8 | 13.6 | 17.6 | 18.0 | 5.1 | 17.9 |
12 | 11.8 | 15.6 | 15.8 | 4.0 | 8.9 |
16 | 12.4 | 16.5 | 16.4 | 4.3 | 10.2 |
Polynomial trends | L *** | L *** | L *** | L *** | L ** |
21 DAP | |||||
4 | 16.8 | 20.7 | 21.2 | 8.5 | |
8 | 17.2 | 21.4 | 21.7 | 8.6 | |
12 | 15.9 | 20.2 | 21.0 | 6.7 | |
16 | 15.6 | 19.8 | 20.6 | 6.3 | |
Polynomial trends | L *** | L *** | L * | L *** | |
28 DAP | |||||
4 | 20.9 | 24.5 | 25.7 | 12.5 | 18.7 |
8 | 20.4 | 24.4 | 25.4 | 11.6 | 17.5 |
12 | 19.3 | 24.0 | 24.3 | 9.6 | 17.8 |
16 | 19.3 | 24.1 | 24.8 | 8.9 | 7.7 |
ANOVA t | <0.0001 | <0.0001 | <0.0001 | <0.001 | 0.0069 |
Polynomial trends t | L *** | NS | L ** | L *** | Q * |
Hydraulic Retention Time (d) z | Root Length (cm) | Plant Mass y | Dry Mass | Dry Shoot Mass | Dry Root Mass | R/S Ratio x |
---|---|---|---|---|---|---|
Gram | ||||||
4 | 62.9 | 203.4 | 9.8 | 7.7 | 1.9 | 0.25 |
8 | 52.4 | 193.8 | 10.4 | 8.1 | 2.2 | 0.27 |
12 | 56.4 | 166.2 | 8.1 | 6 | 1.9 | 0.31 |
16 | 54.7 | 143.8 | 7.6 | 5.9 | 1.6 | 0.28 |
ANOVA w | 0.0312 | <0.0001 | <0.0001 | <0.0001 | 0.0002 | 0.0024 |
Polynomial trends v | NS | L *** | L *** | L *** | L * | Q * |
Hydraulic Retention Time (d) z | Nitrate (mg·L−1) y | EC x | pH | DO (%) w |
---|---|---|---|---|
4 | 427 | 1.3 | 6.8 | 6.3 |
8 | 433 | 1.3 | 6.7 | 6.7 |
12 | 410 | 1.4 | 7.0 | 6.5 |
16 | 424 | 1.3 | 7.0 | 6.7 |
ANOVA v | <0.0001 | <0.0001 | <0.0001 | 0.0076 |
Polynomial trends u | NS | NS | NS | NS |
Hydraulic Retention Time (d) z | Nitrogeny | Phosphorus | Potassium | Magnesium | Calcium | Manganese x | Boron | Copper | Zinc | Iron |
---|---|---|---|---|---|---|---|---|---|---|
g 100 g−1 Dry Matter | mg·kg−1 Dry Matter | |||||||||
28 DAP | ||||||||||
4 | 5.4 | 0.58 | 7.8 | 0.48 | 3.7 | 692.2 | 23.2 | 7.2 | 273.8 | 87.4 |
8 | 5.6 | 0.63 | 8.5 | 0.47 | 3.3 | 781.2 | 25.8 | 7.2 | 243.6 | 77.8 |
12 | 5.9 | 0.63 | 8.6 | 0.50 | 3.4 | 590.6 | 29.0 | 7.4 | 227.0 | 83.4 |
16 | 6.0 | 0.60 | 8.6 | 0.52 | 3.4 | 399.0 | 33.6 | 6.8 | 172.2 | 60.0 |
Sufficiency w | 4.2–5.0 | 0.4–0.6 | 6.0–7.0 | 0.5–3.5 | 2.3–3.5 | 55–110 | 32–43 | 6–16 | 33–196 | 168–223 |
ANOVA v | <0.0001 | 0.0148 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0302 | <0.0001 | 0.0008 |
Polynomial trends u | L *** | Q ** | L ** | L *** | Q * | Q *** | L * | NS | L *** | NS |
Hydraulic Retention Time (d)z | Size Index y | Plant Length x | Plant Width w | Plant Height u | SPAD v Value |
---|---|---|---|---|---|
cm | |||||
7 DAP | |||||
4 | 8.4 | 10.9 | 10.9 | 8.6 | |
8 | 8.5 | 11.2 | 10.7 | 8.0 | |
12 | 8.3 | 10.8 | 10.7 | 8.3 | |
16 | 8.1 | 10.4 | 10.7 | 8.3 | |
ANOVA | 0.348 | 0.0719 | 0.9 | 0.0004 | |
Polynomial trends | NS | NS | NS | NS | |
14 DAP | |||||
4 | 16 | 19.8 | 20.2 | 22.4 | |
8 | 15.4 | 19.3 | 19.8 | 23.9 | |
12 | 16 | 19.8 | 20.3 | 22.4 | |
16 | 15.7 | 19.3 | 20.1 | 21.8 | |
ANOVA | 0.0127 | 0.0885 | 0.3098 | <0.0001 | |
Polynomial trends | NS | NS | NS | Q *** | |
21 DAP | |||||
4 | 20.4 | 24.7 | 26.0 | 23.9 | |
8 | 19.1 | 23.2 | 24.3 | 24.9 | |
12 | 19.6 | 23.8 | 25.0 | 24.9 | |
16 | 19.8 | 24.1 | 25.3 | 23.5 | |
ANOVA | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Polynomial trends | Q *** | Q *** | Q *** | Q *** | |
28 DAP | |||||
4 | 22.5 | 27.1 | 28.3 | 22.3 | |
8 | 21.7 | 26.1 | 27.1 | 24.4 | |
12 | 22 | 26.5 | 27.5 | 23.3 | |
16 | 22.1 | 26.6 | 27.5 | 23.8 | |
ANOVA t | 0.004 | 0.0147 | 0.0168 | <0.0001 | |
Polynomial trends | Q *** | Q * | Q * | Q ** |
Hydraulic Retention Time (d) z | Root Length (cm) | Plant Mass y | Dry Mass | Dry Shoot Mass | Dry Root Mass | R/S Ratio x | Water | Mass |
---|---|---|---|---|---|---|---|---|
gram | % | |||||||
4 | 47.1 | 162.2 | 7.0 | 5.0 | 1.9 | 0.41 | 0.95 | 0.05 |
8 | 45.4 | 157.7 | 6.5 | 4.5 | 1.9 | 0.44 | 0.96 | 0.04 |
12 | 41.5 | 155.5 | 6.5 | 4.6 | 1.8 | 0.42 | 0.95 | 0.05 |
16 | 43.8 | 147.1 | 6.6 | 4.7 | 1.8 | 0.40 | 0.95 | 0.05 |
ANOVA w | 0.0004 | 0.011 | 0.0008 | 0.0005 | 0.0019 | <0.0001 | 0.0121 | 0.0121 |
Polynomial trends v | NS | L * | Q * | Q * | L *** | Q ** | Q * | Q * |
Hydraulic Retention Time (d) z | Nitrate (mg·L−1) y | pH | EC x |
---|---|---|---|
4 | 376 | 7.0 | 1.1 |
8 | 395 | 6.9 | 1.1 |
12 | 364 | 7.1 | 1.0 |
16 | 408 | 7.3 | 1.1 |
ANOVA w | 0.0025 | 0.0028 | 0.0002 |
Polynomial trends v | NS | L * | NS |
Hydraulic Retention Time (d) z | Nitrogen y | Phosphorus | Potassium | Magnesium | Calcium | Manganese x | Boron | Copper | Zinc | Iron |
---|---|---|---|---|---|---|---|---|---|---|
g 100 g−1 Dry Mass | mg·kg−1 Dry Mass | |||||||||
14 DAP | ||||||||||
4 | 6.5 | 0.9 | 9.0 | 0.3 | 1.1 | 83.9 | 22.2 | 7.1 | 53.8 | 165.6 |
8 | 5.9 | 0.8 | 7.7 | 0.3 | 1.0 | 84.7 | 22.8 | 4.9 | 42.0 | 135.7 |
12 | 6.4 | 0.9 | 9.4 | 0.3 | 1.2 | 78.3 | 24.3 | 6.7 | 48.5 | 141.1 |
16 | 6.4 | 0.9 | 9.2 | 0.3 | 1.2 | 90.3 | 24.3 | 6.7 | 43.9 | 122.0 |
Sufficiency w | 4.2–5.0 | 0.4–0.6 | 6.0–7.0 | 0.5–3.5 | 2.3–3.5 | 55–110 | 32–43 | 6–16 | 33–196 | 168–223 |
ANOVA | 0.0001 | 0.0003 | 0.0001 | 0.065 | 0.0096 | 0.4776 | 0.0663 | <0.0001 | 0.0048 | 0.2348 |
Polynomial trend | Q * | NS | NS | NS | NS | NS | NS | Q ** | NS | NS |
28 DAP | ||||||||||
4 | 6.1 | 0.9 | 9.6 | 0.3 | 1.2 | 90.9 | 26.5 | 5.2 | 42.1 | 104.5 |
8 | 5.9 | 0.9 | 9.6 | 0.4 | 1.4 | 99.3 | 29.1 | 4.8 | 33.7 | 134.0 |
12 | 5.8 | 0.8 | 9.2 | 0.3 | 1.2 | 98.2 | 27.4 | 4.9 | 37.3 | 110.1 |
16 | 5.6 | 0.8 | 9.3 | 0.3 | 1.3 | 98.6 | 27.5 | 4.7 | 34.8 | 132.2 |
Sufficiency w | 4.2–5.0 | 0.4–0.6 | 6.0–7.0 | 0.5–3.5 | 2.3–3.5 | 55–110 | 32–43 | 616 | 33–196 | 168–223 |
ANOVA v | 0.0215 | 0.0698 | 0.6104 | 0.0069 | 0.0268 | 0.6621 | 0.0699 | 0.7829 | 0.0798 | 0.4002 |
Polynomial trend. u | NS | NS | NS | Q * | NS | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace-Springer, N.; Wells, D.E.; Pickens, J.M.; Ayipio, E.; Kemble, J. Effects of Hydraulic Retention Time of Aquaculture Effluent on Nutrient Film Technique Lettuce Productivity. Agronomy 2022, 12, 2570. https://doi.org/10.3390/agronomy12102570
Wallace-Springer N, Wells DE, Pickens JM, Ayipio E, Kemble J. Effects of Hydraulic Retention Time of Aquaculture Effluent on Nutrient Film Technique Lettuce Productivity. Agronomy. 2022; 12(10):2570. https://doi.org/10.3390/agronomy12102570
Chicago/Turabian StyleWallace-Springer, Nathan, Daniel E. Wells, Jeremy M. Pickens, Emmanuel Ayipio, and Joseph Kemble. 2022. "Effects of Hydraulic Retention Time of Aquaculture Effluent on Nutrient Film Technique Lettuce Productivity" Agronomy 12, no. 10: 2570. https://doi.org/10.3390/agronomy12102570
APA StyleWallace-Springer, N., Wells, D. E., Pickens, J. M., Ayipio, E., & Kemble, J. (2022). Effects of Hydraulic Retention Time of Aquaculture Effluent on Nutrient Film Technique Lettuce Productivity. Agronomy, 12(10), 2570. https://doi.org/10.3390/agronomy12102570