The Resistance Levels and Target-Site Based Resistance Mechanisms to Glyphosate in Eleusine indica from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Petri Dish Dose-Response Bioassay
2.3. Extraction and Accumulation Assay of Shikimic Acid
2.4. RNA Extraction and cDNA Synthesis
2.5. Identification of Mutation in EPSPS
2.6. EPSPS Gene Expression Level
2.7. Statistical Analysis
3. Results
3.1. Glyphosate Resistance of E. Indica
3.2. Shikimate Accumulation
3.3. EPSPS Gene Expression
3.4. EPSPS Gene Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Schonbrunn, E.; Eschenburg, S.; Shuttleworth, W.A.; Schloss, J.V.; Amrhein, N.; Evans, J.N.S.; Kabsch, W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 2001, 98, 1376–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powles, S.B.; Lorraine-Colwill, D.F.; Dellow, J.J.; Preston, C. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 1998, 46, 604–607. [Google Scholar] [CrossRef]
- Baylis, A.D. Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Manag. Sci. 2000, 56, 299–308. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 5 November 2022).
- Li, J.; Peng, Q.; Han, H.; Nyporko, A.; Kulynych, T.; Yu, Q.; Powles, S. Glyphosate resistance in Tridax procumbens via a novel EPSPS Thr-102-Ser substitution. J. Agric. Food Chem. 2018, 66, 7880–7888. [Google Scholar] [CrossRef] [PubMed]
- Sammons, D.R.; Gaines, T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014, 70, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Jalaludin, A.; Han, H.; Chen, M.; Sammons, R.D.; Powles, S.B. Evolution of a double amino acid substitution in the EPSP synthase in Eleusine indica conferring high level glyphosate resistance. Plant Physiol. 2015, 167, 1440–1447. [Google Scholar] [CrossRef] [Green Version]
- Perotti, V.E.; Larran, A.S.; Palmieri, V.E.; Martinatto, A.K.; Alvarez, C.E.; Tuescad, D.; Permingeat, H.R. A novel triple amino acid substitution in the EPSPS found in a high-level glyphosate-resistant Amaranthus hybridus population from Argentina. Pest Manag. Sci. 2019, 75, 1242–1251. [Google Scholar] [CrossRef]
- Baerson, S.R.; Rodriguez, D.J.; Tran, M.; Feng, Y.M.; Biest, N.A.; Dill, G.M. Glyphosate-resistant goosegrass identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 2002, 129, 1265–1275. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.; Xu, Y.F.; Wang, S.P.; Qiu, L.H.; Zheng, M.Q. Investigation of glyphosate resistance levels and target-site based resistance (TSR) mechanisms in Conyza canadensis (L.) from apple orchards around areas of Bohai Rim and Loess Plateau in China. Pestic. Biochem. Physiol. 2018, 146, 7–12. [Google Scholar] [CrossRef]
- Gaines, T.A.; Patterson, E.L.; Neve, P. Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. New Phytol. 2019, 223, 1770–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, E.L.; Petting, D.J.; Ravet, K.; Neve, P.; Gaines, T.A. Glyphosate resistance and EPSPS gene duplication: Convergent evolution in multiple plant species. J. Hered. 2018, 109, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vila-Aiub, M.M.; Balbi, M.C.; Distefano, A.J.; Fernandez, L.; Hopp, E.; Yu, Q.; Powles, S.B. Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag. Sci. 2012, 68, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Abdallah, I.; Han, H.P.; Owen, M.; Powles, S. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum. Planta 2009, 230, 713–723. [Google Scholar] [CrossRef]
- Carvalho, L.B.; Alves, P.L.; Gonzalez-Torralva, F.; Cruz-Hipolito, H.E.; Rojano-Delgado, A.M.; De Prado, R. Pool of resistance mechanisms to glyphosate in Digitaria insularis. J. Agric. Food Chem. 2012, 60, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Stahlman, P.W.; Jugulam, M. Reduced absorption of glyphosate and decreased translocation of dicamba contribute to poor control of kochia (Kochia scoparia) at high temperature. Pest Manag. Sci. 2016, 74, 1134–1142. [Google Scholar] [CrossRef]
- Pan, L.; Yu, Q.; Wang, J.Z.; Han, H.P.; Mao, L.F.; Nyporko, A.; Maguza, A.; Fan, L.J.; Bai, L.Y.; Powles, S. An ABCC-type transporter endowing glyphosate resistance in plants. Proc. Natl. Acad. Sci. USA 2021, 118, e2100136118. [Google Scholar] [CrossRef]
- Pan, L.; Yu, Q.; Han, H.P.; Mao, L.F.; Nyporko, A.; Fan, L.J.; Bai, L.Y.; Powles, S. Aldo-keto Reductase Metabolizes Glyphosate and Confers Glyphosate Resistance in Echinochloa colona [OPEN]. Plant Physiol. 2019, 181, 1519–1534. [Google Scholar] [CrossRef]
- Yuan, G.H.; Tian, Z.H.; Li, T.; Qian, Z.G. Resistance of Eleusine indica to acetyl-CoA carboxylase-inhibiting herbicides in direct-seeded rice and its molecular mechanism. Chin. J. Pestic. Sci. 2019, 21, 151–157. (In Chinese) [Google Scholar] [CrossRef]
- Zong, T.; Li, J.; Liu, X.Y.; Bai, L.Y. Resistance of Eleusine indica to quizalofop-P-ethyl in some cotton fields in Hunan province. Plant Prot. 2015, 41, 58–63. (In Chinese) [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Seefeldt, S.S.; Jensen, J.E.; Fuerst, E.P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 1995, 9, 218–227. [Google Scholar] [CrossRef]
- Neve, P.; Sadler, J.; Powles, S.B. Multiple herbicide resistance in a glyphosate-resistant rigid ryegrass (Lolium rigidum) population. Weed Sci. 2004, 52, 920–928. [Google Scholar] [CrossRef]
- Perez, A.; Kogan, M. Glyphosate-resistant Lolium multiflorum in Chilean orchards. Weed Res. 2003, 43, 12–19. [Google Scholar] [CrossRef]
- Perez-Jones, A.; Park, K.W.; Polge, N.; Colquhoun, J.; Mallory-Smith, C.A. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta 2007, 226, 395–404. [Google Scholar] [CrossRef]
- Perez, M.B.; Beckie, H.J.; Cawthray, G.R.; Goggin, D.E.; Busi, R. Developing a Petri dish test to detect resistance to key herbicides in Lolium rigidum. bioRxiv 2021. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, C.J.; Qin, Y.; Guo, W.L.; Zhang, T.J.; Tian, X.S. Evolution of multiple target-site resistance mechanisms in individual plants of glyphosate-resistant Eleusine indica from China. Pest Manag. Sci. 2021, 77, 4810–4817. [Google Scholar] [CrossRef]
- Chen, S.H.; Ran, H.Y.; Lan, X.M.; He, X.L.; Ye, Z.C. Glyphosate Resistance of Digitaria sanguinalis and Amaranthus retroflexus. J. Agric. 2022, 12, 20–25. (In Chinese) [Google Scholar] [CrossRef]
- Salas, R.A.; Dayan, F.E.; Pan, Z.; Watson, S.B.; Dickson, J.W.; Scott, R.C. EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas. Pest Manag. Sci. 2012, 68, 1223–1230. [Google Scholar] [CrossRef]
- Nandula, V.K.; Wright, A.A.; Bond, J.A.; Ray, J.D.; Eubank, T.W.; Molin, W.T. EPSPS amplification in glyphosate-resistant spiny amaranth (Amaranthus spinosus): A case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Pest Manag. Sci. 2014, 70, 1902–1909. [Google Scholar] [CrossRef]
- Ngo, T.D.; Malone, J.M.; Boutsalis, P.; Gill, G.; Preston, C. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia. Pest Manag. Sci. 2018, 74, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Adu-Yeboah, P.; Malone, J.M.; Fleet, B.; Gill, G.; Preston, C. EPSPS gene amplification confers resistance to glyphosate resistant populations of Hordeum glaucum Stued (northern barley grass) in South Australia. Pest Manag. Sci. 2020, 76, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
Populations | Glyphosate (mg/L) | ||||||
---|---|---|---|---|---|---|---|
0 (CK) | 1.0 | 10 | 100 | ||||
Shikimic Acid | |||||||
(µg/cm2) | (µg/cm2) | R/S | (µg/cm2) | R/S | (µg/cm2) | R/S | |
BJ05 | 18.30 ± 2.39 | 21.88 ± 1.15 | 1.00 | 23.55 ± 1.25 | 1.00 | 57.76 ± 7.73 | 1.00 |
PY07 | 14.12 ± 1.93 | 24.92 ± 1.39 * | 1.14 | 46.96 ± 2.46 *** | 1.99 | 56.23 ± 2.10 | 0.97 |
SD04 | 26.74 ± 1.23 | 29.02 ± 2.07 ** | 1.33 | 36.17 ± 3.57 ** | 1.54 | 53.35 ± 3.32 | 0.92 |
BJ01 | 25.91 ± 3.66 | 31.00 ± 1.74 *** | 1.42 | 36.17 ± 4.27 ** | 1.54 | 52.66 ± 3.12 | 0.91 |
HN01 | 11.08 ± 1.17 | 15.72 ± 1.67 ** | 0.72 | 23.09 ± 5.74 | 0.98 | 41.56 ± 2.80 * | 0.72 |
HN03 | 10.78 ± 1.30 | 19.67 ± 0.82 * | 0.9 | 25.68 ± 2.57 | 1.09 | 40.65 ± 1.24 * | 0.7 |
LN02 | 22.03 ± 2.17 | 24.01 ± 3.27 | 1.1 | 26.51 ± 1.12 * | 1.13 | 40.65 ± 6.08 * | 0.7 |
SHX04 | 27.12 ± 2.60 | 31.07 ± 4.30 * | 1.42 | 33.20 ± 0.53 *** | 1.41 | 39.51 ± 3.11 * | 0.68 |
DT01 | 28.72 ± 3.52 | 29.02 ± 3.09 | 1.33 | 34.04 ± 1.17 *** | 1.45 | 37.23 ± 4.24 ** | 0.64 |
SD08 | 23.02 ± 1.63 | 25.22 ± 0.63 * | 1.15 | 28.19 ± 1.24 ** | 1.2 | 36.40 ± 4.43 ** | 0.63 |
DT11 | 9.26 ± 0.67 | 12.53 ± 2.14 *** | 0.57 | 13.06 ± 0.87 *** | 0.55 | 34.49 ± 1.65 ** | 0.6 |
DT09 | 14.73 ± 1.30 | 20.13 ± 2.01 | 0.92 | 26.36 ± 2.45 | 1.12 | 33.51 ± 2.88 ** | 0.58 |
PY08 | 19.22 ± 0.18 | 21.42 ± 2.25 | 0.98 | 31.30 ± 0.87 *** | 1.32 | 31.91 ± 3.66 ** | 0.55 |
SD10 | 9.64 ± 0.66 | 13.90 ± 1.38 *** | 0.64 | 15.11 ± 0.96 *** | 0.64 | 30.54 ± 1.91 ** | 0.53 |
LN07 | 18.99 ± 1.71 | 19.22 ± 1.82 * | 0.88 | 20.05 ± 1.91 * | 0.85 | 27.27 ± 3.62 ** | 0.47 |
SD05 | 17.24 ± 2.37 | 17.62 ± 3.76 | 0.81 | 19.06 ± 3.47 | 0.81 | 26.29 ± 2.28 ** | 0.46 |
HB08 | 11.84 ± 0.91 | 13.59 ± 2.03 *** | 0.62 | 20.74 ± 3.69 | 0.88 | 24.16 ± 4.18 ** | 0.42 |
SX05 | 11.61 ± 0.95 | 13.06 ± 1.90 *** | 0.6 | 14.35 ± 1.35 *** | 0.61 | 22.71 ± 2.64 ** | 0.39 |
PY06 | 8.50 ± 2.05 | 10.17 ± 1.32 *** | 0.46 | 11.46 ± 0.25 *** | 0.49 | 21.88 ± 6.39 *** | 0.38 |
LN04 | 10.02 ± 0.67 | 12.45 ± 1.00 *** | 0.57 | 15.34 ± 0.91 *** | 0.65 | 21.57 ± 1.90 ** | 0.37 |
LN05 | 12.98 ± 0.56 | 12.98 ± 1.08 *** | 0.59 | 14.73 ± 3.12 ** | 0.63 | 19.82 ± 6.56 *** | 0.34 |
SX03 | 8.95 ± 1.30 | 9.11 ± 0.38 *** | 0.42 | 9.26 ± 0.67 *** | 0.39 | 19.29 ± 4.24 *** | 0.33 |
DT13 | 17.32 ± 0.52 | 17.01 ± 1.00 ** | 0.78 | 18.23 ± 1.23 ** | 0.77 | 18.76 ± 1.51 ** | 0.32 |
PY02 | 11.08 ± 1.67 | 12.38 ± 1.14 *** | 0.57 | 16.18 ± 1.83 ** | 0.69 | 18.08 ± 1.03 ** | 0.31 |
HB03 | 7.81 ± 0.25 | 9.26 ± 2.28 *** | 0.42 | 12.68 ± 1.79 *** | 0.54 | 17.01 ± 1.99 ** | 0.29 |
SD12 | 9.94 ± 0.43 | 11.46 ± 0.96 *** | 0.52 | 11.84 ± 0.91 *** | 0.5 | 15.34 ± 1.83 ** | 0.27 |
SHX01 | 8.35 ± 0.29 | 10.55 ± 0.25 *** | 0.48 | 10.93 ± 1.54 *** | 0.46 | 11.92 ± 0.72 ** | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Mei, Y.; Zhang, L.; Hao, L.; Zheng, M. The Resistance Levels and Target-Site Based Resistance Mechanisms to Glyphosate in Eleusine indica from China. Agronomy 2022, 12, 2780. https://doi.org/10.3390/agronomy12112780
Li J, Mei Y, Zhang L, Hao L, Zheng M. The Resistance Levels and Target-Site Based Resistance Mechanisms to Glyphosate in Eleusine indica from China. Agronomy. 2022; 12(11):2780. https://doi.org/10.3390/agronomy12112780
Chicago/Turabian StyleLi, Jinyao, Yu Mei, Lingling Zhang, Lubo Hao, and Mingqi Zheng. 2022. "The Resistance Levels and Target-Site Based Resistance Mechanisms to Glyphosate in Eleusine indica from China" Agronomy 12, no. 11: 2780. https://doi.org/10.3390/agronomy12112780
APA StyleLi, J., Mei, Y., Zhang, L., Hao, L., & Zheng, M. (2022). The Resistance Levels and Target-Site Based Resistance Mechanisms to Glyphosate in Eleusine indica from China. Agronomy, 12(11), 2780. https://doi.org/10.3390/agronomy12112780