Effect of Different Ratios of Cow Manure and Chemical Fertilizers on Fruit Quality of Gala Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Field Management
2.3. Physical Chemical Analysis, Organic Acids, and Sugar Fraction
2.4. Aroma Substances
2.5. Statistical Analysis
3. Results and Discussion
3.1. Single Fruit Weight, Yield, Longitudinal Diameter, Diameter and Colour
3.2. Total Soluble Solids, Titratable Acid, Sugar-Acid Fraction
3.3. Aroma Substances
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Food and Agriculture Organization. FAOSTAT Database. [All Records]. License: CC BY-NC-SA 3.0 IGO. Available online: https://www.fao.org/faostat/en/#data/FS (accessed on 31 August 2022).
- Chen, X.T.; Han, M.Y.; Su, G.L.; Liu, F.Z.; Guo, G.N.; Jiang, Y.M.; Mao, Z.Q.; Peng, F.T.; Shu, H.R. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. J. Fruit Sci. 2010, 27, 598–604. [Google Scholar]
- Cao, Y.S. Prromote fruit industry 5.0 to achieve high quality development of fruit industry. China Fruits 2021, 2, 1–2. [Google Scholar]
- Legua, P.; Forner, J.B.; Hernández, F.; Forner-Giner, M.A. Total phenolics, organic acids, sugars and antioxidant activity of mandarin (Citrus clementina Hort. ex Tan.): Variation from rootstock. Sci. Hortic. 2014, 174, 60–64. [Google Scholar] [CrossRef]
- Serra, S.; Leisso, R.; Giordani, L.; Kalcsits, L.; Musacchi, S. Crop load influences fruit quality, nutritional balance, and return bloom in ‘Honeycrisp’apple. Hortscience 2016, 51, 236–244. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Amiri, M.E.; Fallahi, E.; Golchin, A. Influence of Foliar and Ground Fertilization on Yield, Fruit Quality, and Soil, Leaf, and Fruit Mineral Nutrients in Apple. J. Plant Nutr. 2008, 31, 515–525. [Google Scholar] [CrossRef]
- Mosa, W.F.A.E.-G.; Paszt, L.S.; Frąc, M.; Trzciński, P.; Przybył, M.; Treder, W.; Klamkowski, K. The influence of biofertilization on the growth, yield and fruit quality of cv. Topaz apple trees. Hort. Sci. 2016, 43, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.W.; Ma, C.Q.; Fan, L.M.; Wang, Y.Z.; Yuan, Y.B. Soil amendment alters soil physicochemical properties and bacterial community structure of a replanted apple orchard. Microbiol Res. 2018, 216, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Amarante, C.V.T.D.; Steffens, C.A.; Argenta, Á.L. Yield and fruit quality of apple from conventional and organic production systems. Sci. Hortic. 2008, 43, 333–340. [Google Scholar] [CrossRef]
- Liu, L.M.; Cao, Y.J.; Sun, A.; Zhao, H.L.; Nie, L. Effects of different fertilizer combinations on the growth and fruit quality of Fuji apple trees in the Yellow River Forbidden Road area. Bull. Agric. Sci. Technol. 2018, 7, 156–159. [Google Scholar]
- Zhao, Z.P.; Gao, Y.M.; Liu, F.; Wang, X.Y.; Tong, Y.A. Effects of organic manure application combined with chemical fertilizers on the leaf nutrition, quality and yield of Fuji Apple. Acta Hortic. Sin. 2013, 40, 2229–2236. [Google Scholar]
- Zhang, P.F.; Wang, A.L.; Liang, Z.J.; Yuan, J.W.; Zhang, J.; Zhang, Z.B.; Duan, G.Q.; Yang, Y.B. Effects of bio-organic fertilizer combined with chemical fertilizer on quality of Fuji Apple. J. Shanxi Agric. Sci. 2020, 48, 1464–1466. [Google Scholar]
- Jiang, F.C.; Wang, Y.Z.; Sun, H.Y.; Yang, L.; Zhang, J.H. Effects of intracellular distribution of sugar and acid on sweetness and sourness of peach. Acta Bot. Boreali-Occident. Sin. 2014, 34, 1227–1232. [Google Scholar]
- Li, F.F.; Zhang, H.P.; He, Z.S.; Tao, S.T.; Li, G.; Zhang, S.L. Effects of bagging on soluble sugars, organic acids, and aroma compounds in pyrus sinkiangensis “Korla Xiangli” fruit. Acta Hortic. Sin. 2014, 41, 1443–1450. [Google Scholar]
- Zheng, L.J.; Nie, J.Y.; Yan, Z. Advances in research on sugars, organic acids and their effects on taste of fruits. J. Fruit Sci. 2015, 32, 304–312. [Google Scholar]
- Liu, Y.; Liu, S.Y.; Lu, J.F.; Yu, Q.F.; Xi, W.P. Evaluation of flavour quality and antioxidant capacity of apple fruits from three Xinjiang red-flesh lines. Sci. Agric. Sin. 2017, 50, 1495–1504. [Google Scholar]
- Beaudry, R. Aroma generation by horticultural products: What can we control? Introduction to the workshop. HortScience 2000, 35, 1001–1002. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.X.; Liu, H.; Bai, E.L.; Deng, J. Effects of combined application of chemical fertilizer with humic acid and bio-organic fertilizer on soil fertility and jujube yield and quality. Acta Agric. Boreali-Occident. Sin. 2019, 28, 981–987. [Google Scholar]
- Zhang, R.; Wang, Y.X.; Zhao, X.H.; Li, L.; Fu, X.L.; Gao, D.S. Effects of different seaweed fertilizer levels on soil fertility and fruit quality of ‘Feicheng’ peach. Plant Physiol. J. 2016, 52, 1819–1828. [Google Scholar]
- Zhao, Y.N.; Wang, Y.X.; FU, X.L.; Chen, X.D.; Li, D.M.; Xiao, W.; Gao, D.S.; Li, L.; Zhu, C.Y. The effect of cow dung and shell fertilizer on the intrinsic quality of Feicheng peach fruit. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2016, 47, 1–8. [Google Scholar]
- Wang, X.D.; Shi, D.C.; Song, Y.; Zhai, H. GC-MS analysis of fruit aroma components of organic ‘Fuji’ apple. Acta Hortic. Sin. 2005, 6, 998–1002. [Google Scholar]
- Jin, Y.Z.; Chen, Y.W.; Lu, M.; Zhang, S.; Lan, H.; He, S.P.; Qi, H.Y. Effect of chicken manure and its co-application with urea on aroma substances, aroma—Related enzyme activities and gene expression of oriental melon. Agric. Res. Arid. Areas 2019, 37, 184–192. [Google Scholar]
- Raffo, A.; Baiamonte, I.; Bucci, R.; D’Aloise, A.; Kelderer, M.; Matteazzi, A.; Moneta, E.; Nardo, N.; Paoletti, F.; Peparaio, M. Effects of different organic and conventional fertilisers on flavour related quality attributes of cv. Golden Delicious apples. LWT-Food Sci. Technol. 2014, 59, 964–972. [Google Scholar] [CrossRef]
- China Meteorological Data Network. Available online: https://data.cma.cn/ (accessed on 31 August 2022).
- Wang, L.; Fang, Y.; Yao, Y.E.; Yuan, J.; Waseem, R.; Huang, Q.; Shen, Q. Long-Term Application of Bioorganic Fertilizers Improved Soil Biochemical Properties and Microbial Communities of an Apple Orchard Soil. Front. Microbiol. 2016, 7, 1893. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Bravo, P.; Noguera-Artiaga, L.; Martínez-Tomé, J.; Hernández, F.; Sendra, E. Effect of Organic and Conventional Production on the Quality of Lemon “Fino 49”. Agronomy 2022, 12, 980. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Antúnez, L.; Ares, G.; Swaney-Stueve, M.; Jin, D.; Harker, F.R. Quality perceptions regarding external appearance of apples: Insights from experts and consumers in four countries. Postharvest Biol. Technol. 2018, 146, 99–107. [Google Scholar] [CrossRef]
- Khorram, M.S.; Zhang, G.; Fatemi, A.; Kiefer, R.; Maddah, K.; Baqar, M.; Zakaria, M.P.; Li, G. Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a four-year field study. JSFA 2019, 99, 1862–1869. [Google Scholar]
- Dar, J.A.; Wani, A.A.; Ahmed, M.; Nazir, R.; Zargar, S.M.; Javaid, K. Peel colour in apple (Malus × domestica Borkh.): An economic quality parameter in fruit market. Sci. Hortic. 2019, 244, 50–60. [Google Scholar] [CrossRef]
- Cen, Y.; Li, L.; Guo, L.; Li, C.; Jiang, G. Organic management enhances both ecological and economic profitability of apple orchard: A case study in Shandong Peninsula. Sci. Hortic. 2020, 265, 109201. [Google Scholar] [CrossRef]
- Du, Y.X.; Li, J.; Gao, J.Y.; Liu, H.M.; Peng, M.X.; Li, J.X.; Yue, J.Q. Effect of combined application of organic and inorganic fertilizer on yield and quality of lemon. Chin. Agric. Sci. Bull. 2017, 33, 92–97. [Google Scholar]
- Reganold, J.P.; Glover, J.D.; Andrews, P.K.; Hinman, H.R. Sustainability of three apple production systems. Nature 2001, 410, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.B.D.; Lopes, M.M.D.A.; Moura, C.F.H.; Oliveira, L.D.S.; Souza, K.O.D.; Filho, E.G.; Urban, L.; Miranda, M.R.A.D. Effects of organic vs. conventional farming systems on quality and antioxidant metabolism of passion fruit during maturation. Sci. Hortic. 2017, 222, 84–89. [Google Scholar] [CrossRef]
- Du, C.Y. Effect of Organic Fertilizer Substituting Fertilizer on Fruit Yield, Quality and Soil Fertility. Master’s Thesis, Northwest A&F University, Shaanxi, China, 2019. [Google Scholar]
- Li, Y.N.; Yan, L.Y.; Zhang, B.; Yang, S.B.; Zhao, Z.Y. A study on sugar and organic acid components in different apple cultivars. J. Fruit Sci. 2021, 38, 1877–1889. [Google Scholar]
- Roth, E.; Berna, A.; Beullens, K.; Yarramraju, S.; Lammertyn, J.; Schenk, A.; Nicolaï, B. Postharvest quality of integrated and organically produced apple fruit. Postharvest Biol. Technol. 2007, 45, 11–19. [Google Scholar] [CrossRef]
- Ma, B.; Chen, J.; Zheng, H.; Fang, T.; Ogutu, C.; Li, S.; Han, Y.; Wu, B. Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem. 2015, 172, 86–91. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Wang, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef]
- Robert, J.S.; Ellen, N.F.; Edwige, J.F.S.; Karen, B.; Kate, T.; Susan, L.; Judith, H.B.; Jun-Hong, M.; Bhawana, N.; Daniel, C.; et al. A Genomics Approach Reveals That Aroma Production in Apple Is Controlled by Ethylene Predominantly at the Final Step in Each Biosynthetic Pathway. Plant Physiol. 2007, 144, 1899–1912. [Google Scholar]
- Wang, S.; Saito, T.; Ohkawa, K.; Ohara, H.; Suktawee, S.; Ikeura, H.; Kondo, S. Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples. J. Plant Physiol. 2018, 221, 85–93. [Google Scholar] [CrossRef]
- El Hadi, M.; Zhang, F.J.; Wu, F.F.; Zhou, C.H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef]
- Reche, J.; Hernández, F.; Almansa, M.; Carbonell-Barrachina, Á.; Amorós, A. Effects of organic and conventional farming on the physicochemical and functional properties of jujube fruit. LWT-Food Sci. Technol. 2019, 99, 438–444. [Google Scholar] [CrossRef]
Treatment | 2017–2018 | 2019–2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | Cow Manure (N) | Total N | N | P2O5 | K2O | Cow Manure (N) | Total N | |
CK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
100% CF | 240 | 120 | 240 | 0 | 240 | 480 | 240 | 480 | 0 | 480 |
75% CF + 25% CM | 180 | 90 | 180 | 60 | 240 | 360 | 180 | 360 | 120 | 480 |
50% CF + 50% CM | 120 | 60 | 120 | 120 | 240 | 240 | 120 | 240 | 240 | 480 |
25% CF + 75% CM | 60 | 30 | 60 | 180 | 240 | 120 | 60 | 120 | 360 | 480 |
100% CM | 0 | 0 | 0 | 240 | 240 | 0 | 0 | 0 | 480 | 480 |
Treatment | Single Fruit Weight (g) | Yield (kg/acres) | Longitudinal Diameter (mm) | Transverse Diameter (mm) |
---|---|---|---|---|
100% CF | 173.18 ± 2.85 a | 393.80 ± 73.39 a | 61.68 ± 0.55 a | 70.37 ± 0.71 a |
75% CF + 25% CM | 170.82 ± 6.24 ab | 348.44 ± 41.64 ab | 60.83 ± 0.38 ab | 70.40 ± 0.94 a |
50% CF + 50% CM | 171.92 ± 6.79 ab | 340.65 ± 37.16 ab | 60.32 ± 0.09 b | 68.85 ± 0.76 ab |
25% CF + 75% CM | 166.26 ± 3.83 ab | 377.24 ± 61.89 a | 60.14 ± 0.16 b | 68.27 ± 0.81 b |
100% CM | 163.24 ± 4.83 b | 418.54 ± 35.52 a | 60.12 ± 1.16 b | 67.99 ± 0.51 b |
CK | 127.21 ± 6.77 c | 265.21 ± 35.47 b | 56.53 ± 0.67 c | 64.51 ± 1.21 c |
ANOVA | * | * | * | * |
Treatment | L * | a * | b * | C * | H0 |
---|---|---|---|---|---|
100% CF | 53.99 ± 5.86 | 36.23 ± 2.50 | 15.91 ± 2.55 | 39.41 ± 1.96 | 22.82 ± 4.73 |
75% CF + 25% CM | 51.44 ± 2.06 | 39.96 ± 0.96 | 13.88 ± 0.36 | 42.39 ± 0.89 | 19.39 ± 0.82 |
50% CF + 50% CM | 49.60 ± 1.25 | 40.55 ± 1.23 | 14.40 ± 1.16 | 43.33 ± 0.41 | 19.66 ± 1.98 |
25% CF + 75% CM | 53.34 ± 2.92 | 37.52 ± 1.71 | 13.55 ± 1.56 | 40.11 ± 3.73 | 19.69 ± 3.60 |
100% CM | 49.74 ± 5.19 | 40.19 ± 1.24 | 14.94 ± 1.57 | 43.03 ± 2.38 | 20.24 ± 2.85 |
CK | 54.64 ± 1.51 | 36.63 ± 2.86 | 15.82 ± 2.63 | 40.33 ± 1.36 | 23.30 ± 5.54 |
ANOVA | NS | NS | NS | NS | NS |
Treatment | L * | a * | b * | C * | H0 |
---|---|---|---|---|---|
100% CF | 67.79 ± 4.23 | 22.41 ± 2.41 | 22.08 ± 2.67 | 32.09 ± 0.99 | 45.21 ± 4.98 a |
75% CF + 25% CM | 70.47 ± 0.38 | 21.81 ± 1.06 | 21.59 ± 0.91 | 31.06 ± 0.76 | 46.29 ± 5.06 a |
50% CF + 50% CM | 64.03 ± 0.20 | 28.86 ± 5.93 | 19.75 ± 2.33 | 34.52 ± 1.83 | 30.06 ± 3.02 bc |
25% CF + 75% CM | 68.57 ± 3.12 | 23.33 ± 6.39 | 19.69 ± 2.63 | 31.13 ± 2.76 | 36.02 ± 3.86 b |
100% CM | 62.94 ± 8.78 | 29.36 ± 9.72 | 19.51 ± 4.03 | 35.77 ± 3.91 | 26.38 ± 2.93 c |
CK | 70.22 ± 1.22 | 20.80 ± 2.47 | 23.42 ± 2.82 | 32.33 ± 1.73 | 50.27 ± 4.57 a |
ANOVA | NS | NS | NS | NS | * |
Aroma Substances | 100% CF | 75% CF + 25% CM | 50% CF + 50% CM | 25% CF + 75% CM | 100% CM | CK | ANOVA |
---|---|---|---|---|---|---|---|
Butyl acetate (μg/g) | 199.11 ± 23.15 b | 277.14 ± 19.23 a | 274.84 ± 9.94 a | 269.53 ± 12.60 a | 252.56 ± 16.61 a | 178.54 ± 6.19 b | * |
Hexyl acetate (μg/g) | 196.30 ± 13.43 d | 224.17 ± 11.61 c | 287.16 ± 12.19 a | 257.84 ± 15.22 b | 241.23 ± 17.70 bc | 147.51 ± 17.14 e | * |
2-Methylbutyl acetate (μg/g) | 57.08 ± 8.45 c | 101.08 ± 0.63 a | 100.51 ± 7.10 a | 105.41 ± 6.31 a | 83.57 ± 7.60 b | 41.58 ± 6.78 d | * |
Butyl hexanoate (μg/g) | 33.67 ± 0.99 b | 29.99 ± 1.72 c | 39.00 ± 1.30 a | 34.69 ± 0.68 b | 33.96 ± 1.08 b | 18.16 ± 0.04 d | * |
Pentyl acetate (μg/g) | 22.31 ± 1.81 d | 27.56 ± 0.60 bc | 31.46 ± 0.01 a | 29.12 ± 0.14 b | 27.07 ± 1.59 c | 18.22 ± 0.72 e | * |
Hexanoic acid hexyl ester (μg/g) | 22.25 ± 0.40 b | 10.99 ± 0.02 c | 27.14 ± 3.72 a | 20.53 ± 2.27 b | 20.46 ± 3.28 b | 11.33 ± 1.46 c | * |
Butyl butyryl lactate (μg/g) | 15.66 ± 7.65 | 16.12 ± 2.50 | 23.79 ± 8.23 | 21.09 ± 2.60 | 18.52 ± 12.39 | 16.53 ± 4.68 | NS |
Hexyl-2-methylbutyrate (μg/g) | 15.78 ± 1.61 b | 14.89 ± 0.00 b | 24.25 ± 1.81 a | 21.45 ± 2.20 a | 17.38 ± 2.85 b | 9.69 ± 0.85 c | * |
Butyl propionate (μg/g) | 3.69 ± 0.56 ab | 3.75 ± 0.49 ab | 4.65 ± 0.15 a | 3.73 ± 0.98 ab | 3.37 ± 0.62 b | 1.37 ± 0.25 c | * |
Ethyl-2-methylbutyrate (μg/g) | 2.69 ± 1.80 | 2.63 ± 0.79 | 3.30 ± 1.36 | 3.77 ± 0.99 | 2.35 ± 2.51 | 1.48 ± 0.39 | NS |
Ethyl acetate (μg/g) | 0.81 ± 0.16 c | 1.52 ± 0.41 ab | 1.93 ± 0.27 a | 1.38 ± 0.35 abc | 0.90 ± 0.01 c | 1.10 ± 0.23 bc | * |
Methyl hexanoate (μg/g) | 0.96 ± 0.70 | 1.05 ± 0.46 | 1.56 ± 0.83 | 1.12 ± 0.68 | 0.80 ± 0.51 | 0.82 ± 0.23 | NS |
Octyl butyrate (μg/g) | 0.63 ± 0.29 | 0.68 ± 0.16 | 0.98 ± 0.39 | 0.86 ± 0.11 | 0.75 ± 0.43 | 0.60 ± 0.11 | NS |
Hexanol (μg/g) | 97.80 ± 6.03 b | 77.22 ± 0.66 c | 113.58 ± 4.46 a | 108.86 ± 1.60 a | 66.13 ± 3.29 d | 71.63 ± 2.21 cd | * |
1-Butanol (μg/g) | 35.61 ± 2.89 a | 34.28 ± 2.75 a | 38.37 ± 3.73 a | 28.04 ± 4.16 b | 27.39 ± 4.01 b | 26.93 ± 0.11 b | * |
2-Methyl alcohol (μg/g) | 10.22 ± 3.06 a | 8.89 ± 1.43 a | 2.46 ± 0.96 b | 9.09 ± 0.48 a | 8.67 ± 0.12 a | 3.22 ± 0.54 b | * |
5-Hexen-1-ol (μg/g) | 7.73 ± 3.29 | 9.02 ± 2.10 | 9.86 ± 1.75 | 9.08 ± 1.36 | 7.61 ± 6.06 | 7.45 ± 2.03 | NS |
3-Nonanol (μg/g) | 1.86 ± 0.08 | 1.85 ± 0.05 | 1.81 ± 0.20 | 1.64 ± 0.11 | 1.34 ± 0.82 | 1.62 ± 0.21 | NS |
3-Hexen-1-ol (μg/g) | 1.25 ± 0.16 ab | 1.20 ± 0.50 ab | 1.60 ± 0.12 a | 1.41 ± 0.31 a | 0.90 ± 0.11 b | 1.17 ± 0.34 ab | * |
1-Octanol (μg/g) | 0.65 ± 0.42 | 0.73 ± 0.47 | 0.88 ± 0.31 | 0.69 ± 0.25 | 0.78 ± 0.64 | 0.54 ± 0.15 | NS |
Phenethyl alcohol (μg/g) | 0.22 ± 0.13 | 0.31 ± 0.11 | 0.33 ± 0.15 | 0.26 ± 0.08 | 0.29 ± 0.10 | 0.25 ± 0.12 | NS |
2-Hexanal (μg/g) | 19.58 ± 1.39 e | 32.38 ± 1.98 b | 34.33 ± 1.92 a | 27.34 ± 0.26 c | 26.66 ± 1.36 c | 23.14 ± 1.46 d | * |
Hexanal (μg/g) | 8.41 ± 1.11 bc | 9.90 ± 0.06 b | 12.19 ± 0.41 a | 8.37 ± 1.25 bc | 3.66 ± 0.67 d | 7.83 ± 1.53 c | * |
2-Heptenal (μg/g) | 1.35 ± 0.76 b | 1.82 ± 0.91 ab | 3.55 ± 1.57 a | 1.88 ± 1.26 ab | 0.68 ± 0.15 b | 2.20 ± 1.07 ab | * |
Benzaldehyde (μg/g) | 0.25 ± 0.09 b | 0.49 ± 0.38 ab | 0.60 ± 0.19 a | 0.46 ± 0.16 ab | 0.34 ± 0.15 ab | 0.46 ± 0.20 ab | * |
4-Allyl anisole (μg/g) | 3.90 ± 0.16 a | 3.16 ± 0.79 ab | 3.69 ± 0.51 ab | 1.56 ± 0.14 c | 3.05 ± 0.38 b | 1.47 ± 0.22 c | * |
6-Methyl-5-hepten-2-tone (μg/g) | 1.33 ± 0.58 bc | 1.73 ± 0.44 bc | 4.01 ± 1.74 a | 1.91 ± 0.91 bc | 1.06 ± 0.65 c | 3.02 ± 1.43 ab | * |
Total aroma substance (μg/g) | 761.07 ± 7.44 d | 894.57 ± 36.45 c | 1047.82 ± 31.08 a | 971.09 ± 33.91 b | 851.49 ± 43.03 c | 597.84 ± 29.14 e | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Yang, L.; Cheng, C.; Xie, B.; Zhang, Y.; Li, X.; Li, Y.; Li, Z. Effect of Different Ratios of Cow Manure and Chemical Fertilizers on Fruit Quality of Gala Apples. Agronomy 2022, 12, 2735. https://doi.org/10.3390/agronomy12112735
Yang A, Yang L, Cheng C, Xie B, Zhang Y, Li X, Li Y, Li Z. Effect of Different Ratios of Cow Manure and Chemical Fertilizers on Fruit Quality of Gala Apples. Agronomy. 2022; 12(11):2735. https://doi.org/10.3390/agronomy12112735
Chicago/Turabian StyleYang, An, Ling Yang, Cungang Cheng, Bin Xie, Yanzhen Zhang, Xin Li, Yanqing Li, and Zhuang Li. 2022. "Effect of Different Ratios of Cow Manure and Chemical Fertilizers on Fruit Quality of Gala Apples" Agronomy 12, no. 11: 2735. https://doi.org/10.3390/agronomy12112735
APA StyleYang, A., Yang, L., Cheng, C., Xie, B., Zhang, Y., Li, X., Li, Y., & Li, Z. (2022). Effect of Different Ratios of Cow Manure and Chemical Fertilizers on Fruit Quality of Gala Apples. Agronomy, 12(11), 2735. https://doi.org/10.3390/agronomy12112735