Survey Reveals Frequency of Multiple Resistance to Tribenuron-Methyl, Bensulfuron-Methyl and Halosulfuron-Methyl in Cleavers (Galium aparine L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Collection
2.2. Greenhouse Screening
2.3. Herbicide Application and Cross-Resistance Bioassay
2.4. Multiple Resistance
2.5. Statistical Analysis
3. Results
3.1. Tribenuron-Methyl Resistance and Cross-Resistance Survey in 2017
3.2. Tribenuron-Methyl Resistance and Cross-Resistance Survey in 2018
3.3. Tribenuron-Methyl Resistance and Cross-Resistance Survey in 2019
3.4. Tribenuron-Methyl Resistance and Cross-Resistance Survey in 2020
3.5. Multiple Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, H.; Huang, Z.; Jiang, C.; Zhang, C.; Li, R.; Zhou, Z.; Li, G.; Zhou, F.; Zhu, W.; Wei, S. Weed species composition and characterization in wheat fields along the middle and lower Yangtze River. Plant Prot. 2021, 47, 203–211. [Google Scholar]
- Jabran, K.; Mahmood, K.; Melander, B.; Bajwa, A.A.; Kudsk, P. Weed dynamics and management in wheat. Adv. Agron. 2017, 145, 97–166. [Google Scholar]
- Wang, H.; Zhang, B.; Dong, L.; Lou, Y. Seed germination ecology of catchweed bedstraw (Galium aparine). Weed Sci. 2016, 64, 634–641. [Google Scholar] [CrossRef]
- Royo-Esnal, A.; Torra, J.; Conesa, J.A.; Recasens, J. Emergence and early growth of Galium aparine and Galium spurium. Weed Res. 2012, 52, 458–466. [Google Scholar] [CrossRef]
- Defelice, M.S. Catchweed bedstraw or cleavers, Galium aparine L.—A very “Sticky” subject. Weed Technol. 2002, 16, 467–472. [Google Scholar] [CrossRef]
- Taylor, K. Galium aparine L. J. Ecol. 1999, 87, 713–730. [Google Scholar] [CrossRef]
- Goodman, A. Mechanical adaptations of cleavers (Galium aparine). Ann. Bot. 2005, 95, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Burton, N.R.; Beckie, H.J.; Willenborg, C.J.; Shirtliffe, S.J.; Schoenau, J.J.; Johnson, E.N. Seed shatter of six economically important weed species in producer fields in Saskatchewan. Can. J. Plant Sci. 2016, 97, 266–276. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wu, X.; He, D. Preliminary report on weeds infesting wheat fields of Zhenjiang city, Jiangsu Province. J. Weed Sci. 2016, 34, 17–21. [Google Scholar]
- Mennan, H.; Zandstra, B.H. Effect of wheat (Triticum aestivum) cultivars and seeding rate on yield loss from Galium aparine (cleavers). Crop Prot. 2005, 24, 1061–1067. [Google Scholar] [CrossRef]
- Pan, L.; Guo, Q.; Wang, J.; Shi, L.; Yang, X.; Zhou, Y.; Yu, Q.; Bai, L. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli. J. Hazard. Mater. 2022, 428, 128225. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gu, G.; Wang, C.; Chen, Z.; Yan, W.; Jin, M.; Xie, G.; Zhou, J.; Deng, X.W.; Tang, X. Trp548Met mutation of acetolactate synthase in rice confers resistance to a broad spectrum of ALS-inhibiting herbicides. Crop J. 2021, 9, 750–758. [Google Scholar] [CrossRef]
- Xu, Y.; Li, S.; Hao, L.; Li, X.; Zheng, M. Tribenuron-methyl-resistant Descurainia sophia L. exhibits negative cross-resistance to imazethapyr conferred by a Pro197Ser mutation in acetolactate synthase and reduced metabolism. Pest Manag. Sci. 2022, 78, 1467–1473. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, L.; Li, X.; Zheng, M. Investigation of resistant level to tribenuron-methyl, diversity and regional difference of the resistant mutations on acetolactate synthase (ALS) isozymes in Descurainia sophia L. from China. Pestic. Biochem. Physiol. 2020, 169, 104653. [Google Scholar] [CrossRef] [PubMed]
- Hulme, P.E. Global drivers of herbicide-resistant weed richness in major cereal crops worldwide. Pest Manag. Sci. 2022, 78, 1824–1832. [Google Scholar] [CrossRef]
- Torra, J.; Montull, J.M.; Calha, I.M.; Osuna, M.D.; Portugal, J.; de Prado, R. Current status of herbicide resistance in the Iberian Peninsula: Future trends and challenges. Agronomy 2022, 12, 929. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2013, 70, 1306–1315. [Google Scholar] [CrossRef]
- Tranel, P.; Wright, T. Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Sci. 2002, 50, 700–712. [Google Scholar] [CrossRef]
- Li, J.; Gao, X.; Li, M.; Fang, F. Resistance evolution and mechanisms to ALS-inhibiting herbicides in Capsella bursa-pastoris populations from China. Pestic. Biochem. Physiol. 2019, 159, 17–21. [Google Scholar] [CrossRef]
- Suzukawa, A.K.; Bobadilla, L.K.; Mallory-Smith, C.; Brunharo, C. Non-target-site resistance in Lolium spp. globally: A review. Front. Plant Sci. 2020, 11, 609209. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Di, Y.; Cai, J.; Chen, Y.; Yuan, S. Target-site resistance mechanisms to tribenuron-methyl and cross-resistance patterns to ALS-inhibiting herbicides of catchweed bedstraw (Galium aparine) with different ALS mutations. Weed Sci. 2018, 67, 183–188. [Google Scholar] [CrossRef]
- Mallory-Smith, C.; Thill, D.; Dial, M. Identification on herbicide resistant prickly letture (Lactuca serriola). Weed Technol. 1990, 1, 163–168. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 23 August 2022).
- Peng, X.; Wang, J.; Duan, M.; Yang, J. The resistance to tribenuron-methyl in Galium aparine in winter wheat fields in northern China. Acta Phytophylacica Sin. 2008, 35, 458–462. [Google Scholar]
- Sun, J.; Wang, J.; Zhang, H.; Liu, J.; Bian, S. Study on mutations in ALS for resistance to tribenuron-methyl in Galium aparine L. Agric. Sci. China 2011, 10, 86–91. [Google Scholar] [CrossRef]
- Cui, H.L.; Wang, C.Y.; Xu, L.L.; Li, X.J. Rapid molecular detection of the resistance of Galium aparine var. tenerum to AHAS inhibitors. J. Plant Prot. 2016, 43, 1049–1054. [Google Scholar]
- Wang, H.; Xiao, W.; Lou, Y.; Sun, Y.; Xu, X. Differences in sensitivity to several herbicides among different geographical populations of Galium aparine in Jiangsu Province. J. Weed Sci. 2017, 35, 16–21. [Google Scholar]
- Squires, C.C.; Coleman, G.R.; Broster, J.C.; Preston, C.; Boutsalis, P.; Owen, M.J.; Jalaludin, A.; Walsh, M.J. Increasing the value and efficiency of herbicide resistance surveys. Pest Manag. Sci. 2021, 77, 3881–3889. [Google Scholar] [CrossRef]
- Westra, E.; Nissen, S.; Getts, T.; Westra, P.; Gaines, T. Survey reveals frequency of multiple resistance to glyphosate and dicamba in kochia (Bassia scoparia). Weed Technol. 2019, 33, 664–672. [Google Scholar] [CrossRef]
- Institute Control of Agrochemicals, Ministry of Agriculture, P.R. China. China Pesticide Information Network. Available online: www.icama.org.cn (accessed on 24 August 2022).
- Jang, S.; Mallory-Smith, C.; Kuk, Y. Inhibition of wheat growth planted after glyphosate application to weeds. Weed Sci. 2020, 68, 373–381. [Google Scholar] [CrossRef]
- Owen, M.J.; Walsh, M.J.; Llewellyn, R.S.; Powles, S.B. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res. 2007, 58, 711–718. [Google Scholar] [CrossRef]
- Warwick, S.I.; Xu, R.; Sauder, C.; Beckie, H.J. Acetolactate synthase target-site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparia). Weed Sci. 2008, 56, 797–806. [Google Scholar] [CrossRef]
- Wang, Q.; Ge, L.; Zhao, N.; Zhang, L.; You, L.; Wang, D.; Liu, W.; Wang, J. A Trp-574-Leu mutation in the acetolactate synthase (ALS) gene of Lithospermum arvense L. confers broad-spectrum resistance to ALS inhibitors. Pestic. Biochem. Physiol. 2019, 158, 12–17. [Google Scholar] [CrossRef]
- Liu, W.; Bi, Y.; Li, L.; Yuan, G.; Du, L.; Wang, J. Target-site basis for resistance to acetolactate synthase inhibitor in Water chickweed (Myosoton aquaticum L.). Pestic. Biochem. Physiol. 2013, 107, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Panozzo, S.; Mascanzoni, E.; Scarabel, L.; Milani, A.; Dalazen, G.; Merotto, A.J.; Tranel, P.J.; Sattin, M. Target-site mutations and expression of ALS gene copies vary according to Echinochloa Species. Genes 2021, 12, 1841. [Google Scholar] [CrossRef]
- Sin, B.; Kadioglu, I. Trp-574-Leu mutation in wild mustard (Sinapis arvensis L.) as a result of als inhibiting herbicide applications. PeerJ 2021, 9, e11385. [Google Scholar] [CrossRef]
- Han, H.; Yu, Q.; Purba, E.; Li, M.; Walsh, M.; Friesen, S.; Powles, S.B. A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Manag. Sci. 2012, 68, 1164–1170. [Google Scholar] [CrossRef]
- Li, M.; Yu, Q.; Han, H.; Vila-Aiub, M.; Powles, S.B. ALS herbicide resistance mutations in Raphanus raphanistrum: Evaluation of pleiotropic effects on vegetative growth and ALS activity. Pest Manag. Sci. 2013, 69, 689–695. [Google Scholar] [CrossRef]
- Singh, S.; Singh, V.; Salas-Perez, R.A.; Bagavathiannan, M.V.; Lawton-Rauh, A.; Roma-Burgos, N. Target-site mutation accumulation among ALS inhibitor-resistant Palmer amaranth. Pest Manag. Sci. 2019, 75, 1131–1139. [Google Scholar] [CrossRef]
- Qu, R.Y.; He, B.; Yang, J.F.; Lin, H.Y.; Yang, W.C.; Wu, Q.Y.; Li, Q.X.; Yang, G.F. Where are the new herbicides? Pest Manag. Sci. 2021, 77, 2620–2625. [Google Scholar] [CrossRef]
- Duke, S.O.; Dayan, F.E. The search for new herbicide mechanisms of action: Is there a ‘holy grail’? Pest Manag. Sci. 2021, 78, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Beckie, H.J.; Tardif, F.J. Herbicide cross resistance in weeds. Crop Prot. 2012, 35, 15–28. [Google Scholar] [CrossRef]
- Deng, W.; Duan, Z.W.; Li, Y.; Cui, H.W.; Peng, C.; Yuan, S.Z. Characterization of target-site resistance to ALS-inhibiting herbicides in Ammannia multiflora populations. Weed Sci. 2022, 70, 292–297. [Google Scholar] [CrossRef]
- Fang, J.P.; Yang, D.C.; Zhao, Z.R.; Chen, J.Y.; Dong, L.Y. A novel Phe-206-Leu mutation in acetolactate synthase confers resistance to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) P. Beauv). Pest Manag. Sci. 2022, 78, 2560–2570. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.N.; Sun, Y.; Liu, Z.; Wei, S.H.; Huang, H.J.; Cao, Y.; Li, W.Y.; Huang, Z.F. Mechanism of resistance to pyroxsulam in multiple-resistant Alopecurus myosuroides from China. Plants 2022, 11, 1645. [Google Scholar] [CrossRef]
- Shen, J.; Yang, Q.; Hao, L.B.; Zhang, L.L.; Li, X.F.; Zheng, M.Q. The metabolism of a novel cytochrome P450 (CYP77B34) in tribenuron-methyl-resistant Descurainia sophia L. to herbicides with different mode of actions. Int. J. Mol. Sci. 2022, 23, 5812. [Google Scholar] [CrossRef]
- Wang, N.; Bai, S.; Bei, F.; Zhao, N.; Jia, S.S.; Jin, T.; Wang, J.X.; Wang, H.Z.; Liu, W.T. Resistance to ALS inhibitors conferred by non-target-site resistance mechanisms in Myosoton aquaticum L. Pestic. Biochem. Physiol. 2022, 184, 105067. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, T.; Wang, K.; Chen, J.; Cao, J.; Gu, T.; Jiang, L.; Lou, Y.; Cao, R.; Wang, H. Survey Reveals Frequency of Multiple Resistance to Tribenuron-Methyl, Bensulfuron-Methyl and Halosulfuron-Methyl in Cleavers (Galium aparine L.). Agronomy 2022, 12, 2695. https://doi.org/10.3390/agronomy12112695
Lou T, Wang K, Chen J, Cao J, Gu T, Jiang L, Lou Y, Cao R, Wang H. Survey Reveals Frequency of Multiple Resistance to Tribenuron-Methyl, Bensulfuron-Methyl and Halosulfuron-Methyl in Cleavers (Galium aparine L.). Agronomy. 2022; 12(11):2695. https://doi.org/10.3390/agronomy12112695
Chicago/Turabian StyleLou, Tiancheng, Ke Wang, Junmin Chen, Jingjing Cao, Tao Gu, Liben Jiang, Yuanlai Lou, Rongxiang Cao, and Hongchun Wang. 2022. "Survey Reveals Frequency of Multiple Resistance to Tribenuron-Methyl, Bensulfuron-Methyl and Halosulfuron-Methyl in Cleavers (Galium aparine L.)" Agronomy 12, no. 11: 2695. https://doi.org/10.3390/agronomy12112695
APA StyleLou, T., Wang, K., Chen, J., Cao, J., Gu, T., Jiang, L., Lou, Y., Cao, R., & Wang, H. (2022). Survey Reveals Frequency of Multiple Resistance to Tribenuron-Methyl, Bensulfuron-Methyl and Halosulfuron-Methyl in Cleavers (Galium aparine L.). Agronomy, 12(11), 2695. https://doi.org/10.3390/agronomy12112695