Effects of Applying Different Organic Materials on Grain Yield and Soil Fertility in a Double-Season Rice Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.1.1. Trial Materials and Locations
2.1.2. Experiment Design
2.2. Measurement Items and Methods
2.2.1. Grain Yield
2.2.2. Dry Matter Accumulation
2.2.3. Soil Nutrient Determination
2.2.4. Soil Enzyme Activity Determination
2.2.5. Carbon Pool Management Index (CPMI)
2.2.6. Soil Humus Carbon Fraction Determination
2.3. Statistical Analysis
3. Results
3.1. Grain Yield and Dry Matter Accumulation
3.1.1. Grain Yield
3.1.2. Dry Matter Accumulation
3.2. Soil Fertility under Different Organic Material Treatments
3.2.1. Soil alkaline N
3.2.2. Soil Available P
3.2.3. Soil Available K
3.2.4. Soil Total N, Total P, Total K, and SOM
3.2.5. Soil Carbon Pools
3.2.6. Soil Humus
3.2.7. Soil Enzyme Activity
4. Discussion
4.1. Effects of Different Organic Materials on Grain Yield
4.2. Effects of Different Organic Materials on Soil Fertility
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S. China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2021; pp. 109–124. [Google Scholar]
- National Bureau of Statistics. Announcement by the National Bureau of Statistics on Grain Production Data for 2021. Available online: http://www.stats.gov.cn/tjsj/zxfb/202112/t20211206_1825058.html (accessed on 25 August 2021). (In Chinese)
- Mi, W.; Wu, L.; Ma, Q.; Zhang, X.; Liu, Y. Combined application of organic materials and inorganic fertilizers improving rice yield and soil fertility of yellow clayey paddy soil. Trans. Chin. Soc. Agric. Eng. 2016, 32, 103–108. [Google Scholar]
- Qiu, Y.; Liu, B.; He, L.; Yang, M.; Tan, S. Effects of bio-organic fertilizer on rice yield and soil fertility. Chin. Agric. Sci. Bull. 2020, 36, 1–5. [Google Scholar]
- Zhang, C.; You, Q.; Chen, X.; Wang, K.; Qu, Z.; Mei, Y. Effects of increasing commercial organic fertilizer on soil nutrients in acidified paddy field and rice yield. China Agric. Technol. Ext. 2019, 35, 55–56. [Google Scholar]
- Wang, Y.; Gao, Q.; Xue, L.; Yang, L.; Li, H.; Feng, Y. Effects of different biochar application patterns on rice growth and yield. J. Agric. Resour. Environ. 2018, 35, 58–65. [Google Scholar]
- Tan, C.J.; Cao, X.; Yuan, S.; Wang, W.Y.; Feng, Y.Z.; Qiao, B. Effects of long-term conservation tillage on soil nutrients in sloping fields in regions characterized by water and wind erosion. Sci. Rep. 2015, 5, 17592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Professional Committee of Chinese Soil Science Society of Agricultural Chemistry. Conventional Methods for Soil and Agricultural Chemistry Analysis; Science Press: Beijing, China, 1983; (In Chinese with English abstract). [Google Scholar]
- Bao, S. Analysis Methods for Soil Chemistry of Agriculture, 3rd ed.; China Agricultural Press: Beijing, China, 2000; pp. 44–49, (In Chinese with English abstract). [Google Scholar]
- Xu, M.; Yu, R.; Sun, X.; Liu, H.; Wang, B.; Li, J. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China. Plant Nutr. Fertil. Sci. 2006, 12, 459–465, (In Chinese with English abstract). [Google Scholar]
- Nanjing Agricultural College. Soil Agrochemical Analysis; Agriculture Press: Beijing, China, 1982; (In Chinese with English abstract). [Google Scholar]
- Guan, S. Soil Enzymes and Its Research; Agriculture Press: Beijing, China, 1986; pp. 255–258. [Google Scholar]
- Kumada, K.; Sato, O.; Ohsumi, Y.; Shinobu, O. Humus composition of maintain soil in central Japan with special reference to the distribution of P-type humic acid. Soil Sci. Plant Nutr. 1967, 13, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Kuwatsuka, S.; Watanabe, A.; Itoh, K.; Arai, S. Comparison of two methods of preparation of humic and fulvic acids IHSS method and NAGOYA method. Soil Sci. Plant Nutr. 1992, 38, 23–30. [Google Scholar] [CrossRef]
- Wang, F.; Li, Q.; He, C.; Liu, C.; You, Y.; Huang, Y. Combined return of rice straw and organic fertilizer to yellow-mud paddy soil to improve the rice productivity and substitute chemical fertilizers. Chin. J. Eco-Agric. 2021, 29, 2024–2033. [Google Scholar]
- Li, C.; Liu, S.; Yang, J.; Wang, Y.; Tang, L.; Tu, N.; Yi, Z. Impacts of partial substitution of chemical nitrogen fertilizer different organic fertilizers on double cropping rice growth and yield. J. South. Agric. 2018, 49, 1102–1110. [Google Scholar]
- Zhu, H.; Tang, Z.; Shi, A.; Wen, T.; Wen, C.; Xue, H.; Wang, X. Effects of irrigation patterns and combined application of organic fertilizer on rice yield, photosynthetic characteristics and nitrogen use efficiency. Soil 2022, 54, 700–707. [Google Scholar]
- Tang, L.; Wan, K.; Li, Z.; Chen, F. Effect of fertilizing patterns on grain yield, nutrient uptake and economical efficiency of double-season rice. J. Plant Nutr. Fertil. 2011, 17, 259–268. [Google Scholar]
- Wang, D.; Peng, J.; Xu, C.; Zhao, F.; Zhang, X. Effects of rape straw manuring on soil fertility and rice growth. Chin. J. Rice Sci. 2011, 26, 85–91. [Google Scholar] [CrossRef]
- Nie, X.; Lu, Y.; Liao, Y.; Cheng, H.; Cao, W.; Nie, J. Effects of the incorporation of various amounts of Chinese milk vetch with nitrogen and potassium reduction on double cropping rice yield and nitrogen utilization. J. Hunan Agric. Univ. 2021, 47, 684–691. [Google Scholar]
- Chen, S. Effects of Photosynthetic Bio-Organic Fertilizer on Physicochemical Properties and Nitrogen Cycling Microorganisms of Red Soil. Master’s Dissertation, Yunnan University, Kunming, China, 2021. [Google Scholar]
- Li, S.; Hu, Q.; Jin, B.; Wu, W.; Han, X.; Li, B.; Liu, H.; Yang, Y.; Zhang, L. Effects of combing application of biochar and rapeseed cake on soil nutrition, soil enzyme activities, yield and quality of flue-cued tobacco. Chin. J. Soil Sci. 2017, 48, 1429–1435. [Google Scholar]
- Shi, D.; Wang, X.; Duan, J.; Liu, A.; Luo, A.; Li, R.; Hou, Z. Effects of chemical N fertilizer reduction combined with biochar application on soil organic carbon active components and mineralization in paddy fields of yellow soil. Chin. J. Appl. Ecol. 2020, 31, 4117–4124. [Google Scholar]
- Huang, Y.; Chen, G.; Xiong, L.; Liu, B.; Liu, Y.; Huang, Y.; Tang, Q. Effects of different straw biochar on rice growth and soil nutrients. J. South. Agric. 2020, 51, 2113–2119. [Google Scholar]
- Wang, X.; Yin, D.; Zhang, F.; Tan, C.; Peng, B. Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality. Trans. Chin. Soc. Agric. Eng. 2015, 31, 248–257. [Google Scholar]
- Yi, Y.; Wang, J. Variation of soil humus under long-term fertilization and its relation to soil acidity. J. Nanjing Agric. Univ. 2016, 39, 114–119. [Google Scholar]
- Fan, D.; Li, C.; Cao, C. Effects of nitrogen deep placement on chemical properties of soil organic matter and extracellular enzyme activity in no-tillage paddy fields. J. Agro Environ. Sci. 2021, 40, 621–630. [Google Scholar]
- Ma, Y.; Huang, G. Effects of combined application of Chinese milk vetch (Astragalus sinicus L.) and nitrogen fertilizer on paddy soil carbon pool. Chin. J. Ecol. 2019, 38, 129–135. [Google Scholar]
- Chen, J.; Liu, S.; Xin, L.; Chen, Y.; Nan, Z.; Liu, J.; Yuan, M. Effects of long term positioning of straw returning to field of different fertilizer treatments on content of soil humus fractions. Acta Agriculurae Boreali Sin. 2016, 31, 180–185. [Google Scholar]
- Cheng, Y.; Wang, J.; Wang, P.; Zhu, J.; Chen, R.; Xiang, S.; Luo, S. Adsorption characteristics of NH4+and Cd(II) by different plant-based biochar. J. Cent. South Univ. For. Technol. 2022, 42, 180–192. [Google Scholar]
- Zhang, G.; Dou, S.; Xie, Z.; Zhong, S.; Yang, X.; Zhou, X.; Liu, X.; Tian, X.; Meng, F.; Yin, X. Effect of biochar application on composition of soil humus and structural characteristics of humic acid. Acta Sci. Circumstantiae 2016, 36, 614–620. [Google Scholar]
- Zhou, X. Responses of Rice Yield and Soil Organic Carbon to Chemical Fertilizer Application Rates under Utilized the Chinese Milk Vetch. Master’s Dissertation, Central South University, Changsha, China, 28 May 2014. [Google Scholar]
- Li, F.; Sun, X.; Feng, W.; Qin, Y.; Wang, C.; Tu, S. Nutrient release patterns and decomposing rates of wheat and rapeseed straw. J. Plant Nutr. Fertil. 2009, 2, 374–380. [Google Scholar]
- Kang, G.; Wei, J.; Wu, M.; Cheng, Y.; Li, D.; Liu, H.; Hu, F.; Jiao, J.; Wang, X. Effects of organic material application on crop yield and active organic components in upland red soil. Soils 2017, 49, 1084–1091. [Google Scholar]
- Sun, B.; Zhao, Q.; Zhang, T.; Yu, S. Soil quality and sustainable environment—III. Biological indicators of soil quality evaluation. Soils 1997, 225–234. [Google Scholar]
- Liu, Y.; Ye, H.; Hu, H.; Xu, X.; Zhou, L.; Wang, S. Soil enzyme activities and microbial changes in red and paddy soils under long-term fertilization. In Proceedings of the 8th National Symposium on Soil Biology and Biochemistry and the 3rd National Symposium on Soil Security, Nanchang, China, 16 October 2015. [Google Scholar]
- Chen, Y.; Liu, Y.; Chen, Z.C.; Lyu, H.; Wa, Y.; He, L.; Yang, S. Priming effect of biochar on the mineralization of native soil organic carbon and the mechanisms: A review. Chin. J. Appl. Ecol. 2018, 29, 314–320. [Google Scholar]
Organic Materials | Carbon (g kg−1) | Total N (g kg−1) | Total P (g kg−1) | Total K (g kg−1) | C/N |
---|---|---|---|---|---|
Biochar | 660.95 | 1.39 | 2.33 | 3.04 | 475.50 |
Chinese milk vetch | 402.4 | 34.82 | 3.93 | 27.78 | 11.56 |
Rapeseed cake fertilizer | 245.82 | 52.96 | 12.86 | 13.85 | 4.64 |
Manure | 428.21 | 21.33 | 15.95 | 27.23 | 20.08 |
Rice straw | 443.38 | 10.88 | 1.35 | 19.7 | 40.75 |
Year | Season | Treatment | Effective Panicles (×104 ha−1) | Spikelet per Panicle | 1000-Grain Weight (g) | Seed-Setting Rate (%) | Grain Yield (t ha−1) |
---|---|---|---|---|---|---|---|
2016 | Early-season rice | BC | 358.85 a | 113.41 a | 25.99 ab | 81.11 a | 8.07 a |
CRC | 350.78 a | 109.01 a | 25.39 b | 83.33 a | 7.72 b | ||
RC | 338.69 ab | 114.92 a | 26.24 ab | 81.13 a | 7.84 b | ||
MC | 346.75 ab | 113.76 a | 25.33 b | 81.52 a | 7.77 b | ||
CK | 318.53 b | 110.62 a | 26.52 a | 82.22 a | 7.16 c | ||
Late- season rice | BC | 348.88 a | 125.82 a | 25.25 a | 72.01 b | 7.87 a | |
CRC | 368.48 a | 113.29 c | 25.33 a | 73.12 b | 7.65 a | ||
RC | 358.09 a | 117.75 b | 25.40 a | 72.22 b | 7.45 ab | ||
MC | 342.22 a | 112.40 c | 25.08 a | 78.89 a | 7.35 ab | ||
CK | 321.44 b | 110.20 c | 25.22 a | 76.09 a | 6.66 b | ||
2017 | Early-season rice | BC | 377.60 a | 106.78 c | 25.62 b | 73.20 ab | 6.87 a |
CRC | 332.84 b | 109.91 b | 26.36 a | 82.81 a | 7.12 a | ||
RC | 339.21 b | 110.03 b | 25.52 b | 78.00 a | 6.4 ab | ||
MC | 339.23 b | 116.78 a | 25.33 b | 70.81 b | 6.29 ab | ||
CK | 320.00 c | 110.80 b | 24.86 c | 78.00 a | 6.09 b | ||
Late- season rice | BC | 387.37 a | 112.84 ab | 26.18 a | 74.02 b | 8.06 a | |
CRC | 362.11 b | 112.42 ab | 26.28 a | 78.00 a | 7.93 a | ||
RC | 362.11 b | 119.27 a | 25.67 a | 74.00 b | 7.58 ab | ||
MC | 378.95 ab | 109.86 b | 25.66 a | 72.45 b | 7.23 b | ||
CK | 355.71 b | 118.42 a | 24.97 b | 72.03 b | 6.92 b | ||
2018 | Early-season rice | BC | 345.97 a | 106.30 a | 25.83 a | 82.45 a | 7.64 a |
CRC | 337.66 a | 111.65 a | 25.65 a | 83.71 a | 7.95 a | ||
RC | 345.45 a | 105.12 a | 25.89 a | 79.24 a | 6.92 b | ||
MC | 348.11 a | 109.19 a | 25.58 a | 75.95 a | 6.43 b | ||
CK | 311.69 b | 109.16 a | 25.60 a | 77.66 a | 6.25 b | ||
Late- season rice | BC | 345.41 b | 116.21 a | 26.01 ab | 80.00 ab | 7.59 a | |
CRC | 359.29 a | 113.20 a | 26.52 a | 77.34 b | 7.42 a | ||
RC | 360.12 a | 106.00 b | 25.57 b | 81.21 a | 7.25 ab | ||
MC | 335.78 bc | 116.65 a | 25.94 ab | 79.38 ab | 7.00 b | ||
CK | 324.37 c | 105.41 b | 26.09 ab | 76.41 b | 6.64 c |
Year | Season | Treatment | Tillering Stage | Booting Stage | Full Heading Stage | Mid-Filling Stage | Mature Stage |
---|---|---|---|---|---|---|---|
2016 | Early-season rice | BC | 1.22 a | 6.92 b | 10.53 a | 12.68 a | 15.33 a |
CRC | 1.07 b | 7.00 b | 10.39 a | 12.56 a | 14.70 b | ||
RC | 1.16 ab | 7.57 a | 10.22 ab | 12.31 a | 15.65 a | ||
MC | 1.14 ab | 6.65 c | 10.16 ab | 12.38 a | 15.13 a | ||
CK | 1.25 a | 6.36 c | 9.68 b | 11.78 b | 13.64 c | ||
Late-season rice | BC | 2.50 a | 7.56 a | 10.99 a | 12.52 a | 14.54 a | |
CRC | 2.27 b | 7.62 a | 11.05 a | 12.38 a | 14.24 a | ||
RC | 2.03 bc | 7.02 b | 10.49 b | 12.31 a | 14.20 a | ||
MC | 2.08 bc | 6.95 b | 10.51 b | 11.25 b | 14.08 ab | ||
CK | 1.83 c | 6.34 c | 9.47 c | 11.06 b | 12.67 b | ||
2017 | Early-season rice | BC | 1.29 a | 7.22 a | 9.44 b | 12.24 a | 13.89 b |
CRC | 1.07 b | 7.44 a | 9.97 a | 12.40 a | 14.68 a | ||
RC | 1.29 a | 6.82 b | 9.19 b | 12.09 ab | 13.43 b | ||
MC | 1.28 a | 6.52 bc | 9.30 b | 11.24 b | 12.99 c | ||
CK | 1.23 a | 6.24 c | 8.56 c | 11.07 b | 12.49 d | ||
Late-season rice | BC | 1.64 b | 7.42 a | 11.34 a | 13.44 a | 15.36 a | |
CRC | 1.58 b | 7.21 a | 10.96 b | 13.42 a | 15.08 a | ||
RC | 1.75 a | 7.27 a | 11.26 a | 12.68 b | 14.91 a | ||
MC | 1.57 b | 6.98 b | 11.02 b | 12.58 b | 14.58 ab | ||
CK | 1.49 c | 6.89 b | 10.33 c | 12.08 c | 13.75 b | ||
2018 | Early-season rice | BC | 1.47 a | 6.39 a | 8.09 a | 12.06 a | 15.33 a |
CRC | 1.38 a | 5.89 ab | 7.08 b | 11.48 ab | 15.35 a | ||
RC | 1.39 a | 5.40 b | 8.75 a | 11.53 ab | 14.33 ab | ||
MC | 1.50 a | 5.46 b | 8.18 a | 11.21 ab | 13.10 ab | ||
CK | 1.44 a | 5.16 b | 7.09 b | 10.72 b | 12.09 b | ||
Late-season rice | BC | 1.90 a | 7.56 a | 9.48 b | 12.70 a | 14.94 a | |
CRC | 1.76 ab | 6.74 ab | 10.32 a | 12.02 ab | 14.83 a | ||
RC | 1.79 ab | 7.14 a | 9.07 b | 12.85 a | 14.74 a | ||
MC | 1.96 a | 6.17 b | 9.33 b | 12.22 ab | 14.38 ab | ||
CK | 1.52 b | 5.45 c | 8.43 b | 11.26 b | 12.30 b |
Year | Season | Treatment | Alkaline N | Available P | Available K |
---|---|---|---|---|---|
2016 | Early-season rice | BC | 134.24 a | 55.22 a | 108.42 b |
CRC | 123.68 b | 56.70 a | 105.16 b | ||
RC | 119.49 b | 52.99 a | 116.30 a | ||
MC | 120.53 b | 51.33 a | 105.40 b | ||
CK | 116.81 b | 43.79 b | 97.86 c | ||
Late-season rice | BC | 122.50 a | 50.05 a | 107.06 a | |
CRC | 125.57 a | 52.43 a | 105.38 a | ||
RC | 116.20 b | 49.76 a | 108.75 a | ||
MC | 122.12 a | 47.73 ab | 99.45 b | ||
CK | 109.36 c | 42.24 b | 95.99 c | ||
2017 | Early-season rice | BC | 136.88 a | 64.03 a | 107.25 b |
CRC | 135.45 a | 66.36 a | 105.75 b | ||
RC | 126.28 b | 59.38 ab | 115.60 a | ||
MC | 131.86 a | 61.74 ab | 112.50 a | ||
CK | 118.82 c | 42.05 b | 103.95 b | ||
Late-season rice | BC | 124.16 a | 61.25 b | 101.58 a | |
CRC | 127.32 a | 67.03 a | 97.77 b | ||
RC | 122.82 a | 60.96 b | 111.84 a | ||
MC | 120.91 a | 59.12 b | 109.00 a | ||
CK | 107.69 b | 43.69 c | 94.15 b | ||
2018 | Early-season rice | BC | 135.46 a | 64.58 ab | 116.55 bc |
CRC | 138.85 a | 68.13 a | 109.88 c | ||
RC | 118.20 b | 63.70 ab | 123.22 b | ||
MC | 122.12 b | 60.65 b | 148.57 a | ||
CK | 107.51 c | 43.25 c | 96.53 d | ||
Late-season rice | BC | 131.56 a | 60.74 a | 105.56 bc | |
CRC | 133.38 a | 62.37 a | 102.31 bc | ||
RC | 127.61 b | 58.29 a | 110.32 b | ||
MC | 122.92 b | 56.46 a | 120.91 a | ||
CK | 108.16 c | 44.22 b | 99.20 c |
Treatment | Total N | Total P | Total K | SOM | |||
---|---|---|---|---|---|---|---|
Early-Season Rice | Late-Season Rice | Early-Season Rice | Late-Season Rice | Early-Season Rice | Late-Season Rice | Late-Season Rice | |
BC | 1.19 a | 1.19 a | 0.66 a | 0.67 a | 10.52 a | 10.72 a | 36.89 a |
CRC | 1.21 a | 1.21 a | 0.67 a | 0.68 a | 10.66 a | 10.99 a | 35.55 a |
RC | 1.18 a | 1.20 a | 0.68 a | 0.69 a | 10.15 a | 10.21 ab | 32.17 b |
MC | 1.17 a | 1.17 a | 0.66 a | 0.68 a | 10.33 a | 10.40 ab | 32.55 ab |
CK | 1.09 b | 1.08 b | 0.61 b | 0.60 b | 9.52 b | 9.55 b | 32.10 b |
Treatment | AOC (g kg−1) | TOC (g kg−1) | CPA | CPAI | CPI | CPMI |
---|---|---|---|---|---|---|
BC | 5.73 a | 22.56 a | 0.34 b | 0.90 b | 1.21 a | 108.53 b |
CRC | 5.78 a | 20.62 a | 0.39 a | 1.03 b | 1.11 a | 113.50 a |
RC | 5.55 ab | 18.86 b | 0.42 a | 1.10 b | 1.01 b | 110.83 ab |
MC | 5.72 a | 18.87 b | 0.44 a | 1.15 a | 1.01 b | 116.28 a |
CK | 5.13 b | 18.64 b | 0.38 a | 1.00 b | 1.00 b | 100.00 b |
Treatment | HA | FA | HM | HA/FA | PQ % |
---|---|---|---|---|---|
BC | 3.70 a | 3.10 a | 12.21 a | 1.23 a | 19.85 a |
CRC | 3.19 b | 3.26 a | 9.50 b | 0.98 ab | 19.98 a |
RC | 3.00 b | 3.25 a | 8.80 c | 0.94 ab | 19.93 a |
MC | 3.10 b | 3.11 a | 9.24 b | 0.99 ab | 20.06 a |
CK | 2.79 c | 3.09 a | 8.76 c | 0.90 b | 18.97 b |
Year | Season | Treatment | Soil Urease Activity (mg d−1 g−1) | Soil Acid Phosphates Activity (μ mol d−1 g−1) |
---|---|---|---|---|
2016 | Early-season rice | BC | 1.25 b | 23.76 b |
CRC | 1.43 a | 24.50 a | ||
RC | 1.28 b | 23.13 b | ||
MC | 1.39 a | 22.28 c | ||
CK | 1.06 c | 21.57 d | ||
Late-season rice | BC | 1.24 b | 21.88 bc | |
CRC | 1.57 a | 25.43 a | ||
RC | 1.22 b | 23.54 b | ||
MC | 1.18 c | 24.89 ab | ||
CK | 1.03 c | 20.45 c | ||
2017 | Early-season rice | BC | 1.27 b | 22.52 b |
CRC | 1.47 a | 23.43 a | ||
RC | 1.39 a | 24.09 a | ||
MC | 1.24 b | 23.13 a | ||
CK | 1.11 b | 21.10 c | ||
Late-season rice | BC | 1.22 b | 22.74 ab | |
CRC | 1.38 a | 23.48 a | ||
RC | 1.31 a | 23.12 a | ||
MC | 1.30 a | 22.67 ab | ||
CK | 1.14 b | 18.53 b | ||
2018 | Early-season rice | BC | 1.18 a | 22.23 b |
CRC | 1.29 a | 23.12 ab | ||
RC | 1.22 a | 24.37 a | ||
MC | 1.23 a | 23.73 a | ||
CK | 1.09 b | 20.86 c | ||
Late-season rice | BC | 1.19 b | 21.56 b | |
CRC | 1.37 a | 23.21 a | ||
RC | 1.25 b | 23.58 a | ||
MC | 1.25 b | 22.88 ab | ||
CK | 1.16 b | 19.73 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Liao, B.; Fang, C.; Sheteiwy, M.S.; Yi, Z.; Liu, S.; Li, C.; Ma, G.; Tu, N. Effects of Applying Different Organic Materials on Grain Yield and Soil Fertility in a Double-Season Rice Cropping System. Agronomy 2022, 12, 2838. https://doi.org/10.3390/agronomy12112838
Yang J, Liao B, Fang C, Sheteiwy MS, Yi Z, Liu S, Li C, Ma G, Tu N. Effects of Applying Different Organic Materials on Grain Yield and Soil Fertility in a Double-Season Rice Cropping System. Agronomy. 2022; 12(11):2838. https://doi.org/10.3390/agronomy12112838
Chicago/Turabian StyleYang, Jing, Bin Liao, Changyu Fang, Mohamed S. Sheteiwy, Zhenxie Yi, Sichao Liu, Chao Li, Guozhu Ma, and Naimei Tu. 2022. "Effects of Applying Different Organic Materials on Grain Yield and Soil Fertility in a Double-Season Rice Cropping System" Agronomy 12, no. 11: 2838. https://doi.org/10.3390/agronomy12112838
APA StyleYang, J., Liao, B., Fang, C., Sheteiwy, M. S., Yi, Z., Liu, S., Li, C., Ma, G., & Tu, N. (2022). Effects of Applying Different Organic Materials on Grain Yield and Soil Fertility in a Double-Season Rice Cropping System. Agronomy, 12(11), 2838. https://doi.org/10.3390/agronomy12112838