The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops
Abstract
:1. Introduction
2. Solar Radiation in Evapotranspiration Models
3. Extensive Crop Evapotranspiration and Advances in Remote Sensing
3.1. Energy Balance Using Remote Sensing
3.1.1. Surface Energy Balance Algorithm for Land (SEBAL)
3.1.2. Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC)
3.1.3. Simplified Surface Energy Balance (SSEB)
4. Radiation in the Transpiration Models for Greenhouses
4.1. Environ Analysis in Semi-Closed Biosystems by Using CFD
4.2. The Discrete Ordenate (DO) Radiation Sub-Model in CFD
5. Radiation in Indoor Crops
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martínez-Luna, D.; Mora-Flores, J.S.; Exebio-García, A.A.; Arana-Coronado, O.A.; Arjona-Suárez, E. Valor económico del agua en el Distrito de Riego 100, Alfajayucan, Hidalgo. Terra Latinoam. 2021, 39, e544. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Squeo, F.A.; León, M.F. Transpiración. In Fisiología Vegetal; Ediciones Universidad de La Serena; Squeo, F.A., Cardemil, L., Eds.; Universidad de La Serena: La Serena, Chile, 2007. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Hankerson, B.; Kjaersgaard, J.; Hay, C. Estimation of Evapotranspiration from Fields with and without Cover Crops Using Remote Sensing and in situ Methods. Remote Sens. 2012, 4, 3796–3812. [Google Scholar] [CrossRef] [Green Version]
- Mkhwanazi, M.; Chávez, J.L.; Andales, A.A. SEBAL-A: A remote sensing ET algorithm that accounts for advection with limited data. Part I: Development and validation. Remote Sens. 2015, 7, 15046–15067. [Google Scholar] [CrossRef] [Green Version]
- Irmak, A.; Ratcliffe, I.; Ranade, P.; Hubbard, K.G.; Singh, R.K.; Kamble, B.; Kjaersgaard, J. Estimation of land surface evapotranspiration with a satellite remote sensing procedure. Great Plains Res. 2011, 21, 73–88. [Google Scholar]
- Li, Y.; Liu, C.; Liang, K. Spatial Patterns and Influence Factors of Conversion Coefficients between Two Typical Pan Evaporimeters in China. Water 2016, 8, 422. [Google Scholar] [CrossRef] [Green Version]
- Ta, T.H.; Shin, J.H.; Noh, E.H.; Son, J.E. Transpiration, growth, and water use efficiency of paprika plants (Capsicum annuum L.) as affected by irrigation frequency. Hortic. Environ. Biotechnol. 2012, 53, 129–134. [Google Scholar] [CrossRef]
- Tagliaferre, C.; de Oliveira, R.A.; Sediyama, G.C.; Cecon, P.R.; Martinez, M.A.; Materán, F.J.V. Performance of the Minievaporimeter UFV-1 to estimate the reference evapotranspiration in relation to the constant groundwater Table lysimeter. Idesia 2013, 31, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Tsitsimpelis, I.; Wolfenden, I.; Taylor, C.J. Development of a grow-cell test facility for research into sustainable controlled-environment agriculture. Biosyst. Eng. 2016, 150, 40–53. [Google Scholar] [CrossRef]
- Cuellar-Murcia, C.A.; Suárez-Salazar, J.C. Flujo de savia y potencial hídrico en plantas de tomate (Solanum lycopersicum L.) bajo condiciones de invernadero. Rev. Colomb. De Cienc. Hortícolas 2018, 12, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Montero, J.I. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Sci. Hortic. 2005, 105, 163–175. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Kitta, E.; Katsoulas, N. Estimation of Aerodynamic and Canopy Resistances in a Mediterranean Greenhouse Based on Instantaneous Leaf Temperature Measurements. Agronomy 2020, 10, 1985. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, J.S.; Son, J.E. Estimating the actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants. Agric. Water Manag. 2014, 135, 9–18. [Google Scholar] [CrossRef]
- Valipour, M. Calibration of mass transfer-based models to predict reference crop evapotranspiration. Appl. Water Sci. 2015, 7, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Katsoulas, N.; Stanghellini, C. Modelling Crop Transpiration in Greenhouses: Different Models for Different Applications. Agronomy 2019, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 2010, 20, 1–18. [Google Scholar] [CrossRef]
- Rojas, A.; Noriega, A.; Herrera, G.; Chaparro, R. Sistema de riego para invernaderos hidropónicos basado en la evapotranspiración del cultivo. Nat. Y Desarro. 2003, 1, 23–29. [Google Scholar]
- Smigaj, M.; Gaulton, R.; Suarez, J.C.; Barr, S.L. Use of miniature thermal cameras for detection of physiological stress in conifers. Remote Sens. 2017, 9, 957. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing. Remote Sens. 2019, 11, 605. [Google Scholar] [CrossRef] [Green Version]
- Hermida-Carrera, C.; Kapralov, M.V.; Galmés, J. Rubisco catalytic properties and temperature response in crops. Plant Physiol. 2016, 171, 2549–2561. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Meng, Z.; Zhang, G.; Qi, M.; Sun, Z.; Liu, Y.; Li, T. Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front. Plant Sci. 2017, 8, 365. [Google Scholar] [CrossRef]
- Yokoyama, G.; Yasutake, D.; Tanizaki, T.; Kitano, M. Leaf wetting mitigates midday depression of photosynthesis in tomato plants. Photosynthetica 2019, 57, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. Remote Sensing in Water Resources Management: The State of the Art; International Water Management Institute (IWMI): Colombo, Sri Lanka, 1998; p. 118. Available online: https://publications.iwmi.org/pdf/H022865.pdf (accessed on 25 May 2022).
- Bastiaanssen, W. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef] [Green Version]
- Heilman, J.L.; Kanemasu, E.T. An evaluation of a resistance form of the energy balance to estimate evapotranspiration. Agron. J. 1976, 68, 607–612. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Pettier, A.; Jackson, R.D. Estimation of areal evapotranspiration based on remotely sensed surface temperature. Agric. Water Manag. 1983, 7, 341–350. [Google Scholar] [CrossRef]
- Reginato, R.; Jackson, R.; Pinter, P. Evapotranspiration calculated from remote multispectral and ground station meteorological data. Remote Sens. Environ. 1985, 18, 75–89. [Google Scholar] [CrossRef]
- Hatfield, J.L. Methods of estimating evapotranspiration. Irrig. Agric. Lands ASA Agron. Monogr. 1990, 30, 435–474. [Google Scholar]
- Hatfield, J.L.; Fuchs, M. Evapotranspiration models. In Management of Farm Irrigation Systems; ASAE Monograph; Hoffman, G.J., Howell, T.A., Solomon, K.H., Eds.; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1990; pp. 33–59. [Google Scholar]
- Senkondo, W.; Munishi, S.E.; Tumbo, M.; Nobert, J.; Lyon, S.W. Comparing Remotely-Sensed Surface Energy Balance Evapotranspiration Estimates in Heterogeneous and Data-Limited Regions: A Case Study of Tanzania’s Kilombero Valley. Remote Sens. 2019, 11, 1289. [Google Scholar] [CrossRef]
- Farah, H.O.; Bastiaanssen, W.G.M. Impact of spatial variations of land surface parameters on regional evaporation: A case study with remote sensing data. Hydrol. Process. 2001, 15, 1585–1607. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, B.; Su, W.; Shen, W.; Wang, C.; You, D.; Liu, Z. Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math. Comput. Model. 2011, 54, 1086–1092. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Kar, S.K. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M.; Trezza, R.; Waters, R.; Bastiaanssen, W.G.M. SEBAL (Surface Energy Balance Algorithms for Land): Advanced Training and User’s Manual, Version 1.0; Idaho Department of Water Resources: Boise, ID, USA, 2002; p. 98.
- Allen, R.G.; Morton, C.; Kamble, B.; Kilic, A.; Huntington, J.; Thau, D.; Gorelick, N.; Erickson, T.; Moore, R.; Trezza, R.; et al. EEFlux: A Landsat-based Evapotranspiration Mapping Tool on the Google Earth Engine. In Proceedings of the ASABE/IA Irrigation Symposium, Long Beach, CA, USA; 2015; pp. 10–12. [Google Scholar] [CrossRef] [Green Version]
- Tasumi, M. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2003. [Google Scholar]
- Guillermo, F.O.; Ortega-Farías, S.; Daniel, D.; David, F.L.; Fuentes-Peñailillo, F. Water: Tools and functions to estimate actual evapotranspiration using Land Surface Energy Balance Model in R. R J. 2016, 8, 352–369. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L.; Unsworth, M.H. Principles of Enviromental Physics; Eduard Arnold: London, UK, 1990. [Google Scholar]
- Stanghellini, C. Transpiration of Greenhouse Crops: An Aid to Climate Management. Ph D. Thesis, Institute of Agricultural Engineering IMAG, Wageningen, The Netherlands, 1987. [Google Scholar]
- Jolliet, O.; Bailey, B.J. The effects of climate ion tomato transpiration in greenhouse: Measurements and models comparison. Agric. For. Meteorol. 1992, 58, 43–62. [Google Scholar] [CrossRef]
- Fynn, R.P.; Al-Shooshan, A.; Short, T.H.; McMahon, R.W. Evapotranspiration measurements and modeling for a potted chrysanthemum crop. Trans. ASAE 1993, 36, 1907–1913. [Google Scholar] [CrossRef]
- Jolliet, O. HORTITRANS, a model for predicting and optimizing humidity and transpiration in greenhouses. J. Agric. Eng. Res. 1994, 57, 23–37. [Google Scholar] [CrossRef]
- Papadakis, G.; Frangoudakis, A.; Kristis, S. Experimental investigation and modelling of heat and mass trasnfer betwen a tomato crop and the greenhouse environement. J. Agric. Eng. Res. 1994, 57, 217–227. [Google Scholar] [CrossRef]
- Boulard, T.; Wang, S. Radiative and convective heterogeneity in a plastic tunnel: Consequences on crop transpiration. Plasticulture 2002, 121, 23–35. [Google Scholar]
- Boulard, T.; Wang, S. Greenhouse crop transpiration simulation from external climate conditions. Agric. For. Meteorol. 2000, 100, 25–34. [Google Scholar] [CrossRef]
- Sbita, L.; Boulard, T.; Baille, A.; Annabi, M. A greenhouse climate model including the effects of ventilation and crop transpiration. Validation for south tunissia condictions. Acta Hortic. 1998, 458, 57–64. [Google Scholar] [CrossRef]
- Seginer, I. The Penman-Monteith evapotranspiration equations as an element in greenhouse ventilation design. Biosyst. Eng. 2002, 82, 423–439. [Google Scholar] [CrossRef]
- Montero, J.I.; Antón, A.; Muñoz, P.; Lorenzo, P. Transpiration from geranium grow under high temperatura and low humidities in greenhouses. Agric. For. Meteorol. 2001, 107, 323–332. [Google Scholar] [CrossRef]
- Bailey, B.; Montero, J.; Biel, C.; Wilkinson, D.; Anton, A.; Jolliet, O. Transpiration of Ficus benjamina: Comparison of measurements with predictions of the Penman-Monteith model and a simplified version. Agric. For. Meteorol. 1993, 65, 229–243. [Google Scholar] [CrossRef]
- McAdams, W.H. Heat Transmission; McGraw-Hill: New York, NY, USA, 1954; 532p. [Google Scholar]
- Grover, H.; Erk, S. Fundammentals of Heat Transfer; McGraw-Hill: New York, NY, USA, 1961; 696p. [Google Scholar]
- Baille, M.; Baille, A.; Delmon, D. Microclimate and transpiration of greenhouse rose crops. Agric. For. Meteorol. 1994, 71, 83–97. [Google Scholar] [CrossRef]
- Hamer, P.J.C. Validation of amodel for irrigation control of a greenhouse crop. Acta Hortic. 1998, 458, 75–82. [Google Scholar] [CrossRef]
- Chalabi, Z.; Bailey, B. Sensitivity analysis of a non-steady state model of the greenhouse microclimate. Agric. For. Meteorol. 1991, 56, 111–127. [Google Scholar] [CrossRef]
- Prenger, J.J.; Fynn, R.P.; Hansen, R.C. A comparison of four evapotranspiration models in a greenhouse environment. Trans. ASAE 2002, 45, 1779–1788. [Google Scholar] [CrossRef]
- Zamarripa, J.R.; López Cruz, I.L.; Castillo Salazar, J.A.; Ramírez Arias, J.A. Comparación de tres modelos para estimar la transpiración de un cultivo de jitomate en invernadero. Terra Latinoam. 2013, 31, 9–21. [Google Scholar]
- Baeza, E.J. Optimización del Diseño de los Sistemas de Ventilación en Invernadero Tipo Parral. Ph.D. Thesis, Universidad de Almeria, Almeria, Spain, 2007. [Google Scholar]
- Lee, I.; Short, T.H. A CFD model of volumetric flow rates for a naturally ventilated, multi-span greenhouse. In Proceedings of the 91st Annual International Meeting of ASAE, Orlando, FL, USA, 12–16 July 1998; ASAE Paper No. 987011. ASAE: St. Joseph, MI, USA, 1998. [Google Scholar]
- Lee, I.; Short, T.H. Predicted effects of internal horizontal screens on natural ventilation of a multi-span greenhouse. In Proceedings of the 91st Annual International Meeting of ASAE, Orlando, FL, USA, 12–16 July 1998; ASAE Paper No. 987014. ASAE: St. Joseph, MI, USA, 1998. [Google Scholar]
- Lee, I.; Short, T.H. Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse. Trans. ASAE 2000, 43, 745–753. [Google Scholar] [CrossRef]
- Haxaire, R.; Boulard, T.; Mermier, M. Greenhouse natural ventilation by wind forces. Acta Hortic. 2000, 534, 31–40. [Google Scholar] [CrossRef]
- Reichrath, S.; Davies, T. Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo-type glasshouse. J. Wind Eng. Ind. Aerodyn. 2002, 90, 139–149. [Google Scholar] [CrossRef]
- Roy, J.; Boulard, T. CFD predictions of natural ventilation and climate in a tunnel-type greenhouse using a transpiration active crop model. Acta Hortic. 2004, 633, 205–212. [Google Scholar] [CrossRef]
- Roy, J.; Boulard, T.; Lee, L.; Chave, M.; Nieto, C. CFD prediction of the distribution and Deposition of fungal spores in a greenhouse. Acta Hortic. 2006, 719, 279–286. [Google Scholar] [CrossRef]
- Flores-Velazquez, J. Análisis del Clima en los Principales Modelos de Invernaderos en Mexico Usando CFD. Ph.D Thesis, Universidad de Almeria, Almeria, Spain, 2010. [Google Scholar]
- Bournet, P.-E.; Rojano, F. Advances of Computational Fluid Dynamics (CFD) applications in agricultural building modelling: Research, applications and challenges. Comput. Electron. Agric. 2022, 201, 107277. [Google Scholar] [CrossRef]
- Badji, A.; Benseddik, A.; Bensaha, H.; Boukhelifa, A.; Hasrane, I. Design, technology, and management of greenhouse: A review. J. Clean. Prod. 2022, 373, 133753. [Google Scholar] [CrossRef]
- Yang, X.; Short, T.; Fox, R.; Bauerle, W. Leaf temperature and stomatal resistance of greenhouse cucumber crop. Agric. For. Meteorol. 1990, 5, 197–209. [Google Scholar] [CrossRef]
- Pollet, S. Aplication of Penman-Monteith model to calculate the evapotranspiration of head letuce Latuca sativa L. var capitata in glasshouse conditions. Acta Hortic. 1999, 5, 25–30. [Google Scholar]
- Bartzanas, T.; Kittas, C.; Boulard, T. Effect of ventilation arrangement on winward ventilation of a tunnel greenhouse. Biosyst. Eng. 2004, 88, 479–490. [Google Scholar] [CrossRef]
- Kichah, A.; Bournet, P.; Chassériaux, G. Predicting crop transpiration in a glasshouse using computational fluid dynamics (CFD). Acta Hortic. 2008, 801, 933–940. [Google Scholar] [CrossRef]
- Bournet, P.E.; Kichah, A.; Chasseriaux, G. Analysis of radiation and transpiration heterogeneity inside a crop cover using computational fluid dynamics. Acta Hort. 2011, 893, 679–686. [Google Scholar] [CrossRef]
- Piscia, D.; Montero, J.I.; Baeza, E.; Bailey, B.J. A CFD greenhouse night-time condensation model. Biosyst. Eng. 2012, 111, 141–154. [Google Scholar] [CrossRef]
- Zhang, Y.; Kacira, M. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD). Biosyst. Eng. 2022, 220, 73–86. [Google Scholar] [CrossRef]
- Fuentes, D.; Flores, J.; Aguilar, A.; Roblero, R. Response of LED lights intensity on lettuce production in a home vertical farm. Rev. Fac. Agron. 2022, 39, e223920. [Google Scholar] [CrossRef]
- Ramos Gonzalías, Y.; Ramírez Lasso, E. Desarrollo de un sistema de iluminación artificial LED para cultivos en interiores—Vertical Farming (VF). Inf. Técnico 2016, 80, 111–120. [Google Scholar] [CrossRef]
- Thompson, H.C.; Langhans, R.W.; Both, A.-J.; Albright, L.D. Shoot and Root Temperature Effects on Lettuce Growth in a Floating Hydroponic System. J. Am. Soc. Hortic. Sci. 1998, 123, 361–364. [Google Scholar] [CrossRef] [Green Version]
- Naranjani, B.; Najafianashrafi, Z.; Pascual, C.; Agulto, I.; Chuang, P.-Y.A. Computational analysis of the environment in an indoor vertical farming system. Int. J. Heat Mass Transf. 2021, 186, 122460. [Google Scholar] [CrossRef]
- Zhang, X.; He, D.; Niu, G.; Yan, Z.; Song, J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng. 2018, 11, 33–40. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, Y.; Wang, Y.; Liu, Y.; Zhao, W.; Piao, F.; Sun, Z. The effect of different spectral LED light son the phenotypics and physiological charactristics of lettuce (Lactuca sativa) at picking stage. J. Biochem. Biotech. 2017, 1, 14–19. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Velazquez, J.; Akrami, M.; Villagrán, E. The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops. Agronomy 2022, 12, 2593. https://doi.org/10.3390/agronomy12112593
Flores-Velazquez J, Akrami M, Villagrán E. The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops. Agronomy. 2022; 12(11):2593. https://doi.org/10.3390/agronomy12112593
Chicago/Turabian StyleFlores-Velazquez, Jorge, Mohammad Akrami, and Edwin Villagrán. 2022. "The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops" Agronomy 12, no. 11: 2593. https://doi.org/10.3390/agronomy12112593
APA StyleFlores-Velazquez, J., Akrami, M., & Villagrán, E. (2022). The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops. Agronomy, 12(11), 2593. https://doi.org/10.3390/agronomy12112593