Effects of Microplastics on Growth and Physiological Characteristics of Tobacco (Nicotiana tabacum L.)
Abstract
:1. Introduction
2. Materials and Methods: Photosynthetic Pigment
2.1. Experimental Design
2.2. Growing Conditions
2.3. Measurement of Tobacco Growth Index and Biomass
2.4. Tobacco Physiological Indicators
2.5. Data Processing
3. Results
3.1. The Effect of Microplastics on the Growth of Tobacco
3.2. The Effect of Microplastics on the Root Architecture of Tobacco
3.3. Effects of Microplastics on Chlorophyll Content and Stress Resistance of Tobacco Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; Mcgonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Machado, A.A.D.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Onishi, T.; Ito, K. Effects of plastic-hole mulching on effective rainfall and readily available soil moisture under soybean (Glycine max) cultivation. Paddy Water Environ. 2017, 15, 659–668. [Google Scholar] [CrossRef]
- Nolte, T.M.; Hartmann, N.B.; Kleijn, J.M.; Garnæs, J.; van de Meent, D.; Hendriks, A.J.; Baun, A. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat. Toxicol. 2017, 183, 11–20. [Google Scholar] [CrossRef]
- Sánchez, C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro-and microplastics biodegradation. Biotechnol. Adv. 2020, 40, 107501. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Reganold, J.P.; Flury, M. Impacts of biodegradable plastic mulches on soil health. Agric. Ecosyst. Environ. 2019, 273, 36–49. [Google Scholar] [CrossRef]
- Li, L.Z.; Luo, Y.M.; Li, R.; Zhou, Q.; Peijnenburg, W.J.G.M.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar] [CrossRef]
- Bandmann, V.; Müller, J.D. Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Lett. 2012, 586, 3626–3632. [Google Scholar] [CrossRef] [Green Version]
- Rillig, M.C.; Ingraffia, R.; Machado, A.A.D.S. Microplastic Incorporation into Soil in Agroecosystems. Front. Plant Sci. 2017, 8, 1805. [Google Scholar] [CrossRef] [Green Version]
- Rillig, M.C.; Lehmann, A.; Machado, A.A.D.S.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Lehnert, T. Microplastic shape, concentration and polymer type affect soil properties and plant biomass. bioRxiv 2020, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qi, W. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system? Environ. Int. 2021, 156, 106708. [Google Scholar] [CrossRef] [PubMed]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.L.; Yang, X.M. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticumaestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.A.D.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Silva, Y.S.K.; Rajagopalan, U.M.; Kadono, H. Microplastics on the growth of plants and seed germination in aquatic and terrestrial ecosystems. Glob. J. Environ. Sci. Manag. 2021, 7, 347–368. [Google Scholar]
- Van Weert, S.; Redondo-Hasselerharm, P.E. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Sci. Total Environ. 2019, 654, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Bulda, O.V.; Rassadina, V.V.; Alekseichuk, H.N.; Laman, N.A. Spectrophotometric measurement of carotenes, xanthophylls, and chlorophylls in extracts from plant seeds. Russ. J. Plant Physiol. 2008, 55, 544–551. [Google Scholar] [CrossRef]
- Zhou, B.; Deng, Y.S.; Kong, F.-Y.; Li, B.; Meng, Q.-W. Overexpression of a tomato carotenoid ɛ-hydroxylase gene alleviates sensitivity to chilling stress in transgenic tobacco. Plant Physiol. Biochem. 2013, 70, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.F.; Li, Y.Y. NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci. 2005, 168, 423–430. [Google Scholar]
- Jebara, S.; Jebara, M.; Limam, F.; Aouani, M.E. Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J. Plant Physiol. 2005, 162, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, N.; Prasad, M.N.V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci. 2001, 160, 291–299. [Google Scholar] [CrossRef]
- Urbina, M.A.; Correa, F.; Aburto, F.; Ferrio, J.P. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Sci. Total Environ. 2020, 741, 140216. [Google Scholar] [CrossRef]
- Kalcikova, G.; Gotvajn, A.Z.; Kladnik, A.; Jemec, A. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environ. Pollut. 2017, 230, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Zhai, G.S. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-Critical review. Nanotoxicology 2016, 10, 257–278. [Google Scholar] [CrossRef] [PubMed]
- Berbeć, A.K.; Matyka, M. Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland. Agriculture 2020, 10, 551. [Google Scholar] [CrossRef]
- Meng, F.R.; Yang, X.M.; Riksen, M.; Xu, M.; Geissen, V. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Sci. Total Environ. 2021, 755, 142516. [Google Scholar] [CrossRef]
- Yan, N.; Gai, X.; Xue, L.; Du, Y.; Shi, J.; Liu, Y. Effects of NtSPS1 Overexpression on Solanesol Content, Plant Growth, Photosynthesis, and Metabolome of Nicotiana tabacum. Plants 2020, 9, 518. [Google Scholar] [CrossRef] [Green Version]
- Fichman, Y.; Mittler, R. Rapid systemic signaling during abiotic and biotic stresses: Is the ROS wave master of all trades? Pant. J. 2020, 102, 887–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Qiu, J.; Tang, Z.; Hu, H.; Meng, F.; Li, A. Effects of Polystyrene Microplastics on Growth and Toxin Production of Alexandrium pacificum. Toxins 2021, 13, 293. [Google Scholar] [CrossRef] [PubMed]
- Alscher, R.G.; Donahue, J.L. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol. Plant. 1997, 100, 224–233. [Google Scholar] [CrossRef]
- Jiang, X.F.; Chen, H. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Viciafaba. Environ. Pollut. 2019, 250, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
Index | CK | T1 | T2 | T3 |
---|---|---|---|---|
Number of Leaves | 4.6 ± 0.5 a | 4.7 ± 0.7 a | 4.4 ± 0.5 a | 4.4 ± 0.7 a |
Plant Height (cm) | 3.0 ± 0.3 a | 3.1 ± 0.6 a | 2.9 ± 0.8 a | 2.2 ± 0.9 b |
Stem Diameter (mm) | 4.3 ± 0.3 a | 4.2 ± 0.6 a | 4.2 ± 0.4 a | 3.7 ± 0.5 b |
Maximum Leaf Area (cm2) | 59.7 ± 13.2 a | 59.1 ± 19.6 a | 56.5 ± 22.0 a | 25.2 ± 13.1 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Gao, W.; Cai, K.; Liu, T.; Wang, X. Effects of Microplastics on Growth and Physiological Characteristics of Tobacco (Nicotiana tabacum L.). Agronomy 2022, 12, 2692. https://doi.org/10.3390/agronomy12112692
Zhang S, Gao W, Cai K, Liu T, Wang X. Effects of Microplastics on Growth and Physiological Characteristics of Tobacco (Nicotiana tabacum L.). Agronomy. 2022; 12(11):2692. https://doi.org/10.3390/agronomy12112692
Chicago/Turabian StyleZhang, Shuyi, Weichang Gao, Kai Cai, Taoze Liu, and Xingshi Wang. 2022. "Effects of Microplastics on Growth and Physiological Characteristics of Tobacco (Nicotiana tabacum L.)" Agronomy 12, no. 11: 2692. https://doi.org/10.3390/agronomy12112692
APA StyleZhang, S., Gao, W., Cai, K., Liu, T., & Wang, X. (2022). Effects of Microplastics on Growth and Physiological Characteristics of Tobacco (Nicotiana tabacum L.). Agronomy, 12(11), 2692. https://doi.org/10.3390/agronomy12112692