Biotransformation of Agricultural Wastes into Lovastatin and Optimization of a Fermentation Process Using Response Surface Methodology (RSM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Induction of Mutation
2.2. Substrate Pretreatment
2.3. Preparation of Inoculum and Solid-State Fermentation
2.4. Lovastatin Extraction
2.5. Lovastatin Analysis
2.6. Design of Experiment (DOE)
2.7. NMR Spectroscopy
2.8. X-ray Diffraction (XRD)
3. Results and Discussion
3.1. The Outcome of the Design of the Experiment (DOE) for Lovastatin Production
3.2. Statistical Analysis of Lovastatin Production
3.3. In Terms of Actual Factors, the Final Equation of the Experiment
3.4. Analysis of Parameters on Production of Lovastatin by Response Surface Methodology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srinivasan, N.; Thangavelu, K.; Uthandi, S. Lovastatin production by an oleaginous fungus, Aspergillus terreus KPR12 using sago processing wastewater (SWW). Microb. Cell Factories 2022, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, Q.; Peng, N.; Li, Y.; Qiu, D.; Yang, T.; Kang, R.; Usmani, A.; Amadasu, E.; Borlongan, C.V.; et al. Lovastatin Inhibits RhoA to Suppress Canonical Wnt/β-Catenin Signaling and Alternative Wnt-YAP/TAZ Signaling in Colon Cancer. Cell Transplant. 2022, 31, 09636897221075749. [Google Scholar] [CrossRef] [PubMed]
- El-Bondkly, A.A.M.; El-Gendy, M.M.A.A.; El-Bondkly, A. Construction of efficient recombinant strain through genome shuffling in marine endophytic Fusarium sp. ALAA-20 for improvement lovastatin production using agro-industrial wastes. Arab. J. Sci. Eng. 2021, 46, 175–190. [Google Scholar] [CrossRef]
- Hasan, H.; Abd Rahim, M.H.; Campbell, L.; Carter, D.; Abbas, A.; Montoya, A. Increasing Lovastatin Production by Re-routing the Precursors Flow of Aspergillus terreus via Metabolic Engineering. Mol. Biotechnol. 2022, 64, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, J.; Chen, L.; Zhang, W.; Kong, L.; Peng, C.; Su, C.; Tang, Y.; Deng, Z.; Wang, Z. Structural basis for the biosynthesis of lovastatin. Nat. Commun. 2021, 12, 867. [Google Scholar] [CrossRef]
- Lewington, S.; Whitlock, G.; Clarke, R.; Sherliker, P. Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet Oncol. 2007, 370, 1829–1839. [Google Scholar] [CrossRef]
- Klawitter, J.; Shokati, T.; Moll, V.; Christians, U.; Klawitter, J. Effects of lovastatin on breast cancer cells: A proteo-metabonomic study. Breast Cancer Res. 2010, 12, R16. [Google Scholar] [CrossRef] [Green Version]
- Seenivasan, A.; Subhagar, S.; Aravindan, R.; Viruthagiri, T. Microbial production and biomedical applications of lovastatin. Indian J. Pharm. Sci. 2008, 70, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Praveen, V.; Savitha, J. Solid State Fermentation: An Effective Method for Lovastatin Production by Fungi–A Mini Review. Open Trop. Med. J. 2012, 5, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.S.; Jana, S.K.; Senthil, V.; Shashanka, V.; Kumar, S.V.; Sadhukhan, A. Repeated fed-batch process for improving lovastatin production. Process Biochem. 2000, 36, 363–368. [Google Scholar] [CrossRef]
- Endo, A.; Hasumi, K.; Yamada, A.; Shimoda, R.; Takeshima, H. The synthesis of compactin (ML-236B) and monacolin K in fungi. J. Antibiot. 1986, 39, 1609–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negishi, S.; Haung, Z.; Hasumi, K.; Murakawa, S.; Endo, A. Productivity of monacolin K (mevinolin) in the genus. Monascus. J. Ferment Eng. 1986, 64, 509–512. [Google Scholar]
- Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J. Antibiot. 1976, 29, 1346–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samiee, S.M.; Moazami, N.; Haghighi, S.; Aziz Mohseni, F.; Mirdamadi, S.; Bakhtiari, M.R. Screening of lovastatin production by filamentous fungi. Iran. Biomed. J. 2003, 7, 29–33. [Google Scholar]
- Pansuriya, R.C.; Singhal, R.S. Response surface methodology for optimization of production of lovastatin by solid state fermentation. Braz. J. Microbiol. 2010, 41, 164–172. [Google Scholar] [CrossRef]
- Chanakya, P.; Latha Srikanth, P.M.; Manipati, M. Solid state fermentation for the production of lovastatin by Aspergillus fischerii. Res. J. Pharm. Sci. Biotechnol. 2011, 1, 9–13. [Google Scholar]
- Reddy, D.S.R.; Latha, D.P.; Latha, K. Production of lovastatin by solid state fermentation by Penicillium funiculosum NCIM 1174. Drug Invent. Today 2011, 3, 75–77. [Google Scholar]
- Khuri, A.I.; Mukhopadhyay, S. Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 128–149. [Google Scholar] [CrossRef]
- Azeem, M.; Arshad, M.; Mahmood, S.; Abrar, S.; Zahoor, A.F.; Javed, S.; Tariq, B.; Hayyat, K. Development of One Pot Strategy for Hyper Production and In Vivo Evaluation of Lovastatin. Molecules 2020, 25, 4380. [Google Scholar] [CrossRef]
- Siddique Awan, M.; Tabbasam, N.; Ayub, N.; Babar, M.; Rana, S.M.; Rajoka, M. Gamma radiation induced mutagenesis in Aspergillus niger to enhance its microbial fermentation activity for industrial enzyme production. Mol. Biol. Rep. 2011, 38, 1367–1374. [Google Scholar] [CrossRef]
- López, J.C.; Pérez, J.S.; Sevilla, J.F.; Fernández, F.A.; Grima, E.M.; Chisti, Y. Production of lovastatin by Aspergillus terreus: Effects of the C: N ratio and the principal nutrients on growth and metabolite production. Enzym. Microb. Technol. 2003, 33, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Sayyad, S.A.; Panda, B.P.; Javed, S.; Ali, M. Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl. Microbiol. Biotechnol. 2007, 73, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Valera, H.; Gomes, J.; Lakshmi, S.; Gururaja, R.; Suryanarayan, S.; Kumar, D. Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzym. Microb. Technol. 2005, 37, 521–526. [Google Scholar] [CrossRef]
- Atalla, M.; Hamed, E.; El-Shami, A. Optimization of a culture medium for increased mevinolin production by Aspergillus terreus strain. Malays. J. Microbiol. 2008, 4, 6–10. [Google Scholar]
- Wei, P.-L.; Xu, Z.-N.; Cen, P.-L. Lovastatin production by Aspergillus terreus in solid-state fermentation. J. Zhejiang Univ. Sci. A 2007, 8, 1521–1526. [Google Scholar] [CrossRef]
- Panda, B.P.; Javed, S.; Ali, M. Optimization of fermentation parameters for higher lovastatin production in red mold rice through co-culture of Monascus purpureus and Monascus ruber. Food Bioprocess Technol. 2010, 3, 373–378. [Google Scholar] [CrossRef]
- Raghunath, R.; Radhakrishna, A.; Angayarkanni, J.; Palaniswamy, M. Production and cytotoxicity studies of lovastatin from Aspergillus niger PN2 an endophytic fungus isolated from Taxus baccata. Int. J. Appl. Biol. Pharm. Technol. 2012, 3, 562–570. [Google Scholar]
- Prabhakar, M.; Lingappa, K.; Babu, V.; Amena, S.; Vishalakshi, N. Characterization of physical factors for optimum lovastatin production by Aspergillus terreus klvb28mu21 under solid state fermentation. J. Recent Adv. Appl. Sci. 2012, 27, 1–5. [Google Scholar]
- Wu, L.; Yick, K.-L.; Ng, S.-P.; Yip, J. Application of the Box–Behnken design to the optimization of process parameters in foam cup molding. Expert Syst. Appl. 2012, 39, 8059–8065. [Google Scholar] [CrossRef]
- Miyake, T.; Uchitomi, K.; Zhang, M.-Y.; Kono, I.; Nozaki, N.; Sammoto, H.; Inagaki, K. Effects of the principal nutrients on lovastatin production by Monascus pilosus. Biosci. Biotechnol. Biochem. 2006, 70, 1154–1159. [Google Scholar] [CrossRef] [Green Version]
- Daud, N.; Said, F.; Ho, J. Optimization of lovastatin in solid-state fermentation using oil palm frond. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022056. [Google Scholar] [CrossRef]
- Farinas, C.S. Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew. Sustain. Energy Rev. 2015, 52, 179–188. [Google Scholar] [CrossRef]
- Alberts, A.W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; et al. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 1980, 77, 3957–3961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.N.; Bigam, G.; Chan, J.K.; Hogg, A.M.; Nakashima, T.T.; Vederas, J. Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin of carbon, hydrogen, and oxygen atoms by carbon-13 NMR and mass spectrometry. J. Am. Chem. Soc. 1985, 107, 3694–3701. [Google Scholar] [CrossRef]
- Jahromi, M.F.; Liang, J.B.; Ho, Y.W.; Mohamed, R.; Goh, Y.M.; Shokryazdan, P. Lovastatin production by Aspergillus terreus using agro-biomass as substrate in solid state fermentation. J. Biomed. Biotechnol. 2012, 2012, 196264. [Google Scholar] [CrossRef] [PubMed]
- UmakantVerma, J.B.; Mokale, V.J. Preparation of freeze-dried solid dispersion powder using mannitol to enhance solubility of lovastatin and development of sustained release tablet dosage form. Am. J. Pharm. Sci. Nanotechnol. 2014, 1, 11–26. [Google Scholar]
Run | A: pH | B: Temp. (°C) | C: Inoculum Size (mL) | D: Inoculum Age (h) | E: Fermentation Time (h) | Lovastatin mg/L | |
---|---|---|---|---|---|---|---|
Actual | Predicted | ||||||
1 | 10 | 25 | 2 | 12 | 96 | 58.65 | 34.08 |
2 | 3 | 25 | 2 | 72 | 96 | 45.67 | 50.98 |
3 | 10 | 45 | 5 | 72 | 96 | 19.76 | 12.40 |
4 | 3 | 45 | 5 | 72 | 96 | 41.76 | 40.06 |
5 | 5.5 | 35 | 4 | 42 | 36 | 122.65 | 103.12 |
6 | 5.5 | 35 | 4 | 36 | 48 | 156.43 | 88.00 |
7 | 3 | 25 | 3 | 12 | 60 | 74.23 | 62.06 |
8 | 6.5 | 35 | 4 | 42 | 60 | 86.44 | 84.40 |
9 | 3 | 25 | 2.5 | 72 | 24 | 34.62 | 38.10 |
10 | 10 | 25 | 2.5 | 72 | 96 | 15.43 | 15.98 |
11 | 10 | 25 | 3 | 12 | 24 | 17.89 | 18.62 |
12 | 6.5 | 35 | 3 | 42 | 60 | 92.34 | 85.42 |
13 | 3 | 25 | 2 | 12 | 96 | 45.62 | 45.15 |
14 | 3 | 25 | 2 | 72 | 24 | 52.65 | 40.76 |
15 | 6.5 | 35 | 4 | 27 | 60 | 81.72 | 92.71 |
16 | 6.5 | 35 | 4 | 42 | 60 | 86.98 | 84.40 |
17 | 10 | 45 | 5 | 12 | 24 | 25.12 | 24.95 |
18 | 10 | 45 | 5 | 12 | 24 | 22.27 | 24.95 |
19 | 6.5 | 35 | 4 | 42 | 60 | 47.23 | 84.40 |
20 | 3 | 25 | 2 | 72 | 96 | 54.28 | 50.98 |
21 | 8.25 | 35 | 3 | 42 | 60 | 36.87 | 62.70 |
22 | 6.5 | 35 | 3 | 42 | 78 | 92.65 | 97.23 |
23 | 10 | 45 | 5 | 72 | 96 | 16.87 | 12.40 |
24 | 6.5 | 35 | 4 | 42 | 60 | 91.45 | 84.40 |
25 | 10 | 25 | 2 | 72 | 24 | 24.23 | 19.63 |
26 | 10 | 25 | 2 | 12 | 24 | 21.31 | 19.55 |
27 | 10 | 25 | 2 | 72 | 24 | 19.65 | 19.63 |
28 | 6.5 | 35 | 3.5 | 42 | 60 | 89.23 | 76.81 |
29 | 3 | 45 | 5 | 72 | 24 | 35.14 | 44.93 |
30 | 3 | 45 | 5 | 12 | 96 | 33.24 | 38.22 |
31 | 10 | 45 | 5 | 72 | 24 | 27.25 | 21.03 |
32 | 6.5 | 30 | 3.5 | 42 | 60 | 83.26 | 92.21 |
33 | 3 | 25 | 2.5 | 12 | 24 | 28.25 | 52.99 |
34 | 6.5 | 35 | 3 | 42 | 60 | 87.21 | 85.42 |
35 | 10 | 25 | 2 | 12 | 96 | 21.98 | 34.08 |
36 | 10 | 45 | 5 | 12 | 96 | 19.42 | 24.39 |
37 | 3 | 25 | 2 | 12 | 24 | 25.64 | 26.86 |
38 | 10 | 25 | 2 | 72 | 96 | 19.87 | 26.08 |
39 | 10 | 45 | 5 | 72 | 24 | 15.32 | 21.03 |
40 | 10 | 45 | 5 | 12 | 96 | 26.43 | 24.39 |
41 | 3 | 45 | 5 | 72 | 24 | 36.32 | 44.93 |
42 | 3 | 45 | 5 | 12 | 96 | 34.24 | 38.22 |
43 | 6.5 | 35 | 4 | 42 | 60 | 45.24 | 84.40 |
44 | 3 | 45 | 4.5 | 12 | 24 | 36.31 | 25.95 |
45 | 4.75 | 35 | 3.5 | 42 | 60 | 51.23 | 54.16 |
46 | 6.5 | 40 | 4 | 42 | 60 | 84.34 | 75.43 |
47 | 6.5 | 35 | 3 | 42 | 42 | 96.54 | 108.44 |
48 | 3 | 45 | 5 | 72 | 96 | 44.23 | 40.06 |
49 | 6.5 | 35 | 3 | 42 | 60 | 97.24 | 85.42 |
50 | 3 | 45 | 5 | 12 | 24 | 34.78 | 35.02 |
Source | Std. Dev. | R2 | Adjusted R2 | Predicted R2 | PRESS |
---|---|---|---|---|---|
Linear | 32.96 | 0.0775 | −0.0274 | −0.1209 | 58,070.93 |
2FI | 22.05 | 0.6810 | 0.5403 | −0.0546 | 54,635.52 |
Quadratic | 20.16 | 0.7724 | 0.6154 | 0.0652 | 48,429.31 |
Cubic | 13.35 | 0.9415 | 0.8314 | * |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 40,014.02 | 20 | 2000.70 | 4.92 | <0.0001 |
A-pH | 2075.87 | 1 | 2075.87 | 5.11 | 0.0315 |
B-Temp. | 0.0385 | 1 | 0.0385 | 0.0001 | 0.9923 |
C-Inoculum size | 3.85 | 1 | 3.85 | 0.0095 | 0.9232 |
D-Inoculum age | 6.09 | 1 | 6.09 | 0.0150 | 0.9034 |
E-Fermentation time | 160.32 | 1 | 160.32 | 0.3943 | 0.5350 |
AB | 1615.27 | 1 | 1615.27 | 3.97 | 0.0557 |
AC | 1518.02 | 1 | 1518.02 | 3.73 | 0.0632 |
AD | 313.81 | 1 | 313.81 | 0.7718 | 0.3869 |
AE | 21.98 | 1 | 21.98 | 0.0540 | 0.8178 |
BC | 352.49 | 1 | 352.49 | 0.8669 | 0.3595 |
BD | 499.79 | 1 | 499.79 | 1.23 | 0.2767 |
BE | 497.40 | 1 | 497.40 | 1.22 | 0.2778 |
CD | 495.23 | 1 | 495.23 | 1.22 | 0.2788 |
CE | 398.65 | 1 | 398.65 | 0.9804 | 0.3303 |
DE | 104.51 | 1 | 104.51 | 0.2570 | 0.6160 |
A2 | 1724.85 | 1 | 1724.85 | 4.24 | 0.0485 |
B2 | 235.83 | 1 | 235.83 | 0.5800 | 0.4525 |
C2 | 198.20 | 1 | 198.20 | 0.4875 | 0.4906 |
D2 | 2.90 | 1 | 2.90 | 0.0071 | 0.9333 |
E2 | 1335.99 | 1 | 1335.99 | 3.29 | 0.0802 |
Residual | 11,791.56 | 29 | 406.61 | ||
Lack of Fit | 8773.69 | 13 | 674.90 | 3.58 | 0.0090 |
Pure Error | 3017.88 | 16 | 188.62 | ||
Cor Total | 51,805.58 | 49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, S.; Azeem, M.; Mahmood, S.; Al-Anazi, K.M.; Farah, M.A.; Ali, S.; Ali, B. Biotransformation of Agricultural Wastes into Lovastatin and Optimization of a Fermentation Process Using Response Surface Methodology (RSM). Agronomy 2022, 12, 2848. https://doi.org/10.3390/agronomy12112848
Javed S, Azeem M, Mahmood S, Al-Anazi KM, Farah MA, Ali S, Ali B. Biotransformation of Agricultural Wastes into Lovastatin and Optimization of a Fermentation Process Using Response Surface Methodology (RSM). Agronomy. 2022; 12(11):2848. https://doi.org/10.3390/agronomy12112848
Chicago/Turabian StyleJaved, Sadia, Muhammad Azeem, Saqib Mahmood, Khalid Mashay Al-Anazi, Mohammad Abul Farah, Sajad Ali, and Baber Ali. 2022. "Biotransformation of Agricultural Wastes into Lovastatin and Optimization of a Fermentation Process Using Response Surface Methodology (RSM)" Agronomy 12, no. 11: 2848. https://doi.org/10.3390/agronomy12112848
APA StyleJaved, S., Azeem, M., Mahmood, S., Al-Anazi, K. M., Farah, M. A., Ali, S., & Ali, B. (2022). Biotransformation of Agricultural Wastes into Lovastatin and Optimization of a Fermentation Process Using Response Surface Methodology (RSM). Agronomy, 12(11), 2848. https://doi.org/10.3390/agronomy12112848