Efficient Identification of Apple Leaf Diseases in the Wild Using Convolutional Neural Networks
Abstract
:1. Introduction
- Data fusion: An apple leaf disease dataset called AppleLeaf9 was constructed to ensure the generalization of performance of the CNN model. To improve the diversity of the identified categories, AppleLeaf9 fuses together four different ALD datasets. The AppleLeaf9 dataset includes healthy apple leaves and eight categories of ALDs, most of which are in the wild environment.
- A novel ALD identification model called EfficientNet-MG is proposed. This model introduces the multistage feature fusion (MSFF) method and the Gaussian error linear unit (GELU) activation function into EfficientNet, which has the following three merits:
2. Materials and Methods
2.1. AppleLeaf9
2.2. Dataset Preprocessing
2.2.1. CLAHE
2.2.2. Data Augmentation
2.3. Proposed EfficientNet-MG
2.3.1. EfficientNet
2.3.2. MSFF Method
2.3.3. GELU Activation Function
2.4. Transfer Learning
3. Experiment
3.1. Experimental Device
3.2. DMALR with Cross-Validation
3.3. Evaluation Metrics
4. Results
4.1. Identification Performance of EfficientNet-MG
4.2. Comparison with the Classical Models
4.3. Comparison with EfficientNets
4.4. Visualization of Prediction Results
4.5. Ablation Study
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Fan, K.; Su, W.; Peng, Y. Two-Stage Convolutional Neural Networks for Diagnosing the Severity of Alternaria Leaf Blotch Disease of the Apple Tree. Remote Sens. 2022, 14, 2519. [Google Scholar] [CrossRef]
- Praba, R.D.; Vennila, R.; Rohini, G.; Mithila, S.; Kavitha, K. Foliar Disease Classification in Apple Trees. In Proceedings of the 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Virtual Conference, 8–9 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Alvarez-Mendoza, C.I.; Teodoro, A.; Quintana, J.; Tituana, K. Estimation of Nitrogen in the Soil of Balsa Trees in Ecuador Using Unmanned Aerial Vehicles. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4610–4613. [Google Scholar] [CrossRef]
- Selvaraj, M.G.; Vergara, A.; Ruiz, H.; Safari, N.; Elayabalan, S.; Ocimati, W.; Blomme, G. AI-powered banana diseases and pest detection. Plant Methods 2019, 15, 92. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Huang, Y.; Loraamm, R.W.; Nie, C.; Wang, J.; Zhang, J. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crop Res. 2014, 156, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Zeng, T.; Zhang, H.; Fu, W.; Wang, L.; Yao, S. Maize Small Leaf Spot Classification Based on Improved Deep Convolutional Neural Networks with a Multi-Scale Attention Mechanism. Agronomy 2022, 12, 906. [Google Scholar] [CrossRef]
- Chuanlei, Z.; Shanwen, Z.; Jucheng, Y.; Yancui, S.; Jia, C. Apple leaf disease identification using genetic algorithm and correlation based feature selection method. Int. J. Agr. Biol. Eng. 2017, 10, 74–83. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, S.; Tanta, A.; Gupta, R. Extraction of Multiple Diseases in Apple Leaf Using Machine Learning. Int. J. Image Graph. 2021, 21, 2140009. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2016; IEEE: New York, NY, USA, 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, M. Research on deep learning in apple leaf disease recognition. Comput. Electron. Agr. 2020, 168, 105146. [Google Scholar] [CrossRef]
- Yadav, D.; Yadav, A.K. A Novel Convolutional Neural Network Based Model for Recognition and Classification of Apple Leaf Diseases. Trait. Signal 2020, 37, 1093–1101. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Xue, Z.P.; Guo, Y. Research on Plant Leaf Disease Identification Based on Transfer Learning Algorithm. In Proceedings of the 4th International Conference on Artificial Intelligence, Automation and Control Technologies (AIACT 2020), Hangzhou, China, 24–26 April 2020; Volume 1576, p. 012023. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar] [CrossRef] [Green Version]
- Chao, X.; Sun, G.; Zhao, H.; Li, M.; He, D. Identification of Apple Tree Leaf Diseases Based on Deep Learning Models. Symmetry 2020, 12, 1065. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Bi, C.; Wang, J.; Duan, Y.; Fu, B.; Kang, J.; Shi, Y. MobileNet based apple leaf diseases identification. Mob. Networks Appl. 2020, 27, 172–180. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv 2015, arXiv:1511.08060. [Google Scholar] [CrossRef]
- Yan, Q.; Yang, B.; Wang, W.; Wang, B.; Chen, P.; Zhang, J. Apple leaf diseases recognition based on an improved convolutional neural network. Sensors 2020, 20, 3535. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, J.; Shen, J.; Wu, X.; Wang, L.; Zhu, W. Apple Leaf Disease Recognition and Sub-Class Categorization Based on Improved Multi-Scale Feature Fusion Network. IEEE Access 2021, 9, 95517–95527. [Google Scholar] [CrossRef]
- Yu, H.; Cheng, X.; Chen, C.; Heidari, A.A.; Liu, J.; Cai, Z.; Chen, H. Apple leaf disease recognition method with improved residual network. Multimed. Tools Appl. 2022, 81, 7759–7782. [Google Scholar] [CrossRef]
- Pradhan, P.; Kumar, B.; Mohan, S. Comparison of various deep convolutional neural network models to discriminate apple leaf diseases using transfer learning. J. Plant Dis. Prot. 2022, 129, 1461–1473. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Li, M.; Su, W. Automatic Tandem Dual BlendMask Networks for Severity Assessment of Wheat Fusarium Head Blight. Agriculture 2022, 12, 1493. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; Zhang, J.; Yuan, L.; Zhou, X.; Xu, X.; Yang, G. Forecasting Alternaria Leaf Spot in Apple with Spatial-Temporal Meteorological and Mobile Internet-Based Disease Survey Data. Agronomy 2022, 12, 679. [Google Scholar] [CrossRef]
- Thapa, R.; Zhang, K.; Snavely, N.; Belongie, S.; Khan, A. The Plant Pathology Challenge 2020 data set to classify foliar disease of apples. Appl. Plant Sci. 2020, 8, e11390. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.F.J.; Chao, X.C.X. Apple Tree Leaf Disease Segmentation Dataset; Science Data Bank: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems; Elsevier: Amsterdam, The Netherlands, 1994; pp. 474–485. [Google Scholar]
- Garg, R.; Mittal, B.; Garg, S. Histogram equalization techniques for image enhancement. Int. J. Electron. Commun. Technol. 2011, 2, 107–111. [Google Scholar]
- Zhang, P.; Yang, L.; Li, D. EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment. Comput. Electron. Agr. 2020, 176, 105652. [Google Scholar] [CrossRef]
- Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2820–2828. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, N.K.; Kabir, M.A.; Rahman, M.; Rezoana, N. ECOVNet: An Ensemble of Deep Convolutional Neural Networks Based on EfficientNet to Detect COVID-19 From Chest X-rays. arXiv 2020, arXiv:2009.11850. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Ren, J.; MacLellan, C.; Li, H.; Zhao, H.; Hussain, A.; Fortino, G. A novel multi-stage residual feature fusion network for detection of COVID-19 in chest X-ray images. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2021, 8, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Clevert, D.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv 2015, arXiv:1511.07289. [Google Scholar] [CrossRef]
- Yu, C.; Su, Z. Symmetrical Gaussian Error Linear Units (SGELUs). arXiv 2019, arXiv:1911.03925. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415. [Google Scholar] [CrossRef]
- Xie, C.; Tan, M.; Gong, B.; Yuille, A.; Le, Q.V. Smooth adversarial training. arXiv 2020, arXiv:2006.14536. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Rahman, T.; Chowdhury, M.E.; Khandakar, A.; Islam, K.R.; Islam, K.F.; Mahbub, Z.B.; Kadir, M.A.; Kashem, S. Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Appl. Sci. 2020, 10, 3233. [Google Scholar] [CrossRef]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010, Paris, France, 22–27 August 2010; pp. 177–186. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Shlens, J. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the Computer Vision Fundation, Columbus, OH, USA, 23–28 June 2014; pp. 2818–2826. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
Types | Main Symptoms | Main Causes |
---|---|---|
Alternaria leaf spot | The diseased spots often have small round brown or black lesions that gradually enlarge with a brownish-purple border on leaves. | Alternaria alternata f. sp. mali |
Brown spot | The dark brown spots are morphologically different from other lesions. | Marssonina coronaria |
Frogeye leaf spot | The center of the spot turns brownish with dark-brown to purplish edges, giving the spot a frog eye appearance. | Botryosphaeria obtusa |
Grey spot | In the early stages, sub-circular yellow-brown lesions are found, which later turn grey. | Phyllosticta pirina Sacc. & Coryneum foliicolum |
Mosaic | Bright yellow spots spread throughout the leaves. | Apple mosaic virus |
Powdery mildew | Tiny white spots spread throughout the leaves. | Podosphaera leucotricha |
Rust | The diseased spots are often rusty yellow dots with brown acicular dots in the center of these dots. | Pucciniaceae glue rust |
Scab | The diseased spots are velvet-like with fringed borders. | Venturia inaequalis |
Types | Total Images | Training Images | Validation Images | Testing Images | Labels | |
---|---|---|---|---|---|---|
Original | Augmentation | |||||
Alternaria leaf spot | 417 | 251 | 502 | 83 | 83 | A1 |
Brown spot | 411 | 247 | 494 | 82 | 82 | A2 |
Frogeye leaf spot | 3181 | 1909 | 3818 | 636 | 636 | A3 |
Grey spot | 339 | 205 | 410 | 67 | 67 | A4 |
Healthy | 516 | 310 | 620 | 103 | 103 | A5 |
Mosaic | 371 | 223 | 446 | 74 | 74 | A6 |
Powdery mildew | 1184 | 712 | 1424 | 236 | 236 | A7 |
Rust | 2753 | 1653 | 3306 | 550 | 550 | A8 |
Scab | 5410 | 3246 | 6492 | 1082 | 1082 | A9 |
Sum | 14,582 | 8756 | 17,512 | 2913 | 2913 | - |
Stage | Operator | Resolution | Channels | Layers |
---|---|---|---|---|
1 | Conv3×3 | 224 × 224 | 32 | 1 |
2 | MBConv1, k = 3 × 3 | 112 × 112 | 16 | 1 |
3 | MBConv6, k = 3 × 3 | 112 × 112 | 24 | 2 |
4 | MBConv6, k = 5 × 5 | 56 × 56 | 40 | 2 |
5 | MBConv6, k = 3 × 3 | 28 × 28 | 80 | 3 |
6 | MBConv6, k = 5 × 5 | 14 × 14 | 112 | 3 |
7 | MBConv6, k = 5 × 5 | 14 × 14 | 192 | 4 |
8 | MBConv6, k = 3 × 3 | 7 × 7 | 320 | 1 |
9 | Conv1×1 & Pooling & FC | 7 × 7 | 1280 | 1 |
Configuration | Value |
---|---|
GPU | NVIDIA GeForce RTX 3080 Ti 12 GB (NVIDIA Inc., Santa Clara, CA, USA) |
CPU | 12th Gen Intel(R) Core(TM) i7-12700 K (Intel Inc., Santa Clara, CA, USA) |
RAM | 32 GB (Kingston Inc., Fountain Valley, CA, USA) |
Operation System | Ubuntu Server (18.04.5 LTS) (Canonical Inc., London, UK) |
Language | Python 3.9.7 (Python Software Foundation (PSF) NGO, Wilmington, DE, USA) |
DL Framework | TensorFlow 2.8.0 (Google Inc., Mountain View, CA, USA) |
Types | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Avg |
---|---|---|---|---|---|
LR = 0.1 | 90.21% | 92.72% | 88.87% | 92.82% | 91.16% |
LR = 0.001 | 89.05% | 90.49% | 88.77% | 89.29% | 89.40% |
95.36% | 94.02% | 93.54% | 95.47% | 94.60% |
Model | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|
VGG-19 | 0.9590 | 0.9533 | 0.9560 | 0.9986 |
ResNet-152 | 0.9781 | 0.9770 | 0.9774 | 0.9996 |
Inception-V3 | 0.9772 | 0.9706 | 0.9737 | 0.9996 |
Densnet-201 | 0.9811 | 0.9783 | 0.9795 | 0.9996 |
InceptionResNet-V2 | 0.9736 | 0.9668 | 0.9702 | 0.9993 |
EfficientNet-MG (Ours) | 0.9835 | 0.9820 | 0.9825 | 0.9997 |
Models | Input Size | Accuracy | Params | FLOPs | AET |
---|---|---|---|---|---|
EfficientNet-B0 | 224 × 224 | 98.59% | 4.06 M | 0.39 B | 46.22 ms |
EfficientNet-B1 | 240 × 240 | 98.73% | 6.59 M | 0.64 B | 49.48 ms |
EfficientNet-B2 | 260 × 260 | 98.97% | 7.78 M | 1.01 B | 49.86 ms |
EfficientNet-B3 | 300 × 300 | 99.11% | 10.80 M | 1.87 B | 55.06 ms |
EfficientNet-B4 | 380 × 380 | 99.31% | 17.69 M | 4.46 B | 57.19 ms |
EfficientNet-B5 | 456 × 456 | 99.31% | 28.53 M | 10.39 B | 63.06 ms |
EfficientNet-MG1 | 240 × 240 | 98.97% | 7.79 M | 0.68 B | 49.63 ms |
EfficientNet-MG2 | 240 × 240 | 98.73% | 7.79 M | 0.68 B | 49.63 ms |
EfficientNet-MG3 | 240 × 240 | 98.59% | 8.95 M | 0.68 B | 50.03 ms |
EfficientNet-MG | 240 × 240 | 99.11% | 8.42 M | 0.68 B | 50.41 ms |
EfficientNet-B1 | EfficientNet-MG | |||
---|---|---|---|---|
Dataset preprocessing | × | √ | √ | √ |
Transfer learning | × | × | √ | √ |
MSFF & GELU | × | × | × | √ |
Accuracy | 98.11% | 98.46% | 98.73% | 99.11% |
References | Methods/Models | Categories | Params | Accuracy |
---|---|---|---|---|
[7] | ML using SVM | 3 | - | 94.22% |
[11] | CNN using Densenet | 6 | - | 93.71% |
[14] | CNN using ResNet | 4 | 25.09 M | 83.75% |
[17] | XDNet | 6 | 10.16 M | 98.82% |
[19] | CNN using MobileNet | 2 | - | 73.50% |
[23] | CNN using VGG | 4 | 14.72 M | 99.01% |
[8] | ML using KNN | 2 | - | 96.41% |
[24] | CNN using ResNet | 6 | 25.12 M | 94.99% |
[25] | MSO-ResNet | 6 | - | 95.70% |
[26] | DenseNet-201 | 4 | 20.24 M | 98.75% |
Proposed | EfficientNet-MG | 9 | 8.42 M | 99.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Duan, S.; Wang, L. Efficient Identification of Apple Leaf Diseases in the Wild Using Convolutional Neural Networks. Agronomy 2022, 12, 2784. https://doi.org/10.3390/agronomy12112784
Yang Q, Duan S, Wang L. Efficient Identification of Apple Leaf Diseases in the Wild Using Convolutional Neural Networks. Agronomy. 2022; 12(11):2784. https://doi.org/10.3390/agronomy12112784
Chicago/Turabian StyleYang, Qing, Shukai Duan, and Lidan Wang. 2022. "Efficient Identification of Apple Leaf Diseases in the Wild Using Convolutional Neural Networks" Agronomy 12, no. 11: 2784. https://doi.org/10.3390/agronomy12112784
APA StyleYang, Q., Duan, S., & Wang, L. (2022). Efficient Identification of Apple Leaf Diseases in the Wild Using Convolutional Neural Networks. Agronomy, 12(11), 2784. https://doi.org/10.3390/agronomy12112784