The Effect of Vermicompost and Earthworms (Eisenia fetida) Application on Phytomass and Macroelement Concentration and Tetanic Ratio in Carrot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Field Management
2.2. Analysis of Soil and Vermicompost
2.3. Yield Evaluation
2.4. Determination of Dry Matter and Nutrient Concentration in Carrot Phytomass
2.5. Statistical Analysis
3. Results and Discussion
3.1. Weight of Roots and Leaves
3.2. Dry Matter Content
3.3. Macroelement Concentration and Tetanic Ratio
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwiatkowski, C.A.; Haliniarz, M.; Kołodziej, B.; Harasim, E.; Tomczyńska-Mleko, M. Content of some chemical components in carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. J. Elem. 2015, 20, 933–943. [Google Scholar] [CrossRef] [Green Version]
- Silva Dias, J.C. Nutritional and Health Benefits of Carrots and Their Seed Extracts. FooNutr. Sci. 2014, 5, 2147–2156. [Google Scholar] [CrossRef] [Green Version]
- Kováčik, P.; Wierzbowska, J.; Smoleń, S.; Polláková, N.; Jabbarov, Z. Weight of Carrot Phytomass and Content of Vitamin C 100 Days after Seeding in Dependence of Vermicompost Quantity and Earthworms (Eisenia fetida) in Soil Substrate. Pol. J. Environ. Stud. 2022, 3, 723–733. [Google Scholar] [CrossRef]
- United Nations. The World Populations Prospects: 2015 Revision. Key Findings and Advance Tables; Working Paper No. ESA/P/WP.241; United Nations Department of Economic and Social Affairs. Population Division: New York, NY, USA, 2015; Available online: https://www.un.org/en/development/desa/publications/world-population-prospects-2015-revision.html (accessed on 1 June 2022).
- León, A.P.; Martín, J.P.; Chiesa, A. Vermicompost application and growth patterns of lettuce (Lactuca sativa L.). Agric. Trop. Subtrop. 2012, 45, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Zayed, M.S.; Hassanein, M.K.K.; Esa, N.H.; Abdallah, M.M.F. Productivity of pepper crop (Capsicum annuum L.) as affected by organic fertilizer, soil solarization, and endomycorrhizae. Ann. Agric. Sci. 2013, 58, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, B.; Kundu, M.; Chattopadhyay, R.N. Organic Farming with Bio-mulching—A New Paradigm for Sustainable Leaf Yield & Quality of Mulberry (Morus alba L.) under Rainfed Lateritic Soil Condition. Agric. Agric. Sci. Procedia 2016, 11, 31–37. [Google Scholar] [CrossRef]
- Gholami, H.; Fard, F.R.; Saharkhiz, M.J.; Ghani, A. Yield and physicochemical properties of inulin obtained from Iranian chicory roots under vermicompost and humic acid treatments. Ind. Crops Prod. 2018, 123, 610–616. [Google Scholar] [CrossRef]
- Gholami, H.; Saharkhiz, M.J.; Fard, F.R.; Ghani, A.; Nadaf, F. Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory (Cichorium intybus L.). Biocatal. Agric. Biotechnol. 2018, 14, 286–292. [Google Scholar] [CrossRef]
- Najjari, F.; Ghasemi, S. Changes in chemical properties of sawdust and blood powder mixture during vermicomposting and the effects on the growth and chemical composition of cucumber. Sci. Hortic. 2018, 232, 250–255. [Google Scholar] [CrossRef]
- Ali, M.; Griffiths, A.J.; Williams, K.P.; Jones, D.L. Evaluating the growth characteristics of lettuce in vermicompost and green waste compost. Eur. J. Soil Biol. 2007, 43, S316–S319. [Google Scholar] [CrossRef]
- Roba, T.B. Review on: The Effect of Mixing Organic and Inorganic Fertilizer on Productivity and Soil Fertility. Open Access Libr. 2018, 5, e4618. [Google Scholar] [CrossRef]
- Loss, A.; Couto, R.R.; Brunetto, G.; da Veiga, M.; Toselli, M.; Baldi, E. Animal Manure as Fertilizer: Changes in Soil Attributes, Productivity and Food Composition. Int. J. Res.–Granthaalayah. 2019, 7, 307–331. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize–alfalfa rotation in Michigan. Agr. Ecosyst. Environ. 2005, 108, 329–341. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhang, B.; Li, D.; Li, G.; Li, Y. Effect of different organic fertilizers application on growth and environmental risk of nitrate under a vegetable field. Sci. Rep. 2017, 7, 17020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelt, B.; Temminghoff, E.J.M.; Vliet, P.C.J.; Riemsdijk, W.H. Volatilization of ammonia from manure as affected by manure additives, temperature and mixing. Bioresour. Technol. 2007, 98, 3449–3455. [Google Scholar] [CrossRef]
- Bhatt, M.K.; Labanya, R.; Joshi, H.C. Influence of long-term chemical fertilizers and organic manures on soil fertility—A review. Univers. J. Agric. Res. 2019, 7, 177–188. [Google Scholar] [CrossRef]
- Kováčik, P.; Ryant, P. Agrochemistry (Principles and Practice), 1st ed.; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2019; 358p. [Google Scholar]
- Mrkvička, J.; Veselá, M. Influence of fertilization rates on species composition, quality and yields of the meadow fodder. Plant Soil Environ. 2002, 48, 494–498. [Google Scholar] [CrossRef] [Green Version]
- Hejduk, S.; Doležal, P. Nutritive value of broad-leaved dock (Rumex obtusifolius L.) and its effect on the quality of grass silages. Czech J. Anim. Sci. 2004, 49, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Davydov, S.; Davydova, A.; Schelchkova, M.; Makarevich, R.; Fyodorov-Davydov, D.; Loranty, M.; Boeskorov, G. Essential mineral nutrients of the high-latitude steppe vegetation and the herbivores of mammoth fauna. Quat. Sci. Rev. 2020, 228, 106073. [Google Scholar] [CrossRef]
- Mukherjee, A.; Speh, D.; Dyck, E.; Diez-Gonzalez, F. Preharvest evaluation of coliforms, Escherichia coli, Salmonella, and Escherichia coli O157:H7 in organic and conventional produce grown by Minnesota farmers. J. Food Prot. 2004, 67, 894–900. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Song, N. Biochar and vermicompost improve the soil properties and the yield and quality of cucumber (Cucumis sativus L.) grown in plastic shed soil continuously cropped for different years. Agr. Ecosyst. Environ. 2021, 315, 107425. [Google Scholar] [CrossRef]
- Doan, T.T.; Tureaux, H.T.; Rumpel, C.; Janeau, J.L.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Yagi, R.; Ferreira, M.E.; Pessôa da Cruz, M.C.; Barbosa, J.C. Organic matter fractions and soil fertility under the influence of liming, vermicompost and cattle manure. Sci. Agric. 2003, 60, 549–557. [Google Scholar] [CrossRef]
- Fernández-Bayo, J.D.; Nogales, R.; Omero, E.R. Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. Eur. J. Soil Sci. 2009, 60, 935–944. [Google Scholar] [CrossRef]
- Mahmoud, E.K.; Ibrahim, M.M. Effect of vermicompost and its mixtures with water treatment residuals on soil chemical properties and barley growth. J. Soil Sci. Plant Nutr. 2012, 12, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Mou, B. Vermicompost affects soil properties and spinach growth, physiology, and nutritional value. HortScience 2016, 51, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Aksakal, E.L.; Sari, S.; Angin, I. Effects of vermicompost application on soil aggregation and certain physical properties. Land Degrad. Dev. 2016, 27, 983–995. [Google Scholar] [CrossRef]
- Schon, N.L.; Fraser, P.M.; Mackay, A.D.; Dickinson, N. Relationship between earthworm abundance, ecological diversity and soil function in pastures. Soil Res. 2021, 59, 767–777. [Google Scholar] [CrossRef]
- Hallam, J.; Holden, J.; Robinson, D.A.; Hodson, M.E. Effects of winter wheat and endogeic earthworms on soil physical and hydraulic properties. Geoderma. 2021, 400, 115126. [Google Scholar] [CrossRef]
- Ma, L.; Shao, M.; Fan, J.; Wang, J.; Li, Y. Effects of earthworm (Metaphire guillelmi) density on soil macropore and soil water content in typical Anthrosol soil. Agr. Ecosyst. Environ. 2021, 311, 107338. [Google Scholar] [CrossRef]
- Goswami, L.; Nath, A.; Sutradhar, S.; Bhattacharya, S.S.; Kalamdhad, A.; Vellingiri, K.; Kim, K.-H. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. J. Environ. Manag. 2017, 200, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.K.; Agarwal, S.; Chauhan, K.; Valani, D. The wonders of earthworms & its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers. Agric. Sci. 2010, 1, 76–94. [Google Scholar]
- Sinha, R.K.; Herat, S.; Valani, D.; Chauhan, K. The Concept of Sustainable Agriculture: An Issue of Food Safety and Security for People, Economic Prosperity for the Farmers and Ecological Security for the Nations. Am.-Eurasian J. Agric. Environ. Sci. 2009, 5, 1–55. [Google Scholar]
- Khan, K.; Pankaj, U.; Verma, S.K.; Gupta, A.K.; Singh, R.P.; Verma, R.K. Bio-inoculants and vermicompost influence on yield, quality of Andrographis paniculata, and soil properties. Ind. Crops Prod. 2015, 70, 404–409. [Google Scholar] [CrossRef]
- Durak, A.; Altuntaş, Ö.; Kutsal, İ.K.; Işık, R.; Karaat, F.E. The effects of vermicompost on yield and some growth parameters of lettuce. Turk. J. Agric. Food Sci. Technol. 2017, 5, 1566–1570. [Google Scholar] [CrossRef] [Green Version]
- Negi, Y.K.; Sajwan, P.; Uniyal, S.; Mishra, A.C. Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertilizers. Sci. Hortic. 2021, 283, 110038. [Google Scholar] [CrossRef]
- Paczka, G.; Mazur-Paczka, A.; Garczyńska, M.; Kostecka, J.; Butt, K.R. Garlic (Allium sativum L.) cultivation using vermicompost-amended soil as an aspect of sustainable plant production. Sustainability 2021, 13, 13557. [Google Scholar] [CrossRef]
- Blouin, M.; Barrere, J.; Meyer, N.; Lartigue, S.; Barot, S.; Mathieu, J. Vermicompost significantly affects plant growth. A meta-analysis. Agron. Sustain. Dev. 2019, 39, 34. [Google Scholar] [CrossRef]
- Kováčik, P.; Olšovská, K.; Smoleń, S.; Smoleń-Ledwożyw, I. Parameters of radish phytomass (Raphanus sativus L.) determined by vermicompost and earthworms (Eisenia fetida). Folia Hortic. 2021, 33, 217–233. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional quality of organic versus conventional fruits, vegetables and grains. J. Altern. Complem. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef]
- Gutiérrez-Miceli, F.A.; Santiago-Borraz, J.; Molina, J.A.M.; Nafate, C.C.; Abud-Archila, M.; Llaven, M.A.O.; Rincon-Rosales, R.; Dendooven, L. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour. Technol. 2007, 98, 2781–2786. [Google Scholar] [CrossRef] [PubMed]
- Demir, Z.; Kiran, S. Effect of vermicompost on macro and micro nutrients of lettuce (Lactuca sativa Var. Crispa) under salt stress conditions. KSU J. Agric. Nat. 2020, 23, 33–43. [Google Scholar] [CrossRef]
- Mahmud, M.; Abdullah, R.; Yaacob, J.S. Effect of Vermicompost on Growth, Plant Nutrient Uptake and Bioactivity of Ex Vitro Pineapple (Ananas comosus var. MD2). Agronomy 2020, 10, 1333. [Google Scholar] [CrossRef]
- Khomami, A.M.; Haddad, A.; Alipoor, R.; Hojati, S.I. Cow manure and sawdust vermicompost effect on nutrition and growth of ornamental foliage plants. Cent. Asian J. Environ. Sci. Technol. Innov. 2021, 2, 68–78. [Google Scholar] [CrossRef]
- Theunissen, J.; Ndakidemi, P.A.; Laubscher, C.P. Review: Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. Int. J. Phys. Sci. 2010, 5, 1964–1973. [Google Scholar] [CrossRef]
- Esmaielpour, B.; Rahmanian, M.; Khorramdel, S.; Gharavi, H. Effect of Organic Fertilizers on Nutrients Content and Essential Oil Composition of Savory (Satureja hortensis L.). Agritech 2018, 38, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Baldotto, L.E.B.; Baldotto, M.A.; Giro, V.B.; Canellas, L.P.; Olivares, F.L.; Bressan-Smith, R. Performance of ‘Vitória’ pineapple in response to humic acid application during acclimatization. Rev. Bras. Ciênc. Solo 2009, 33, 979–990. [Google Scholar] [CrossRef]
- Joshi, R.; Vig, A.P.; Singh, J. Vermicompost as soil supplement to enhance growth, yield and quality of Triticum aestivum L.: A field study. Int. J. Recyl. Org. Waste Agric. 2013, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Basak, B.B.; Jat, R.S.; Gajbhiye, N.A.; Saha, A.; Manivel, P. Organic nutrient management through manures, microbes and biodynamic preparation improves yield and quality of Kalmegh (Andrograghis paniculata) and soil properties. J. Plant Nutr. 2020, 43, 548–562. [Google Scholar] [CrossRef]
- Serri, F.; Souri, M.K.; Rezapanah, M. Growth, biochemical quality and antioxidant capacity of coriander leaves under organic and inorganic fertilization programs. Chem. Biol. Technol. Agric. 2021, 8, 33. [Google Scholar] [CrossRef]
- Eisa, E.-S.E.A.; Meligy, M.M.; Ziedan, E.-S.H.E. Application of composts and potassium sulphate on root rot incidence, morphological growth, yield components, oil content and constitutes of marjoram plants (Majorana hortensis L.). Biocatal. Agric. Biotechnol. 2022, 42, 102334. [Google Scholar] [CrossRef]
- Vineet, S. Use of vermicompost in apple orchards in Himachal Pradesh, India. Agric. Sci. 2012, 1, 17–44. [Google Scholar]
- Singh, R.; Sharma, R.R.; Kumar, S.; Gupta, R.K.; Patil, R.T. Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresour. Technol. 2008, 99, 8507–8511. [Google Scholar] [CrossRef]
- Abud-Archila, M.; Luján-Hidalgo, M.C.; López-Pérez, J.M.; Ordaz-Rivera, J.; Ruiz-Valdiviezo, V.M.; Oliva-Llaven, M.Á.; Gutiérrez-Miceli, F.A. Growth and fruit chemical characteristics of blackberry (Rubus fruticosus) cultivated with vermicompost, Glomus mosseae and phosphate rock. Compost Sci. Util. 2018, 26, 225–231. [Google Scholar] [CrossRef]
- Alidadi, H.; Saffari, A.R.; Ketabi, D.; Peiravi, R.; Hosseinzadeh, A. Comparison of vermicompost and cow manure efficiency on the growth and yield of tomato plant. Health Scope 2014, 3, e14661. [Google Scholar] [CrossRef]
- Fallah, M.; Hadi, H.; Amirnia, R.; Hassanzadeh-Ghorttapeh, A.; Zuan, A.; Tan, K.; Sayyed, R.Z. Eco-friendly soil amendments improve growth, antioxidant activities, and root colonization in lingrain (Linum usitatissimum L.) under drought conditions. PLoS ONE 2021, 16, e0261225. [Google Scholar] [CrossRef]
- Sharafabad, Z.H.; Abdipour, M.; Hosseinifarahi, M.; Kelidari, A.; Rashidi, L. Integrated humic acid and vermicomposting changes essential oil quantity, and quality in field-grown Lavandula angustifolia L. intercropped with Brassica nigra L. Ind. Crops Prod. 2022, 178, 114635. [Google Scholar] [CrossRef]
- Hemati, A.; Alikhani, H.A.; Ajdanian, L.; Babaei, M.; Lajayer, B.A.; van Hullebusch, E.D. Effect of different enriched vermicomposts, humic acid extract and indole-3-acetic acid amendments on the growth of Brassica napus. Plants 2022, 11, 227. [Google Scholar] [CrossRef]
- Zewide, I.; Singh, S.; Kassa, H. Tuber yield and economics of potato as affected by application of vermicompost, mineral nitrogen and phosphorus in Southwestern Ethiopia. Agrivita J. Agric. Sci. 2022, 44, 65–73. [Google Scholar] [CrossRef]
- Fründ, H.C.; Graefe, U.; Tischer, S. Earthworms as bioindicators of soil quality. In Biology of Earthworms. Soil Biology; Karaca, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 24, pp. 261–278. [Google Scholar]
- Bartz, M.L.C.; Pasini, A.; Brown, G.G. Earthworms as soil quality indicators in Brazilian no-tillage systems. Appl. Soil Ecol. 2013, 69, 39–48. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, F.; Li, H.; Gao, Q.; Song, X.; Ke, X.; Wang, L. Effects of earthworm activity on humus composition and humic acid characteristics of soil in a maize residue amended rice–wheat rotation agroecosystem. Appl. Soil Ecol. 2011, 51, 1–8. [Google Scholar] [CrossRef]
- Luo, S.; Ren, L.; Wu, W.; Chen, Y.; Li, G.; Zhang, W.; Wei, T.; Liang, Y.-Q.; Zhang, D.; Wang, X.; et al. Impacts of earthworm casts on atrazine catabolism and bacterial community structure in laterite soil. J. Hazard. Mater. 2022, 425, 127778. [Google Scholar] [CrossRef]
- Tripathi, G.; Bhardwaj, P. Comparative studies on biomass production life cycles and composting efficiency of Eisenia foetida (Savigny) and Lampitomauritii (Kinberg). Bioresour. Technol. 2004, 92, 275–283. [Google Scholar] [CrossRef]
- Garg, P.; Gupta, A.; Satya, S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour. Technol. 2006, 97, 391–395. [Google Scholar] [CrossRef]
- García-Montero, L.G.; Valverde-Asenjo, I.; Grande-Ortíz, M.A.; Menta, C.; Hernando, I. Impact of earthworm casts on soil pH and calcium carbonate in black truffle burns. Agroforest. Syst. 2013, 87, 815–826. [Google Scholar] [CrossRef]
- Desie, E.; van Meerbeek, K.; de Wandeler, H.; Bruelheide, H.; Domisch, T.; Jaroszewicz, B.; Joly, F.X.; Vancampenhout, K.; Vesterdal, L.; Muys, B. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol. 2020, 34, 2598–2610. [Google Scholar] [CrossRef]
- Gong, X.; Wang, S.; Wang, Z.; Jiang, Y.; Hu, Z.; Zheng, Y.; Chen, X.; Li, H.; Hu, F.; Liu, M.; et al. Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH. Geoderma 2019, 347, 59–69. [Google Scholar] [CrossRef]
- Blanchart, E.; Albrecht, A.; Brown, G.; Decaens, T.; Duboisset, A.; Lavelle, P.; Mariani, L.; Roose, E. Effects of tropical endogeic earthworms on soil erosion. Agr. Ecosyst. Environ. 2004, 104, 303–315. [Google Scholar] [CrossRef]
- Wu, D.; Liu, M.; Song, X.; Jiao, J.; Li, H.; Hu, F. Earthworm ecosystem service and dis-service in an N-enriched agroecosystem: Increase of plant production leads to no effects on yield-scaled N2O emissions. Soil Biol. Biochem. 2015, 82, 1–8. [Google Scholar] [CrossRef]
- Ejack, L.; Kernecker, M.L.; Prieto, R.; Chen, C.; Gul, S.; Bradley, R.L.; Whalen, J.K. Earthworms did not increase long-term nitrous oxide fluxes in perennial forage and riparian buffer ecosystems. Pedobiologia 2021, 85–86, 150727. [Google Scholar] [CrossRef]
- Na, L.; Abail, Z.; Whalen, J.K.; Liang, B.; Hu, C.; Hu, R.; Wu, Y. Earthworms increase nitrogen uptake by lettuce and change short-term soil nitrogen dynamics. Appl. Soil Ecol. 2022, 176, 104488. [Google Scholar] [CrossRef]
- Xiao, R.; Ali, A.; Xu, Y.; Abdelrahman, H.; Li, R.; Lin, Y.; Bolan, N.; Shaheen, S.M.; Rinklebe, J.; Zhang, Z. Earthworms as candidates for remediation of potentially toxic elements contaminated soils and mitigating the environmental and human health risks: A review. Environ. Int. 2022, 158, 106924. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Pradhan, K.; Satya, S.; Vasudevan, P. Potentiality of Earthworms for Waste Management and in Other Uses—A Review. J. Am. Sci. 2005, 1, 4–16. [Google Scholar]
- Russell, L.; Farrish, K.; Damoff, G.; Coble, D.; Young, L. Establishment of earthworms on reclaimed lignite mine soils in east Texas. Appl. Soil Ecol. 2016, 104, 125–130. [Google Scholar] [CrossRef]
- Eriksen-Hamel, N.S.; Whalen, J.K. Impacts of earthworms on soil nutrients and plant growth in soybean and maize agroecosystems. Agric. Ecosyst. Environ. 2007, 120, 442–448. [Google Scholar] [CrossRef]
- Ratsiatosika, O.; Razafindrakoto, M.; Razafimbelo, T.; Rabenarivo, M.; Becquer, T.; Bernard, L.; Trap, J.; Blanchart, E. Earthworm inoculation improves upland rice crop yield and other agrosystem services in Madagascar. Agriculture 2021, 11, 60. [Google Scholar] [CrossRef]
- Van Groeningen, J.W.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; de Deyn, G.B.; Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, M.; Barot, S.; Blouin, M.; Whalen, J.; de Oliveira, T.; Roger-Estrade, J. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 2015, 35, 553–567. [Google Scholar] [CrossRef]
- Agarwal, S.; Sharma, J. Agronomic impact of earthworms, cow dung compost, vermicompost and chemical fertilizers on growth and yield of brinjal (Solanum melongena). Int. J. Environ. Eng. 2014, 6, 249–260. [Google Scholar] [CrossRef]
- Ros, M.B.H.; Hiemstra, T.; van Groenigen, J.W.; Chareesri, A.; Koopmans, G.F. Exploring the pathways of earthworm-induced phosphorus availability. Geoderma 2017, 303, 99–109. [Google Scholar] [CrossRef]
- Kováčik, P.; Šalamún, P.; Smoleń, S.; Škarpa, P.; Šimanský, V.; Moravčík, Ľ. Determination of the carrot (Daucus carota L.) yields parameters by vermicompost and earthworms (Eisenia foetida). Potravin. Slovak J. Food Sci. 2018, 12, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Huo, D.; Yan, K.Q.; Meng, F.H.; Zhang, H.M.; Song, Y.Z.; Hong, Y.C.; Li, L.; Cai, P.M. Improvements in the growth, quality, and yield of wuyi rock tea (Camellia sinensis) after breeding earthworms in situ in tea gardens in China. Appl. Ecol. Environ. Res. 2021, 19, 1491–1503. [Google Scholar] [CrossRef]
- Hullot, O.; Lamy, I.; Tiziani, R.; Mimmo, T.; Ciadamidaro, L. The effect of earthworms on plant response in metal contaminated soil focusing on belowground-aboveground relationships. Environ. Pollut. 2021, 274, 116499. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.T.; Ngo, P.T.; Rumpel, C.; Nguyen, B.V. Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment. Sci. Hortic. 2013, 160, 148–154. [Google Scholar] [CrossRef]
- Nurhidayati, N.; Ali, U.; Murwani, I. Yield and quality of cabbage (Brassica oleracea L. var. capitata) under organic growing media using vermicompost and earthworm Pontoscolex corethrurus inoculation. Agric. Agric. Sci. Procedia 2016, 11, 5–13. [Google Scholar] [CrossRef]
- Elmer, W.H. Effect of leaf mold mulch, biochar, and earthworms on mycorrhozal colonization and yield of asparagus affected by Fusarium crown and root rot. Plant Dis. 2016, 100, 2507–2512. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.G.; Barois, I.; Lavelle, P. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol. 2000, 36, 177–198. [Google Scholar] [CrossRef]
- Liu, J.; Xu, G.; Yin, L.; Xu, X.; Armitage, D.W.; Dong, T. Invasive plants exert disproportionately negative allelopathic effects on the growth and physiology of the earthworm Eisenia fetida. Sci. Total Environ. 2020, 747, 141534. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Dziadowiec, H.; Gonet, S.S. A Guide to the Methods for Determination of Soil Organic Matter; Prace Komisie Naukowej PTG: Warsaw, Poland, 1999; 65p. [Google Scholar]
- Cohen, J.B. Practical Organic Chemistry; MacMillan and Co.: London, UK, 1910; p. 356. [Google Scholar]
- Koppová, A.; Pirkl, J.; Kalina, J. Determination of ash-compounds in plant material by exact expeditive methods. In Scientific Work of the Research Institute of Plant Production; ČSAZV: Prague-Ruzyň, Czech Republic, 1955; pp. 119–127. [Google Scholar]
- De Souza, Á.H.C.; Rezende, R.; Lorenzoni, M.Z.; de Seron, C.; Hachmann, T.L.; Lozano, C.S. Response of eggplant crop fertigated with doses of nitrogen and potassium. Rev. Bras. Eng. Agr. 2017, 21, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Essel, B.; Abaidoo, R.C.; Opoku, A.; Ewusi-Mensah, N. Economically optimal rate for nutrient application to maize in the semi-deciduous forest zone of Ghana. J. Soil Sci. Plant Nutr. 2020, 20, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Mojid, M.A.; Wyseure, G.C.L.; Biswas, S.K. Requirement of nitrogen, phosphorus and potassium fertilizers for wheat cultivation under irrigation by municipal wastewater. J. Soil Sci. Plant Nutr. 2012, 12, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Arancon, N.Q.; Edwards, C.A.; Atiyeh, R.; Metzger, J.D. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresour. Technol. 2004, 93, 139–144. [Google Scholar] [CrossRef]
- Suqiura, D.; Tateno, M. Optimal leaf-to-root ratio and leaf nitrogen content determined by light and nitrogen availabilities. PLoS ONE 2011, 6, e22236. [Google Scholar] [CrossRef]
- Kováčik, P.; Šalamún, P.; Smoleń, S.; Renčo, M. Impact of vermicompost as component of growing medium on phytomass formation of radish (Raphanus sativus L.). Agriculture 2018, 64, 106115. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-A.; Li, F.-R.; Zhou, L.-M.; Zhang, R.-H.; Jia, Y.; Lin, S.-L.; Wang, L.-J.; Siddique, K.H.M.; Li, F.-M. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agric. Water Manag. 2013, 117, 123–132. [Google Scholar] [CrossRef]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Assunção, N.S.; Clemente, J.M.; de Aquino, L.A.; Dezordi, L.R.; dos Santos, L.P.D. Carrot yield and recovery efficiency of nitrogen, phosphorus and potassium. Rev. Caatinga 2016, 29, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Aquino, R.F.B.A.; Assunção, N.S.; Aquino, L.A.; de Aquino, P.M.; de Oliveira, G.A.; de Carvalho, A.M.X. Nutrient demand by the carrot crop is influenced by the cultivar. Rev. Bras. Cienc. Solo 2015, 39, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Godlewska, A.; Becher, M. The effect of waste materials on the content of some macroelements in test plants. J. Ecol. Eng. 2021, 22, 167–174. [Google Scholar] [CrossRef]
- Jakobsen, S.T. Interaction between plant nutrients: III. Antagonism between potassium, magnesium and calcium. Acta Agric. Scand. B Soil Plant Sci. 1993, 43, 1–5. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Malhi, S.S. Interactions of nitrogen with other nutrients and water: Effect on crop yield and quality, nutrient use efficiency, carbon sequestration, and environmental pollution. Adv. Agron. 2005, 86, 341–409. [Google Scholar] [CrossRef]
- Kováčik, P.; Kozánek, M.; Renčo, M. The effect of substrate produced from pig manure by biodegradation of larvae of house flies on the phytomass of maize (Zea mays L.). Acta Fytotechn. Zootechn. 2011, 14, 62–67. [Google Scholar]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef]
- Kowalenko, C.G. Variations in within-season nitrogen and sulfur interaction effects on forage grass response to combinations of nitrogen, sulfur, and boron applications. Commun. Soil Sci. Plant Anal. 2004, 35, 759–780. [Google Scholar] [CrossRef]
- Ohno, T.; Grunes, D.L. Potassium- magnesium interactions affecting nutrient uptake by wheat forage. Soil Sci. Soc. Am. J. 1985, 49, 685–690. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Elsevier Academic Press: San Diego, CA, USA; London, UK, 2005; 889p. [Google Scholar]
- Djabou, A.S.M.; Qin, Y.; Thaddee, B.; Figueiredo, P.G.; Feifei, A.; Carvalho, L.J.C.B.; Omokolo, D.N.; Li, K.; Niemenak, N.; Chen, S. Effects of calcium and magnesium fertilization on antioxidant activities during cassava postharvest physiological deterioration. Crop Sci. 2018, 58, 1385–1392. [Google Scholar] [CrossRef] [Green Version]
- Ortas, I. Influence of potassium and magnesium fertilizer application on the yield and nutrient accumulation of maize genotypes under field conditions. J. Plant Nutr. 2018, 41, 330–339. [Google Scholar] [CrossRef]
- Hoopen, F.T.; Cuin, T.A.; Pedas, P.; Hegelund, J.N.; Shabala, S.; Schjoerring, J.K.; Jahn, T.P. Competition between uptake of ammonium and potassium in barley and arabidopsis roots: Molecular mechanisms and physiological consequences. J. Exp. Bot. 2010, 61, 2303–2315. [Google Scholar] [CrossRef] [Green Version]
- Sizmur, T.; Palumbo-Roe, B.; Watts, M.J.; Hodson, M.E. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Environ. Pollut. 2011, 159, 742–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, E.; Alonso-Azcárate, J.; Rodríguez, L. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barely. Environ. Pollut. 2011, 159, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.; Gómez-Brandón, M. The influence of earthworms on nutrient dynamics during the process of vermicomposting. Waste Manag. Res. 2013, 31, 859–868. [Google Scholar] [CrossRef]
- Du, Y.-L.; He, M.-M.; Xu, M.; Yan, Z.; Zhou, Y.-Y.; Guo, G.-L.; Nie, J.; Wang, L.-Q.; Hou, H.; Li, F.-S. Interactive effects between earthworms and maize plants on the accumulation and toxicity of soil cadmium. Soil Biol. Biochem. 2014, 72, 193–202. [Google Scholar] [CrossRef]
- Grunes, D.L.; Welch, R.M. Plant contents of magnesium, calcium and potassium in relation to ruminant nutrition. J. Anim. Sci. 1989, 67, 3485–3494. [Google Scholar] [CrossRef]
- Metson, A.J.; Saunders, W.M.H. Seasonal variations in chemical composition of pasture. N. Z. J. Agric. Res. 1978, 21, 341–353. [Google Scholar] [CrossRef]
- Bo, S.; Pisu, E. Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Curr. Opin. Lipidol. 2008, 19, 50–56. [Google Scholar] [CrossRef]
- White, P.; Broadley, M. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Aydin, I.; Uzun, F. Potential decrease of grass tetany risk in rangelands combining N and K fertilization with MgO treatments. Eur. J. Agron. 2008, 29, 33–37. [Google Scholar] [CrossRef]
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2016, 7, 1270. [Google Scholar] [CrossRef] [Green Version]
- Daoud, B.; Pawelzik, E.; Naumann, M. Different potassium fertilization levels influence water-use efficiency, yield, and fruit quality attributes of cocktail tomato—A comparative study of deficient-to-excessive supply. Sci. Hortic. 2020, 272, 109562. [Google Scholar] [CrossRef]
- Peçanha, D.A.; Freitas, M.S.M.; Vieira, M.E.; Cunha, J.M.; de Jesus, A.C. Phosphorus fertilization affects growth, essential oil yield and quality of true lavender in Brazil. Ind. Crops Prod. 2021, 170, 113803. [Google Scholar] [CrossRef]
Treatment | Componet | Ratio | Proportion of Vc | |||
---|---|---|---|---|---|---|
No. | Designation | So (kg pot−1) | Vc (kg pot−1) | EWS (Individuals) | So:Vc | (%) Mass Content |
1 | So | 20 | 0 | 0 | - | 0 |
2 | SoVc9:1 | 18 | 2 | 0 | 9:1 | 10 |
3 | SoVc4:1 | 16 | 4 | 0 | 4:1 | 20 |
4 | SoVc3:1 | 15 | 5 | 0 | 3:1 | 25 |
5 | SoVc1:1 | 10 | 10 | 0 | 1:1 | 50 |
6 | SoVc9:1 + EWS10 | 18 | 2 | 10 | 9:1 | 10 |
7 | SoVc9:1 + EWS10 | 18 | 2 | 20 | 9:1 | 10 |
8 | SoVc4:1 + EWS10 | 16 | 4 | 10 | 4:1 | 20 |
9 | SoVc4:1 + EWS20 | 16 | 4 | 20 | 4:1 | 20 |
10 | SoVc3:1 + EWS10 | 15 | 5 | 10 | 3:1 | 25 |
11 | SoVc3:1 + EWS20 | 15 | 5 | 20 | 3:1 | 25 |
12 | SoVc1:1 + EWS10 | 10 | 10 | 10 | 1:1 | 50 |
13 | SoVc1:1 + EWS20 | 10 | 10 | 20 | 1:1 | 50 |
Subs. | Nin | P | K | Ca | Mg | S | Nt | Cox | C:N | EC | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | % | mS cm−1 | |||||||||
So | 9.20 | 17.80 | 173 | 3100 | 452 | 4.40 | 0.07 | 0.90 | 11.88 | 0.12 | 6.35 |
Vc | 310.1 | 3085 | 8763 | 5135 | 3252 | 2068 | 2.97 | 19.89 | 5.53 | 4.98 | 7.33 |
Treatment | g/10 Plants | % | |||||
---|---|---|---|---|---|---|---|
No. | Designation | ||||||
1 | So | 163.51 a | 100 | ||||
2 | SoVc9:1 | 387.54 b | 237.01 | 100 | |||
3 | SoVc4:1 | 523.61 e | 320.23 | 135.11 | 100 | ||
4 | SoVc3:1 | 578.07 h | 353.54 | 149.16 | 110.40 | 100 | |
5 | SoVc1:1 | 632.09 j | 386.58 | 163.10 | 120.72 | 109.35 | 100 |
6 | SoVc9:1 + EWs10 | 428.25 c | 261.91 | 110.50 | 81.79 | 74.08 | 67.75 |
7 | SoVc9:1 + EWs20 | 463.31 d | 289.47 | 119.55 | 88.48 | 80.15 | 73.30 |
8 | SoVc4:1 + EWs10 | 554.18 f | 338.93 | 143.00 | 105.84 | 95.87 | 87.67 |
9 | SoVc4:1 + EWs20 | 561.99 g | 343.70 | 145.01 | 107.33 | 97.22 | 88.91 |
10 | SoVc3:1 + EWs10 | 600.84 i | 367.46 | 155.04 | 114.75 | 103.94 | 95.06 |
11 | SoVc3:1 + EWs20 | 606.04 i | 370.64 | 156.38 | 115.74 | 104.84 | 95.88 |
12 | SoVc1:1 + EWs10 | 642.71 k | 393.07 | 165.84 | 122.75 | 111.18 | 101.68 |
13 | SoVc1:1 + EWs20 | 649.33 l | 397.12 | 167.55 | 124.01 | 112.33 | 102.73 |
HSD0.05 | 6.603 | - | - | - | - | - | |
1–13 | 522.42 | - | - | - | - | - | |
2–5 | 530.33 | 100.00 | - | - | - | - | |
6–13 | 563.33 | 106.22 | - | - | - | - | |
6, 8, 10, 12 | 556.50 | 104.93 | 100.00 | - | - | - | |
7, 9, 11, 13 | 570.17 | 107.51 | 102.46 | - | - | - |
Treatment | g/10 Plants | % | R/L | |||||
---|---|---|---|---|---|---|---|---|
No. | Designation | |||||||
1 | So | 57.26 a | 100 | 2.86 | ||||
2 | SoVc9:1 | 126.06 b | 220.15 | 100 | 3.07 | |||
3 | SoVc4:1 | 143.13 c | 249.97 | 113.54 | 100 | 3.66 | ||
4 | SoVc3:1 | 146.86 cd | 256.48 | 116.50 | 102.61 | 100 | 3.94 | |
5 | SoVc1:1 | 149.78 cd | 261.58 | 118.82 | 104.65 | 101.99 | 100 | 4.22 |
6 | SoVc9:1 + EWs10 | 130.79 b | 228.41 | 103.75 | 91.38 | 89.06 | 87.32 | 3.27 |
7 | SoVc9:1 + EWs20 | 142.89 c | 249.55 | 113.35 | 99.83 | 97.30 | 95.40 | 3.24 |
8 | SoVc4:1 + EWs10 | 146.84 cd | 256.44 | 116.48 | 102.59 | 99.99 | 98.04 | 3.77 |
9 | SoVc4:1 + EWs20 | 148.55 cd | 259.43 | 117.84 | 103.79 | 101.15 | 99.18 | 3.78 |
10 | SoVc3:1 + EWs10 | 149.64 cd | 261.33 | 118.71 | 104.55 | 101.89 | 99.91 | 4.02 |
11 | SoVc3:1 + EWs20 | 150.84 d | 263.43 | 119.66 | 105.39 | 102.71 | 100.71 | 4.02 |
12 | SoVc1:1 + EWs10 | 152.60 d | 266.50 | 121.05 | 106.62 | 103.91 | 101.88 | 4.21 |
13 | SoVc1:1 + EWs20 | 154.00 d | 268.95 | 122.16 | 107.59 | 104.86 | 102.82 | 4.22 |
HSD0.05 | 7.368 | - | - | - | - | - | - | |
1–13 | 138.40 | - | - | - | - | - | - | |
2–5 | 141.46 | 100.00 | - | - | - | - | - | |
6–13 | 147.02 | 103.93 | - | - | - | - | - | |
6, 8, 10, 12 | 144.97 | 102.48 | 100.00 | - | - | - | - | |
7, 9, 11, 13 | 149.07 | 105.38 | 102.83 | - | - | - | - |
Treatment | Roots | Leaves | R/L | ||||||
---|---|---|---|---|---|---|---|---|---|
No. | Designation | % | Rel. % | % | Rel. % | ||||
1 | So | 18.25 f | 100.00 | 100.00 | 12.22 a | 100.00 | 100.00 | 1.49 | 1.49 |
2 | SoVc9:1 | 17.48 de | 95.78 | 92.05 | 12.22 a | 100.00 | 107.53 | 1.43 | 1.29 |
3 | SoVc4:1 | 16.94 bc | 92.82 | 12.45 ab | 101.88 | 1.36 | |||
4 | SoVc3:1 | 16.65 b | 91.23 | 13.08 abc | 107.04 | 1.27 | |||
5 | SoVc1:1 | 16.13 a | 88.38 | 14.81 d | 121.19 | 1.09 | |||
6 | SoVc9:1 + EWs10 | 17.65 e | 96.71 | 92.93 | 12.45 ab | 101.88 | 111.39 | 1.42 | 1.25 |
7 | SoVc9:1 + EWs20 | 17.74 e | 97.21 | 12.67 abc | 103.68 | 1.40 | |||
8 | SoVc4:1 + EWs10 | 16.93 bc | 92.77 | 13.22 abc | 108.18 | 1.28 | |||
9 | SoVc4:1 + EWs20 | 17.19 cd | 94.19 | 13.32 abc | 109.00 | 1.29 | |||
10 | SoVc3:1 + EWs10 | 16.70 b | 91.51 | 13.61 bc | 111.37 | 1.23 | |||
11 | SoVc3:1 + EWs20 | 16.84 bc | 92.27 | 13.64 c | 111.62 | 1.23 | |||
12 | SoVc1:1 + EWs10 | 16.13 a | 88.38 | 14.96 d | 122.42 | 1.08 | |||
13 | SoVc1:1 + EWs20 | 16.50 ab | 90.41 | 15.03 d | 123.00 | 1.10 | |||
HSD0.05 | 0.44 | 1.161 | |||||||
1–13 | 17.01 | 13.36 | |||||||
2–5 | 16.80 | 13.14 | |||||||
6–13 | 16.96 | 13.61 | |||||||
6, 8, 10, 12 | 16.85 | 13.56 | |||||||
7, 9, 11, 13 | 17.07 | 13.67 |
Treatment | N | P | K | Ca | Mg | S | K:(Ca + Mg) | |
---|---|---|---|---|---|---|---|---|
No. | Designation | mg kg−1 | ||||||
1 | So | 5560 a | 1975 a | 24,200 a | 2400 g | 1866 a | 2010 h | 5.67 |
2 | SoVc9:1 | 8299 b | 3629 b | 30,089 b | 2329 g | 1989 ab | 1848 g | 6.97 |
3 | SoVc4:1 | 8414 b | 3674 b | 30,289 b | 1985 def | 2043 ab | 1774 fg | 7.52 |
4 | SoVc3:1 | 9569 c | 3865 b | 31,552 de | 1753 bcd | 2133 b | 1767 efg | 8.12 |
5 | SoVc1:1 | 10,310 d | 4461 c | 33,064 g | 1567 abc | 2184 b | 1758 efg | 8.81 |
6 | SoVc9:1 + EWs10 | 8382 b | 3799 b | 31,717 de | 2205 fg | 2048 ab | 1716 def | 7.46 |
7 | SoVc9:1 + EWs20 | 8404 b | 3830 b | 32,318 f | 2114 efg | 2054 ab | 1676 cde | 7.75 |
8 | SoVc4:1 + EWs10 | 8502 b | 3719 b | 30,801 c | 1844 cde | 2087 ab | 1658 cd | 7.84 |
9 | SoVc4:1 + EWs20 | 8527 b | 3739 b | 31,287 cd | 1742 bcd | 2102 ab | 1618 c | 8.14 |
10 | SoVc3:1 + EWs10 | 9612 c | 3888 b | 31,675 de | 1700 abcd | 2130 b | 1645 cd | 8.27 |
11 | SoVc3:1 + EWs20 | 9736 c | 3902 b | 31,898 ef | 1688 abcd | 2126 b | 1602 bc | 8.36 |
12 | SoVc1:1 + EWs10 | 10,346 d | 4502 c | 33,286 gh | 1484 ab | 2179 b | 1521 ab | 9.09 |
13 | SoVc1:1 + EWs20 | 10,363 d | 4577 c | 33,632 h | 1410 a | 2169 b | 1485 a | 9.40 |
HSD0.05 | 408.31 | 325.43 | 492.39 | 306.58 | 236.05 | 95.61 | - | |
1–13 | 8925 | 3812 | 31,216 | 1863 | 2085 | 1698 | 7.91 | |
2–5 | 9148 | 3907 | 31,249 | 1909 | 2087 | 1787 | 7.82 | |
6–13 | 9234 | 3995 | 32,077 | 1773 | 2112 | 1615 | 8.26 | |
6, 8, 10, 12 | 9211 | 3977 | 31,870 | 1808 | 2111 | 1635 | 8.13 | |
7, 9, 11, 13 | 9258 | 4012 | 32,284 | 1739 | 2113 | 1595 | 8.38 |
Treatment | N | P | K | Ca | Mg | S | K:(Ca + Mg) | |
---|---|---|---|---|---|---|---|---|
No. | Designation | mg kg−1 | ||||||
1 | So | 14,240 a | 1688 a | 34,600 a | 24,000 e | 8184 g | 3270 a | 1.08 |
2 | SoVc9:1 | 15,080 b | 1938 b | 39,300 b | 20,200 d | 6716 cd | 4200 b | 1.46 |
3 | SoVc4:1 | 15,640 c | 1963 b | 44,200 e | 18,450 c | 6686 c | 4400 bcd | 1.76 |
4 | SoVc3:1 | 16,760 d | 2180 cde | 51,600 g | 13,900 b | 5534 b | 4500 bcde | 2.66 |
5 | SoVc1:1 | 18,300 e | 2370 e | 62,200 i | 7630 a | 4501 a | 5000 g | 5.13 |
6 | SoVc9:1 + EWs10 | 15,100 b | 1970 b | 40,800 c | 19,850 d | 7052 ef | 4300 bc | 1.52 |
7 | SoVc9:1 + EWs20 | 15,110 b | 2010 bc | 41,400 d | 19,850 d | 7206 f | 4420 bcd | 1.53 |
8 | SoVc4:1 + EWs10 | 15,750 c | 2073 bcd | 45,600 f | 18,300 c | 6854 cde | 4635 cdef | 1.81 |
9 | SoVc4:1 + EWs20 | 15,800 c | 2110 bcd | 45,610 f | 18,150 c | 6997 def | 4840 fg | 1.81 |
10 | SoVc3:1 + EWs10 | 16,800 d | 2200 cde | 52,380 h | 13,908 b | 5302 b | 4700 efg | 2.73 |
11 | SoVc3:1 + EWs20 | 16,860 d | 2250 de | 52,574 h | 14,015 b | 5507 b | 4865 fg | 2.69 |
12 | SoVc1:1 + EWs10 | 18,480 e | 2375 e | 62,500 i | 7550 a | 4630 a | 5000 g | 5.13 |
13 | SoVc1:1 + EWs20 | 18,470 e | 2355 e | 62,400 i | 7600 a | 4753 a | 5030 g | 5.05 |
HSD0.05 | 475.60 | 206.64 | 519.72 | 418.34 | 306.26 | 395.16 | - | |
1–13 | 16,338 | 2114 | 48,859 | 15,646 | 6148 | 4551 | 2.24 | |
2–5 | 16,445 | 2113 | 49,325 | 15,045 | 5859 | 4525 | 2.36 | |
6–13 | 16,546 | 2168 | 50,408 | 14,903 | 6038 | 4724 | 2.41 | |
6, 8, 10, 12 | 16,533 | 2155 | 50,344 | 14,941 | 5960 | 4708 | 2.41 | |
7, 9, 11, 13 | 16,560 | 2181 | 50,496 | 14,904 | 6116 | 4789 | 2.40 |
Organ | Nutrient | P | K | Ca | Mg | S | No. |
---|---|---|---|---|---|---|---|
Roots | N | 0.891 ++ | 0.894 ++ | −0.729 ++ | 0.517 ++ | −0.693 ++ | 52 |
P | – | 0.935 ++ | −0.614 ++ | 0.490 ++ | −0.688 ++ | ||
K | – | −0.629 ++ | 0.472 ++ | −0.766 ++ | |||
Ca | – | −0.454 ++ | 0.581 ++ | ||||
Mg | – | −0.299 + | |||||
Leaves | N | 0.779 ++ | 0.976 ++ | −0.973 ++ | −0.803 ++ | 0.731 ++ | |
P | – | 0.821 ++ | −0.809 ++ | −0.710 ++ | 0.673 ++ | ||
K | – | −0.994 ++ | −0.829 ++ | 0.743 ++ | |||
Ca | – | 0.832 ++ | −0.725 ++ | ||||
Mg | – | −0.661 ++ |
Treatment | N | P | K | Ca | Mg | S | |
---|---|---|---|---|---|---|---|
No. | Designation | ||||||
1 | S | 2.56 | 0.86 | 1.43 | 10.00 | 4.39 | 1.63 |
2 | SVc9:1 | 1.82 | 0.53 | 1.31 | 8.67 | 3.38 | 2.27 |
3 | SVc4:1 | 1.86 | 0.53 | 1.46 | 9.29 | 3.27 | 2.48 |
4 | SVc3:1 | 1.75 | 0.56 | 1.64 | 7.93 | 2.59 | 2.55 |
5 | SVc1:1 | 1.77 | 0.53 | 1.88 | 4.87 | 2.06 | 2.84 |
6 | SVc9:1 + EWs10 | 1.80 | 0.52 | 1.29 | 9.00 | 3.35 | 2.51 |
7 | SVc9:1 + EWs20 | 1.80 | 0.52 | 1.28 | 9.39 | 3.41 | 2.64 |
8 | SVc4:1 + EWs10 | 1.85 | 0.56 | 1.48 | 9.92 | 3.38 | 2.80 |
9 | SVc4:1 + EWs20 | 1.85 | 0.56 | 1.46 | 10.42 | 3.52 | 2.99 |
10 | SVc3:1 + EWs10 | 1.75 | 0.57 | 1.65 | 8.18 | 2.17 | 2.86 |
11 | SVc3:1 + EWs20 | 1.73 | 0.58 | 1.65 | 8.30 | 2.24 | 3.04 |
12 | SVc1:1 + EWs10 | 1.79 | 0.53 | 1.88 | 5.09 | 2.43 | 3.29 |
13 | SVc1:1 + EWs20 | 1.78 | 0.51 | 1.86 | 5.39 | 2.63 | 3.39 |
1–13 | 1.83 | 0.55 | 1.57 | 0.84 | 2.96 | 2.68 | |
2–5 | 1.80 | 0.54 | 1.58 | 7.88 | 2.81 | 2.53 | |
6–13 | 1.79 | 0.54 | 1.57 | 8.41 | 2.88 | 2.93 | |
6, 8, 10, 12 | 1.79 | 0.54 | 1.58 | 8.26 | 2.89 | 2.88 | |
7, 9, 11, 13 | 1.79 | 0.54 | 1.56 | 8.57 | 2.94 | 3.00 |
Dependent Parameter | Independent Parameter | r | No. | |
---|---|---|---|---|
Yield of fresh carrot roots | N concentration | 0.925 ++ | 52 | |
P concentration | 0.864 ++ | |||
K concentration | in roots | 0.877 ++ | ||
Ca concentration | −0.785 ++ | |||
Mg concentration | 0.498 ++ | |||
S concentration | −0.762 ++ | |||
N concentration | 0.819 ++ | |||
P concentration | 0.787 ++ | |||
K concentration | in leaves | 0.852 ++ | ||
Ca concentration | −0.830 ++ | |||
Mg concentration | −0.770 ++ | |||
S concentration | 0.867 ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kováčik, P.; Šimanský, V.; Smoleń, S.; Neupauer, J.; Olšovská, K. The Effect of Vermicompost and Earthworms (Eisenia fetida) Application on Phytomass and Macroelement Concentration and Tetanic Ratio in Carrot. Agronomy 2022, 12, 2770. https://doi.org/10.3390/agronomy12112770
Kováčik P, Šimanský V, Smoleń S, Neupauer J, Olšovská K. The Effect of Vermicompost and Earthworms (Eisenia fetida) Application on Phytomass and Macroelement Concentration and Tetanic Ratio in Carrot. Agronomy. 2022; 12(11):2770. https://doi.org/10.3390/agronomy12112770
Chicago/Turabian StyleKováčik, Peter, Vladimír Šimanský, Sylwester Smoleń, Jakub Neupauer, and Katarína Olšovská. 2022. "The Effect of Vermicompost and Earthworms (Eisenia fetida) Application on Phytomass and Macroelement Concentration and Tetanic Ratio in Carrot" Agronomy 12, no. 11: 2770. https://doi.org/10.3390/agronomy12112770
APA StyleKováčik, P., Šimanský, V., Smoleń, S., Neupauer, J., & Olšovská, K. (2022). The Effect of Vermicompost and Earthworms (Eisenia fetida) Application on Phytomass and Macroelement Concentration and Tetanic Ratio in Carrot. Agronomy, 12(11), 2770. https://doi.org/10.3390/agronomy12112770