Sida hermaphrodita Cultivation on Light Soil—A Closer Look at Fertilization and Sowing Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Physicochemical Properties of the Compost
2.3. Observations of Plant Development and Plant Harvests
2.4. Statistical Analysis
2.5. Characteristics of Climatic Conditions during the Study
3. Results and Discussion
3.1. Plant Density
3.2. Plant Development and Morphology
3.3. Dry Matter Yield
3.4. Energy Yield and Calorific Value
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Research Council. Biobased Industrial Products: Priorities for Research and Commercialization; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- EC. Communication (2014) 0015 from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. A Policy Framework for Climate and Energy in the Period from 2020 to 2030, COM/2014/015 Final. Available online: https://www.eea.europa.eu/policy-documents/com-2014-15-final (accessed on 8 April 2022).
- Directive 2018/2001/EU of the European Parliament and of the Council of 11th December 2018 on the Promotion of the Use of Energy from Renewable Sources (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=celex%3A32009L0028 (accessed on 24 April 2021).
- Keoleian, G.A.; Volk, T.A. Renewable Energy from Willow Biomass Crops: Life Cycle Energy, Environmental and Economic Performance. Crit. Rev. Plant Sci. 2007, 24, 385–406. [Google Scholar] [CrossRef]
- Grzybek, A. Zasoby krajowe biopaliw i możliwości ich wykorzystania w aspekcie technicznym i organizacyjnym (National resources of biofuels and possibilities of their use in technical and organizational aspect). Energetyka 2006, 9, 8–11. (In Polish) [Google Scholar]
- Dunnett, A.; Shah, N. Prospects for bioenergy. J. Biobased Mater. Bioenergy 2007, 1, 1–18. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R. Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenergy 2013, 51, 145–153. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Kollmann, T.; Meiller, M.; Dohrn, M.; Müller, M.; Nabel, M.; Zapp, P.; Schonhoff, A.; Schrey, S.D. Full assessment of Sida (Sida hermaphrodita) biomass as a solid fuel. GCB Bioenergy 2020, 12, 618–635. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The Importance of Renewable Energy Sources in Poland’s Energy Mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Pawłowski, R. Energia odnawialna w Polsce szansą na zwiększenie konkurencyjności sektora rolnego (The Renewable Energy in Poland as an Opportunity for Increasing the Competitiveness of the Agricultural Sector). Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu 2008, 4, 325–326. (In Polish) [Google Scholar]
- Bury, M.; Kitczak, T.; Możdżer, E.; Siwek, H.; Włodarczyk, M. Uprawa ślazowca pensylwańskiego [Sida hermaphrodita (L.) Rusby] Wyniki produkcyjne, agrotechnika i wykorzystanie (Cultivation of Virginia Fanpetals [Sida hermaphrodita (L.) Rusby] Production Results, Agrotechnics and Use); Wydawnictwo Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie: Szczecin, Poland, 2019; p. 111. (In Polish) [Google Scholar]
- Bełdycka-Bórawska, A.; Bórawski, P.; Borychowski, M.; Wyszomierski, R.; Bórawski, M.B.; Rokicki, T.; Ochnio, L.; Jankowski, K.; Mickiewicz, B.; Dunn, J.W. Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies. Energies 2021, 14, 3587. [Google Scholar] [CrossRef]
- Celińska, A. Charakterystyka różnych gatunków upraw energetycznych w aspekcie ich wykorzystania w energetyce zawodowej (Characteristics of various energy crops in aspect of use in power industry). Polityka Energetyczna 2009, 12, 29–35. (In Polish) [Google Scholar]
- Igliński, B.; Piechota, G.; Buczkowski, R. Development of biomass in polish energy sector: An overview. Clean Technol. Environ. Policy 2015, 17, 317–329. [Google Scholar] [CrossRef]
- Waliszewska, B.; Grzelak, M.; Gaweł, E.; Spek-Dźwigała, A.; Sieradzka, A.; Czekała, W. Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes. Energies 2021, 14, 1669. [Google Scholar] [CrossRef]
- Nahm, M.; Morhart, C. Virginia mallow (Sida hermaphrodita (L.) Rusby) as perennial multipurpose crop: Biomass yields, energetic valorization, utilization potentials, and management perspectives. GCB Bioenergy 2018, 10, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Nabel, M.; Tenperton, V.M.; Poorter, H.; Lücke, A.; Jablonowski, N.D. Energizing marginal soils—The establishment of the energy crop Sida hermaphrodita as dependet on digestate fertilization, NPK, and legume intercropping. Biomass Bioenergy 2016, 87, 9–16. [Google Scholar] [CrossRef]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Jablonowski, N.D. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass Bioenergy 2017, 107, 207–213. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R.; Kupczyk, A. Virginia Fanpetals (Sida hermaphrodita Rusby) cultivated on light soil; height of yield and biomass productivity. Pol. J. Environ. Stud. 2009, 18, 563–568. [Google Scholar]
- Borkowska, H.; Molas, R.; Skiba, D. Plonowanie ślazowca pensylwańskiego w wieloletnim użytkowaniu (Virginia fanpetals yielding in multi-year use). Acta Agrophysica 2015, 22, 5–15. (In Polish) [Google Scholar]
- Kurucz, E.; Antal, G.; Gábor, F.M.; Popp, J. Cost-effective mass propagation of Virginia fanpetals (Sida hermaphrodita (L.) Rusby) from seeds. Environ. Eng. Manag. J. 2014, 13, 2845–2852. [Google Scholar] [CrossRef]
- Cumplido-Marin, L.; Graves, A.R.; Burgess, P.J.; Morhart, C.; Paris, P.; Jablonowski, N.D.; Facciotto, G.; Bury, M.; Martens, R.; Nahm, M. Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. Agronomy 2020, 10, 928. [Google Scholar] [CrossRef]
- Sienkiewicz, S.; Wierzbowska, J.; Kovacik, P.; Krzebietke, S.; Zarczynski, P. Digestate as a substitute of fertilizers in the cultivation of Virginia fanpetals. Fresenius Environ. Bull. 2018, 27, 3970–3976. [Google Scholar]
- Krzywy-Gawrońska, E. The Effect of industrial wastes and municipal sewage sludge compost on the quality of Virginia fanpetals (Sida hermaphrodita Rusby) biomass Part 1. Macroelements content and their uptake dynamics. Polish J. Chem. Technol. 2012, 14, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Antonkiewicz, J.; Kołodziej, B.; Bielińska, E.J.; Gleń-Karolczyk, K. The use of macroelements from municipal sewage sludge by the multiflora Rose and the Virginia fanpetals. J. Ecol. Eng. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Nagel, K.A.; Temperton, V.M.; Dietrich, C.C.; Briese, C.; Jablonowski, N.D. coming late for dinner: Localized digestate depot fertilization for extensive cultivation of marginal soil with Sida Hermaphrodita. Front. Plant. Sci. 2018, 9, 1095. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, D.B.P.; Nabel, M.; Jablonowski, N.D. Biogas-digestate as nutrient source for biomass production of Sida hermaphrodita, Zea Mays L. and Medicago Sativa L. Energy Procedia 2014, 59, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Veste, M.; Halke, C.; Garbe, D.; Freese, D. Effect of nitrogen fertiliser and compost on photosynthesis and growth of Virginia fanpetals (Sida hermaphrodita Rusby) [Einfluss von Stickstoffdüngung und Kompost auf Photosynthese und Wachstum der Virginiamalve (Sida hermaphrodita Rusby)]. J. Für Kult. 2016, 68, 423–428. (In Germany) [Google Scholar] [CrossRef]
- Ociepa-Kubicka, A.; Pachura, P. The use of sewage sludge and compost for fertilization of energy crops on the example Miscanthus and Virginia Mallow. Annu. Set Environ. Ptection 2013, 15, 2267–2278. [Google Scholar]
- FAO. International Union of Soil Sciences Working Group WRB World Reference Base for Soil Resources 2014; Update 2015; FAO: Rome, Italy, 2014. [Google Scholar]
- Borkowska, H.; Styk, B. Ślazowiec pensylwański (Sida hermaphrodita Rusby). Uprawa i wykorzystanie (Virginia Fanpetals. Cultivation and Use); Wydawnictwo Akademii Rolniczej: Lublin, Poland, 2006; p. 69. (In Polish) [Google Scholar]
- Tworkowski, J.; Szczukowski, S.; Stolarski, M.J.; Kwiatkowski, J.; Graban, Ł. Produkcyjność i właściwości biomasy ślazowca pensylwańskiego jako paliwa w zależności od materiału siewnego i obsady roślin (Productivity and properties of Virginia fanpetals biomass as fuel depending on the propagule and plant density). Fragm. Agron. 2014, 31, 115–125. [Google Scholar]
- Kurucz, E.; Fári, M.G.; Antal, G.; Gabnai, Z.; Popp, J.; Bai, A. Opportunities for the production and economics of Virginia fanpetals (Sida hermaphrodita). Renew. Sustain. Energy Rev. 2018, 90, 824–834. [Google Scholar] [CrossRef]
- Packa, D.; Kwiatkowski, J.; Graban, Ł.; Lajszner, W. Germination and dormancy of Sida hermaphrodita seeds. Seed Sci. Technol. 2014, 42, 1–15. [Google Scholar] [CrossRef]
- Molas, R.; Borkowska, H.; Skiba, D. Development and yielding of Virginia fanpetals depending on some elments of agricultural practices. Agron. Sci. 2019, 74, 153–162. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Skuodienė, R.; Repšienė, R. The investigation of three potential energy crops: Common mugwort, Cup plant and Virginia mallow on western Lithuania’s Albeluvisol. Appl. Ecol. Environ. Res. 2017, 15, 611–620. [Google Scholar] [CrossRef]
- Chołuj, D.; Podlaski, S.; Wiśniewski, G.; Szmalec, J. Kompleksowa ocena 7 gatunków roślin wykorzystywanych na cele energetyczne. In Uprawa roślin energetycznych a wykorzystanie rolniczej przestrzeni produkcyjnej w Polsce; Harasim, A., Ed.; Instytut Uprawy Nawożenia i Gleboznawstwa Państwowy Instytut Badawczy: Puławy, Poland, 2008; Volume 11, pp. 81–89. [Google Scholar]
- Szyszlak-Bargłowicz, J.; Zając, G.; Piekarski, W. Energy biomass characteristics of chosen plants. Int. Agrophisics 2012, 26, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Borkowska, H.; Molas, R.; Skiba, D.; Machaj, H. Plonowanie oraz wartość energetyczna ślazowca pensylwańskiego w zależności od poziomu nawożenia azotem (Yielding and energy value of Virginia fanpetals in relation to the level of nitrogen fertilization). Acta Agrophysica 2016, 23, 5–14. (In Polish) [Google Scholar]
- Bilandžija, N.; Krička, T.; Matin, A.; Leto, J.; Grubor, M. Effect of Harvest Season on the Fuel Properties of Sida hermaphrodita (L.) Rusby Biomass as Solid Biofuel. Energies 2018, 11, 3398. [Google Scholar] [CrossRef] [Green Version]
- Możdżer, E.; Siwek, H.; Włodarczyk, M.; Bury, M.; Kitczak, T. Influence of the Virginia Fanpetals Cultivation Method on Calorific Value, Content and Dynamics of Macronutrient Uptake. J. Ecol. Eng. 2020, 21, 120–128. [Google Scholar] [CrossRef]
- Šurić, J.; Brandić, I.; Peter, A.; Bilandžija, N.; Leto, J.; Karažija, T.; Kutnjak, H.; Poljak, M.; Voća, N. Wastewater Sewage Sludge Management via Production of the Energy Crop Virginia Mallow. Agronomy 2022, 12, 1578. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R. Two extremely different crops, Salix and Sida, as sources of renewable bioenergy. Biomass Bioenergy 2012, 36, 234–240. [Google Scholar] [CrossRef]
- Stolarski, M.; Wróblewska, H.; Szczukowski, S.; Tworkowski, J.; Cichy, W. Charakterystyka biomasy wierzby i ślazowca pensylwańskiego jako potencjalnego surowca przemysłowego (Characteristics of the biomass of Willow and Virginia fanpetals as a potential industrial raw material). Fragm. Agron. 2006, 3, 277–289. (In Polish) [Google Scholar]
- Slepetys, J.; Kadziuliene, Z.; Sarunaite, L.; Tilvikiene, V.; Kryzeviciene, A. Biomass potential of plants grown for bioenergy production. In Renewable Energy and Energy Efficiency. Proceedings of the International Scientific Conference; Rivza, P., Ed.; Latvia University of Agriculture: Jeglava, Latvia, 2012; pp. 66–72. [Google Scholar]
- Boehmel, C.; Lewandowski, L.; Claupein, W. Comparing annual and perennial energy cropping systems with different management intensities. Agric. Syst. 2008, 96, 224–236. [Google Scholar] [CrossRef]
- Diltz, R.; Johnson, G. Sustainable land use for bioenergy in the 21st century. Ind. Biotechnol. 2011, 7, 436–447. [Google Scholar] [CrossRef]
- Fazio, S.; Monti, A. Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass Bioenergy 2011, 35, 4868–4878. [Google Scholar] [CrossRef]
- Fischer, G.; Prieler, S.; Van Veldhuizen, H.; Lensink, S.M.; Londo, M.; De Wit, M. Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures. Part 1: Land productivity potentials. Biomass Bioenergy 2010, 34, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Roszkowski, A. Energia z biomasy-efektywność, sprawność i przydatność energetyczna. Cz. 1 (Energy from biomass—Effectiveness, efficiency and energetic usability Part 1). Probl. Inżynierii Rol. 2013, 1, 97–124. (In Polish) [Google Scholar]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Steponavicius, D.; Karčauskienė, D.; Liaudanskienė, I. The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico–mechanical properties and energy expenses. Energy 2015, 93, 606–612. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Budzyński, W.S.; Bórawski, P.; Bułkowska, K. Energy efficiency of crops grown for biogas production in a large-scale farm in Poland. Energy 2016, 109, 277–286. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Tworkowski, J.; Szczukowski, S.; Kwiatkowski, J.; Graban, L. Opłacalność i efektywność energetyczna produkcji biomasy ślazowca pensylwańskiego w zależności od stosowanego materiału siewnego (Cost-effectiveness and energy efficiency of the production of Pennsylvanian mallow biomass depending on the seed used). Fragm. Agron. 2014, 31, 96–106. (In Polish) [Google Scholar]
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Olba-Zięty, E.; Penni, D.; Bordiean, A. Energy efficiency indices for lignocellulosic biomass production: Short rotation coppices versus grasses and other herbaceous crops. Ind. Crops Prod. 2019, 135, 10–20. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland. Energy 2019, 185, 612–623. [Google Scholar] [CrossRef]
- Franzaring, J.; Schmid, I.; Bäuerle, L.; Gensheimer, G.; Fangmeier, A. Investigations on plant functional traits, epidermal structures and the ecophysiology of the novel bioenergy species Sida hermaphrodita Rusby and Silphium perfoliatum L. J. Appl. Bot. Food Qual. 2014, 87, 36–45. [Google Scholar] [CrossRef]
- Molas, R.; Borkowska, H.; Kupczyk, A.; Osiak, J. Virginia fanpetals (Sida) biomass can be used to produce high-quality bioenergy. Agron. J. 2018, 110, 24–29. [Google Scholar] [CrossRef]
Parameter | pH in 1M KCl | pH in H2O | EC 1 | Ctot 2 | Ntot 3 | C/N 4 | Total Content of Elements | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | K | Ca | Mg | Na | S | Cu | Fe | Mn | Cr | Zn | Cd | |||||||
µS cm−1 | g kg−1 | g kg−1 | mg kg−1 | |||||||||||||||
Value | 6.78 | 7.08 | 624.10 | 142.01 | 9.52 | 14.93 | 1.95 | 3.54 | 34.973 | 2.91 | 0.34 | 0.74 | 26.39 | 8698.30 | 312.18 | 12.13 | 172.50 | 1.26 |
Total doses of minerals brought in with the compost in kg ha−1 | ||||||||||||||||||
N | P | K | Ca | Mg | Na | S | Cu | Fe | Mn | Cr | Zn | Cd | ||||||
Compost doses 10 t ha−1 | 95.2 | 19.5 | 35.4 | 349.73 | 29.1 | 3.4 | 7.4 | 0.26 | 86.98 | 3.12 | 0.12 | 1.73 | 0.01 | |||||
Compost doses 20 t ha−1 | 190.4 | 39 | 70.8 | 699.46 | 58.2 | 6.8 | 14.8 | 0.53 | 173.97 | 6.24 | 0.24 | 3.45 | 0.03 |
Year | Month | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | Total for the Year | IV–X | |
Temperature [°C] | ||||||||||||||
Multi-year Average | −1.1 | −0.3 | 2.8 | 7.4 | 12.7 | 16.0 | 17.6 | 17.2 | 13.3 | 8.8 | 3.8 | 0.4 | 9.6 | 15.0 |
2009 | −3.1 | 1.5 | −3.9 | 12.3 | 13.4 | 15.4 | 19.4 | 19.6 | 14.7 | 7.8 | 6.7 | −0.2 | 12.1 | 14.7 |
2010 | −5.5 | −0.6 | 3.8 | 8.7 | 11.1 | 17.0 | 22.2 | 18.5 | 13.2 | 7.5 | 4.7 | −4.7 | 8.0 | 14.0 |
2011 | 0.7 | −0.9 | 3.9 | 11.9 | 14.3 | 18.2 | 17.7 | 18.3 | 14.9 | 9.5 | 4.1 | 3.9 | 9.7 | 15.0 |
2012 | 1.5 | −2.3 | 6.3 | 8.8 | 15.5 | 16.2 | 18.6 | 18.1 | 14.5 | 8.7 | 5.1 | −0.7 | 9.2 | 14.3 |
2013 | −3.5 | 4.0 | 3.5 | 11.4 | 17.5 | 20.3 | 21.2 | 18.5 | 14.8 | 11.1 | 5.2 | 3.0 | 10.6 | 16.4 |
2014 | −0.5 | 1.7 | 6.4 | 11.1 | 14.0 | 16.9 | 21.8 | 21.5 | 20.2 | 11.1 | 6.2 | 2.0 | 11.0 | 16.7 |
2015 | 1.1 | 0.0 | 3.9 | 9.7 | 11.9 | 14.5 | 17.6 | 20.1 | 13.0 | 7.3 | 5.6 | 5.3 | 9.2 | 13.4 |
2016 | −1.2 | 3.2 | 4.2 | 8.9 | 16.9 | 19.2 | 19.4 | 18.2 | 17.1 | 8.8 | 3.9 | 2.7 | 10.1 | 15.5 |
Precipitation [mm] | ||||||||||||||
Multi-year Average | 54.6 | 31.6 | 25.5 | 20.8 | 88.1 | 112.5 | 50.4 | 35.9 | 43.9 | 45.8 | 37.8 | 37.7 | 584.6 | 397.4 |
2009 | 19.4 | 49.4 | 53.4 | 16.6 | 70.3 | 60.7 | 61.9 | 58.0 | 45.4 | 82.7 | 46.9 | 32.7 | 597.4 | 395.6 |
2010 | 36.1 | 21.2 | 43.8 | 16.8 | 91.6 | 10.6 | 86.7 | 184.4 | 56.3 | 34.7 | 100.3 | 72.6 | 755.1 | 481.1 |
2011 | 31.0 | 33.4 | 23.9 | 12.5 | 27.9 | 44.8 | 148.5 | 57.7 | 52.2 | 37.9 | 1.0 | 70.8 | 541.6 | 381.5 |
2012 | 64.7 | 41.1 | 18.0 | 32.4 | 21.1 | 45.8 | 103.4 | 90.2 | 25.1 | 53.5 | 40.5 | 39.1 | 574.9 | 371.5 |
2013 | 54.6 | 31.6 | 25.5 | 20.8 | 88.1 | 112.5 | 50.4 | 35.9 | 43.9 | 45.8 | 37.8 | 37.7 | 584.6 | 397.4 |
2014 | 39.6 | 14.6 | 25.3 | 39.1 | 94.0 | 45.0 | 100.6 | 88.1 | 59.3 | 35.0 | 7.7 | 74.0 | 622.3 | 461.1 |
2015 | 71.0 | 4.9 | 39.3 | 18.3 | 42.6 | 51.3 | 68.0 | 17.8 | 66.1 | 35.8 | 53.2 | 35.3 | 503.9 | 300.2 |
2016 | 32.6 | 34.5 | 25.7 | 25.7 | 43.7 | 70.6 | 68.7 | 41.2 | 9.7 | 45.1 | 50.5 | 25.7 | 473.7 | 304.7 |
Seeding Amount (kg ha−1) | Compost Fertilization (t ha−1) | Average Plant Density (Plants m−2) | ||
---|---|---|---|---|
0 | 10 | 20 | ||
Plant Density (Plants m−2) | ||||
1 | 6.8 | 12.0 | 13.1 | 10.6 |
2 | 10.3 | 12.7 | 13.7 | 12.2 |
3 | 11.1 | 14.7 | 16.7 | 14.2 |
Average | 9.4 | 13.1 | 14.5 | 12.4 |
LSD0.05 for: | 2009–2016 | |||
Compost fertilization—I | 1.46 | |||
Seeding amount—II | 0.63 |
Seeding Amount (kg ha−1) | Compost Fertilization (t ha−1) | Average | ||
---|---|---|---|---|
0 | 10 | 20 | ||
Number of Shoots | ||||
1 | 7.9 | 9.0 | 9.9 | 8.9 |
2 | 8.9 | 10.4 | 11.1 | 10.1 |
3 | 9.8 | 11.3 | 12.1 | 11.1 |
Average | 8.9 | 10.2 | 11.0 | 10.0 |
LSD0.05 for: | 2009–2016 | |||
Compost fertilization—I | 1.46 | |||
Seeding amount—II | 0.63 |
Seeding Amount (kg ha−1) | Compost Fertilization (t ha−1) | Average Height of Shoots (cm) | ||
---|---|---|---|---|
0 | 10 | 20 | ||
Height of Shoots (cm) | ||||
1 | 249.3 | 254.0 | 258.0 | 253.8 |
2 | 255.7 | 259.1 | 263.2 | 259.3 |
3 | 258.9 | 262.2 | 264.1 | 261.7 |
Average | 254.6 | 258.4 | 261.7 | 258.3 |
LSD0.05 for: | 2009–2016 | |||
Compost fertilization—I | i. d. * | |||
Seeding amount—II | i. d. * |
Seeding Amount (kg ha−1) | Compost Fertilization (t ha−1) | Average Thickness of Shoots (mm) | ||
---|---|---|---|---|
0 | 10 | 20 | ||
Thickness of Shoots (mm) | ||||
1 | 16.2 | 16.2 | 16.0 | 16.1 |
2 | 16.0 | 15.9 | 15.9 | 16.0 |
3 | 15.9 | 16.0 | 15.8 | 15.9 |
Average | 16.1 | 16.0 | 15.9 | 16.0 |
LSD0.05 for: | 2009–2016 | |||
Compost fertilization—I | i. d. * | |||
Seeding amount—II | i. d. * |
Year | Compost Fertilization (t ha−1) | Seeding Amount (kg ha−1) | Average Dry Matter Yield (t ha−1) | LSD0.05 | ||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
Dry Matter Yield (t ha−1) | ||||||
2009 | 0 | 0.50 | 0.94 | 1.64 | 1.03 | I—i.d. * II—0.34 |
10 | 1.05 | 1.38 | 1.91 | 1.45 | ||
20 | 1.24 | 1.69 | 2.01 | 1.65 | ||
Average | 0.93 | 1.34 | 1.85 | 1.37 | ||
2010 | 0 | 5.88 | 8.63 | 12.69 | 9.07 | I—0.89 II—0.96 |
10 | 8.00 | 11.63 | 16.38 | 12.00 | ||
20 | 13.38 | 13.94 | 22.69 | 16.67 | ||
Average | 9.09 | 11.40 | 17.25 | 12.58 | ||
2011 | 0 | 5.63 | 8.75 | 10.31 | 8.23 | I—1.53 II—1.86 |
10 | 7.81 | 12.19 | 13.44 | 11.15 | ||
20 | 9.06 | 13.75 | 16.25 | 13.02 | ||
Average | 7.50 | 11.56 | 13.33 | 10.80 | ||
2012 | 0 | 3.75 | 5.00 | 6.25 | 5.00 | I—1.79 II—0.50 |
10 | 6.25 | 8.00 | 10.00 | 8.08 | ||
20 | 9.62 | 11.94 | 15.00 | 12.19 | ||
Average | 6.54 | 8.31 | 10.42 | 8.42 | ||
2013 | 0 | 4.21 | 5.26 | 6.46 | 5.31 | I—0.14 II—0.18 |
10 | 5.23 | 7.46 | 8.26 | 6.98 | ||
20 | 5.68 | 8.24 | 9.24 | 7.72 | ||
Average | 5.04 | 6.99 | 7.99 | 6.67 | ||
2014 | 0 | 6.12 | 8.46 | 10.28 | 8.29 | I—0.18 II—0.16 |
10 | 7.21 | 9.24 | 11.28 | 9.24 | ||
20 | 7.86 | 10.43 | 11.68 | 9.99 | ||
Average | 7.06 | 9.38 | 11.08 | 9.17 | ||
2015 | 0 | 5.86 | 8.28 | 11.24 | 8.46 | I—0.16 II—0.15 |
10 | 6.48 | 8.42 | 11.84 | 8.91 | ||
20 | 7.26 | 9.36 | 12.24 | 9.62 | ||
Average | 6.53 | 8.69 | 11.77 | 9.00 | ||
2016 | 0 | 5.26 | 7.68 | 9.23 | 7.39 | I—0.16 II—0.14 |
10 | 6.12 | 8.24 | 10.41 | 8.26 | ||
20 | 6.74 | 8.67 | 10.89 | 8.77 | ||
Average | 6.04 | 8.20 | 10.18 | 8.14 | ||
Average (2010–2016) | 0 | 5.24 | 7.44 | 9.49 | 7.39 | I—0.95 II—0.33 |
10 | 6.73 | 9.31 | 11.66 | 9.23 | ||
20 | 8.51 | 10.90 | 14.00 | 11.14 | ||
Average | 6.83 | 9.22 | 11.72 | 9.25 |
Seeding Amount (kg ha−1) | Compost Fertilization (kg ha−1) | Average Energy Yield (GJ ha−1) | ||
---|---|---|---|---|
0 | 10 | 20 | ||
Energy Yield (GJ ha−1) | ||||
1 | 136.94 | 153.08 | 165.38 | 151.80 |
2 | 155.60 | 177.35 | 190.08 | 174.34 |
3 | 168.79 | 186.87 | 202.56 | 186.07 |
Average | 153.78 | 172.43 | 186.01 | 170.74 |
LSD0.05 for: | 2009–2016 | |||
Compost fertilization—I | 6.03 | |||
Seeding amount—II | 11.30 |
Seeding Amount (kg ha−1) | Compost Fertilization (kg ha−1) | Average Calorific Value (MJ kg−1 DM) | ||
---|---|---|---|---|
0 | 10 | 20 | ||
Calorific Value (MJ kg−1 DM) | ||||
1 | 17.4 | 17.2 | 16.9 | 17.2 |
2 | 17.3 | 17.1 | 16.8 | 17.1 |
3 | 17.1 | 16.9 | 16.8 | 16.9 |
Average | 17.3 | 17.1 | 16.8 | 17.1 |
LSD0.05 for: | 2009–2016 | |||
Compost fertilization—I | i. d. * | |||
Seeding amount—II | i. d. * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitczak, T.; Jarnuszewski, G.; Łazar, E.; Malinowski, R. Sida hermaphrodita Cultivation on Light Soil—A Closer Look at Fertilization and Sowing Density. Agronomy 2022, 12, 2715. https://doi.org/10.3390/agronomy12112715
Kitczak T, Jarnuszewski G, Łazar E, Malinowski R. Sida hermaphrodita Cultivation on Light Soil—A Closer Look at Fertilization and Sowing Density. Agronomy. 2022; 12(11):2715. https://doi.org/10.3390/agronomy12112715
Chicago/Turabian StyleKitczak, Teodor, Grzegorz Jarnuszewski, Elżbieta Łazar, and Ryszard Malinowski. 2022. "Sida hermaphrodita Cultivation on Light Soil—A Closer Look at Fertilization and Sowing Density" Agronomy 12, no. 11: 2715. https://doi.org/10.3390/agronomy12112715
APA StyleKitczak, T., Jarnuszewski, G., Łazar, E., & Malinowski, R. (2022). Sida hermaphrodita Cultivation on Light Soil—A Closer Look at Fertilization and Sowing Density. Agronomy, 12(11), 2715. https://doi.org/10.3390/agronomy12112715