Essential Role of Forest Fires in Humic Acids Structure and Composition Alteration
Abstract
:1. Introduction
- the dependence on the duration of exposure to different temperature effects, so it is impossible to compare a ten-second exposure to a temperature of 1000 °C and exposure for 30 min at a temperature of 300 °C, but, unfortunately, there are no comprehensive studies on this topic in the scientific literature;
- the soil temperature during and after the fire in such studies is often an average value, while soil and organic residues can reach temperatures of about 850 °C on the surface;
- particles of organic matter exposed to different temperatures will be distributed over the entire upper organic horizon even after fires of low intensity;
- there are no studies about the effect of different types of fires on SOM and its modification during the time after wildfires.
- -
- to describe the process that occur in SOM after wildfires by way of the determination of the elemental composition of HAs isolated from control and postpyrogenic soils;
- -
- to characterize molecular fragments of HAs isolated from control and postpyrogenic soils according to 13C-NMR spectroscopy;
- -
- to estimate the rate and trend of organic matter transformation during the time (10-year period).
2. Materials and Methods
2.1. The Study Area
2.2. Laboratory Analysis
3. Results and Discussion
3.1. Elemental Composition of Studied HAs
3.2. Molecular Structure of Studied HAs
3.3. Stabilization of Organic Matter in the Studied Soils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doerr, S.H.; Santın, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B. Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Tarasov, P.A.; Ivanov, V.A.; Ivanova, G.A.; Krasnoshchekova, E.N. Postpyrogenic changes in the hydrothermal parameters of soils in middle-taiga pine forests. Euras. Soil Sci. 2011, 44, 731–738. [Google Scholar] [CrossRef]
- Bento-Goncalves, A.; Vieira, A.; Ubeda, X.; Martin, D. Fire and soils: Key concepts and recent advances. Geoderma 2012, 191, 3–13. [Google Scholar] [CrossRef]
- Magnani, F.; Mencuccini, M.; Borghetti, M.; Berbigier, P.; Berninger, F.; Delzon, S.; Grelle, A.; Hari, P.; Jarvis, P.G.; Kolari, P.; et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 2007, 447, 849–851. [Google Scholar] [CrossRef]
- Amiro, B.D.; Orchansky, A.L.; Barr, A.G.; Black, T.A.; Chambers, S.D.; Lii, F.C.; Goulden, M.L.; Litvak, M.; Liu, H.P.; McCaughey, J.H.; et al. The effect of post-fire stand age on the boreal forest energy balance. Agric. For. Meteorol. 2006, 140, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Dymov, A.A.; Startsev, V.V.; Milanovsky, E.Y.; Valdes-Korovkin, I.A.; Farkhodov, Y.R.; Yudina, A.V.; Donnerhack, O.; Guggenberger, G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma 2021, 404, 115278. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Routh, J.; Hugelius, G.; Kuhry, P.; Filley, T.; Tillman, P.K.; Becher, M.; Crill, P. Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic. Chem. Geol. 2014, 368, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Fritz, M.; Deshpande, B.N.; Bouchard, F.; Högström, E.; Malenfant-Lepage, J.; Morgenstern, A.; Nieuwendam, A.; Oliva, M.; Paquette, M.; Rudy, A.C.A.; et al. Brief Communication: Future avenues for permafrost science from the perspective of early career researchers. Cryosphere 2015, 9, 1715–1720. [Google Scholar] [CrossRef]
- Imeson, A.C.; Verstraten, J.M.; van Mulligen, E.J.; Sevink, J. The effects of fire and water repellence on infiltration and runoff under mediterranean type forest. Catena 1992, 19, 345–361. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire effects on infiltration rates after prescribed fire in northern Rocky Mountain forests, USA. J. Hydrol. 2000, 231, 220–229. [Google Scholar] [CrossRef]
- Fultz, L.M.; Moore-Kucera, J.; Dathe, J.; Davinic, M.; Perry, G.; Wester, D.; Schwilk, D.W.; Rideout-Hanzak, S. Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: Two case studies in the semi-arid Southwest. Appl. Soil Ecol. 2016, 99, 118–128. [Google Scholar] [CrossRef]
- Santin, C.; Doerr, S.H.; Merino, A.; Bryant, R.; Loader, N.J. Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma 2016, 264, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Krasnoshchekov, Y.N.; Cherednikova, Y.S. Postpyrogenic transformation of soils under Pinus sibirica forests in the southern Lake Baikal basin. Eurasian Soil Sci. 2012, 45, 929–938. [Google Scholar] [CrossRef]
- Dymov, A.A.; Abakumov, E.V.; Bezkorovaynaya, I.N.; Prokushkin, A.S.; Kuzakov, Y.V.; Milanovsky, E.Y. Impact of forest fire on soil properties (review). Theor. Appl. Ecol. 2018, 4, 13–23. [Google Scholar] [CrossRef]
- Jimenez-Gonzalez, M.A.; De la Rosa, J.M.; Jimenez-Morillo, N.T. Post-fire recovery of soil organic matter in a Cambisol from typical Mediterranean forest in Southwestern Spain. Sci. Total Environ. 2016, 572, 1414–1421. [Google Scholar] [CrossRef]
- Krasilnikov, P.V. Persistent carbon compounds in soils: Origin and functions. Eurasian Soil Sci. 2015, 9, 1131–1144. [Google Scholar]
- Gonzalez-Perez, J.A.; Gonza’lez-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Almendros, G.; Gonzalez-Vila, F.J.; Martın, F. Fire-induced transformation of soil organic matter from an oak forest: An experimental approach to the effects of fire on humic substances. Soil Sci. 1990, 149, 158–168. [Google Scholar] [CrossRef]
- Almendros, G.; González-Vila, F.J.; Martín, F.; Fründ, R.; Lüdemann, H.-D. Solid state NMR studies of fire-induced changes in the structure of humic substances. Sci. Total Environ. 1992, 117, 63–74. [Google Scholar] [CrossRef]
- Chen, H.Y.H.; Shrestha, B.M. Stand age, fire and clearcutting affect soil organic carbon and aggregation of mineral soils in boreal forests. Soil Biol. Biochem. 2012, 50, 149–157. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Sohi, S.; Thies, J.E.; Skjemstad, J.O.; Luizão, F.J.; Engelhard, M.H.; Neves, E.G.; Wirick, S. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta 2008, 72, 6069–6078. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lehmann, J.; Thies, J.E.; Burton, S.D.; Engelhard, M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488. [Google Scholar] [CrossRef]
- Knicker, H.; Hilscher, A.; de la Rosa, J.M.; González-Pérez, J.A.; González-Vila, F.J. Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils. Geoderma 2013, 197, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Preston, C.M.; Schmidt, M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006, 3, 397–420. [Google Scholar] [CrossRef] [Green Version]
- Han, C.-L.; Sun, Z.-X.; Shao, S.; Wang, Q.-B.; Libohova, Z.; Owens, P.R. Changes of Soil Organic Carbon after Wildfire in a Boreal Forest, Northeast CHINA. Agronomy 2021, 11, 1925. [Google Scholar] [CrossRef]
- Scholten, R.C.; Jandt, R.; Miller, E.A.; Rogers, B.M.; Veraverbeke, S. Overwintering fires in boreal forests. Nature 2021, 593, 399–404. [Google Scholar] [CrossRef]
- Ziegler, S.E.; Sharon, A.; Billings, S.A.; Chad, S.; Lane, C.S.; Li, J.W.; Fogel, M.L. Warming alters routing of labile and slowerturnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 2013, 60, 23–32. [Google Scholar] [CrossRef]
- Bouchard, M.; Pothier, D. Long-term influence of fire and harvesting on boreal forest age structure and forest composition in eastern Québec. For. Ecol. Manag. 2011, 261, 811–820. [Google Scholar] [CrossRef]
- Simard, D.G.; Fyles, J.W.; Paré, D.; Nguyen, T. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 2001, 81, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Ibáñez, T.S.; Santín, C.; Doerr, S.H.; Nilsson, M.-C.; Holst, T.; Lindroth, A.; Kljun, N. Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management. Glob. Chang. Biol. 2021, 27, 4181–4195. [Google Scholar] [CrossRef] [PubMed]
- Geraskina, A.P.; Tebenkova, D.N.; Ershov, D.V.; Ruchinskaya, E.V.; Sibirtseva, N.V.; Lukina, N.V. Wildfires as a factor of the loss of biodiversity and functions of forest ecosystems. For. Sci. Issues 2021, 4, 1–76. [Google Scholar] [CrossRef]
- Beznosikov, V.A.; Lodygin, E.D. High-molecular organic substances in soils. Trans. Komi Sci. C Cent. Ural. Branch Russ. Acad. Sci. 2010, 1, 24–30. [Google Scholar]
- Uyguner, C.S.; Hellriegel, C.; Otto, W.; Larive, C.K. Characterization of humic substances: Implications for trihalomethane formation. Anal. Bioanal. Chem. 2004, 378, 1579–1586. [Google Scholar] [CrossRef]
- Abakumov, E.; Alekseev, I. Stability of soil organic matter in Cryosols of the maritime Antarctic: Insights from 13C NMR and electron spin resonance spectroscopy. Solid Earth 2018, 9, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Lodygin, E.; Beznosikov, V.; Abakumov, E. Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East. Pol. Polar Res. 2017, 38, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Shishov, L.L.; Tonkonogov, V.D.; Lebedeva, I.I.; Gerasimova, M.I. Classification and Diagnostics of Soils in Russia; Ojkumena: Smolensk, Russia, 2004; p. 342. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Maksimova, E.Y.; Tsibart, A.S.; Abakumov, E.V. Soil properties in the Tol’yatti pine forest after the 2010 catastrophic wildfires. Eurasian Soil Sci. 2014, 47, 940–951. [Google Scholar] [CrossRef]
- Chebykina, E.; Abakumov, E. Changes in key physical soil properties of post-pyrogenic forest ecosystems: A case study of catastrophic fires in Russian sub-boreal forest. In Advances in Understanding Soil Degradation. Innovations in Landscape Research; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Springer: Cham, Switzerland, 2022; pp. 687–700. [Google Scholar] [CrossRef]
- Chebykina, E.; Abakumov, E.; Shamilishvilly, G. Polycyclic aromatic hydrocarbons accumulation and toxic equivalency factors (TEFs) in postpyrogenic soils. In Proceedings of the VIII Congress of the Dokuchaev Soil Science Society, Syktyvkar, Russia, 19–24 July 2021; Volume 862, p. 012094. [Google Scholar] [CrossRef]
- Abakumov, E.; Maksimova, E.; Tsibart, A. Assessment of postfire soils degradation dynamics: Stability and molecular composition of humic acids with use of spectroscopy methods. Land Degrad. Dev. 2017, 29, 2092–2101. [Google Scholar] [CrossRef]
- Maksimova, E.; Abakumov, E. Wildfire effects on ash composition and biological properties of soils in forest-steppe ecosystems of Russia. Environ. Earth Sci. 2015, 74, 4395–4405. [Google Scholar] [CrossRef]
- Maksimova, E.; Abakumov, E.; Shamilishvili, G. Sustainable development of forest ecosystems in urbanized territories as a way of wildfire control in Russia. In Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services; SUITMA; Vasenev, V., Dovletyarova, E., Cheng, Z., Prokof’eva, T., Morel, J., Ananyeva, N., Eds.; Springer: Cham, Switzerland, 2019; pp. 279–288. [Google Scholar] [CrossRef]
- Certini, G. Fire as a soil-forming factor. Ambio 2014, 43, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dymov, A.A.; Gabov, D.N.; Milanovskii, E.Y. 13C-NMR, PAHs, WSOC and repellence of fire affected soils (Albic Podzols, Russia). Environ. Earth Sci. 2017, 76, 1–10. [Google Scholar] [CrossRef]
- Schnitzer, M. Organic matter characterization. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. Agronomy Monograph No. 9.; Page, B.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 581–594. [Google Scholar]
- Swift, R.S. Organic matter characterization. In Methods of soil Analysis. Part 3. Chemical Methods, 1st ed.; Sparks, D.L., Ed.; SSSA: Madison, WI, USA, 1996; Volume 1, pp. 1001–1069. [Google Scholar]
- Chukov, S.N.; Ejarque, E.; Abakumov, E.V. Characterization of humic acids from tundra soils of northern Western Siberia by electron paramagnetic resonance spectroscopy. Eurasian Soil Sci. 2017, 50, 30–33. [Google Scholar] [CrossRef]
- Goncalves, C.N.; Dalmolin, S.D.; Dick, D.P.; Knicker, H.; Klamt, E.; Kögel-Knabner, I. The effect of 10% HF treatment on resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferralsols. Geoderma 2003, 116, 373–392. [Google Scholar] [CrossRef]
- Orlov, D.S.; Grishina, L.A. Workshop on the Humus Chemistry; Publishing House of Moscow State University: Moscow, Russia, 1981; 272p. [Google Scholar]
- Orlov, D.S.; Sadovnikova, L.K.; Sukhanova, N.I. Soil Chemistry; Higher School: Moscow, Russia, 2005; p. 558. [Google Scholar]
- Orlov, D.S. Soil Chemistry; Publishing House of Moscow State University: Moscow, Russia, 1985; p. 376. [Google Scholar]
- Mathers, N.J.; Xu, Z.H. Solid-state 13C NMR spectroscopy characterization of soil organic matter under two contrasting residue management regimes in a 2-year-old pine plantation of subtropical Australia. Geoderma 2003, 114, 19–31. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Vasilevich, R.S. Molecular composition of humic substances in tundra soils (C-13-NMR spectroscopic study). Eurasian Soil Sci. 2014, 47, 400–406. [Google Scholar] [CrossRef]
- Orlov, D.S. Soil Humic Acids and General Theory Humification; Moscow State University: Moscow, Russia, 1990; p. 325. [Google Scholar]
- Lodygin, E.; Vasilevich, R. Environmental aspects of molecular composition of humic substances from soils of northeastern European Russia. Pol. Polar Res. 2020, 41, 115–135. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A. The 13C NMR study of the molecular structure of humus acids from podzolic and bog-podzolic soils. Eurasian Soil Sci. 2003, 36, 967–975. [Google Scholar]
- Liang, B.C.; Gregorich, E.G.; Schnitzer, M.; Schulten, H.R. Characterization of water extracts of two manures and their absorption on soils. Soil Sci. Soc. Am. J. 1996, 60, 1758–1763. [Google Scholar] [CrossRef]
- Vasilevich, R.; Lodygin, E.; Abakumov, E. The molecular composition of humic acids in permafrost peats in the European Arctic as paleorecord of the environmental conditions of the holocene. Agronomy 2022, 12, 2053. [Google Scholar] [CrossRef]
- Li, L.; Huang, W.L.; Peng, P.A.; Sheng, G.Y.; Fu, J.M. Chemical and molecular heterogeneity of humic acids repetitively extracted from a peat. Soil Sci. Soc. Am. J. 2003, 67, 740–746. [Google Scholar] [CrossRef]
- Lorenz, K.; Preston, C.M.; Kandeler, E. Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Geoderma 2006, 130, 312–323. [Google Scholar] [CrossRef]
- Baldock, J.A.; Preston, C.M. Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance. In Carbon Forms and Functions in Forest Soils; McFee, W.W., Kelly, J.M., Eds.; Soil Science Society of America: Madison, WI, USA, 1995; pp. 89–117. [Google Scholar]
- Pedersen, J.A.; Simpson, M.A.; Bockheim, J.G.; Kumar, K. Characterization of soil organic carbon in drained thawlake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy. Org. Geochem. 2011, 42, 947–954. [Google Scholar] [CrossRef]
- Mao, J.; Cao, X.; Olk, D.C.; Chu, W.; Schmidt-Rohr, K. Advanced solid-state NMR spectroscopy of natural organic matter. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 17–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccolo, A.; Spaccini, R.; Savy, D.; Drosos, M.; Cozzolino, V. The soil humeome: Chemical structure, functions and technological perspectives. In Sustainable Agrochemistry; Vaz, J.S., Ed.; Springer: Chambrige, UK, 2019; pp. 183–222. [Google Scholar]
- Krevelen, v.D. Graphical and statistical method for studying the structure and processes of coal formation. In Chemistry of Solid Fuel; Publishing House of Foreign Literature: Moscow, Russia, 1951; Volume 2. [Google Scholar]
- Chukhareva, N.V. Pyrolysis of humic acids in air-dry and heat-treated high-moor cottongrass-sphagnum peat. In Proceedings of the VI All-Russian Scientific Conference with International Participation “Humic Substances in the Biosphere”, Syktyvkar, Russia, 6–10 October 2014; pp. 83–85. [Google Scholar]
- Schulze, E.D.; Wirth, C.; Heimann, M. Managing forests after Kyoto. Science 2000, 289, 2058–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efremova, T.T.; Efremov, S.P. Pyrogenic transformation of organic matter in soils of forest bogs. Eurasian Soil Sci. 2006, 39, 1297–1305. [Google Scholar] [CrossRef]
- Kholodov, V.A.; Konstantinov, A.I.; Kudryavtsev, A.V.; Perminova, I.V. Humic acids structure in zonal soils according to 13C NMR spectroscopy data. Eurasian Soil Sci. 2011, 9, 1064–1073. [Google Scholar]
- Chukov, S.N. Structural and Functional Parameters of Soil Organic Matter under Anthropogenic Impact; Publishing House of St. Petersburg State University: St. Petersburg, Russia, 2001; 216p. [Google Scholar]
- Emsley, J.; Feeney, J.; Sutcliffe, L. High Resolution Nuclear Magnetic Resonance Spectroscopy; Elsevier: Amsterdam, The Netherlands, 1968; Volume 2, 468p. [Google Scholar]
- Lodygin, E.D.; Beznosikov, V.A.; Chukov, S.N. Structural and Functional Parameters of Humic Substances in Podzolic and Bog-podzolic Soils; Nauka: St. Petersburg, Russia, 2007; p. 145. [Google Scholar]
- Certini, G.; Nocentini, C.; Knicker, H. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 2011, 167, 148–155. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Fujitake, N.; Kosaki, T. Humus and humic acids of Luvisol and Cambisol of Jiguli ridges, Samara Region, Russia. Appl. Environ. Soil Sci. 2009, 2009, 671359. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.J.; Simpson, M.J. Nuclear magnetic resonance analysis of natural organic matter. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Senesi, N., Xing, B., Huang, P.M., Eds.; John Wiley & Sons Inc.: Chichester, UK, 2009; pp. 589–650. [Google Scholar]
- Kosheleva, Y.P.; Trofimov, S.Y. Characteristics of the biochemical composition of plant litter at different stages of decomposition (according to thermal analysis data). Biol. Bull. 2008, 1, 64–69. [Google Scholar] [CrossRef]
- Chebykina, E.; Abakumov, E. Characteristics of humic acids isolated from burned and unburned topsoils in sub-boreal Scotch pine forests by 13C-NMR spectroscopy. One Ecosyst. 2022, 7, e82720. [Google Scholar] [CrossRef]
- Beyer, L.; Sorge, C.; Blume, H.P.; Schulten, H.R. Soil organic matter composition and transformation in gelic histosols of coastal continental antarctica. Soil Biol. Biochem. 1995, 27, 1279–1288. [Google Scholar] [CrossRef]
- Graham, D.J.; Midgley, N.G. Graphical representation of particle shape using triangular diagrams: An Excel spreadsheet method. Earth Surf. Process. Landf. 2000, 25, 1473–1477. [Google Scholar] [CrossRef]
Sample No. | Plot | Year of Sampling | Horizon, Depth, cm | Soil Horizons Description | Ctotal, % | Ash Content of HAs, % |
---|---|---|---|---|---|---|
1 | Control | 2010 | O, 0–10 | peat litter, consisting of needles, tree bark, leaves and cones, 10 YR 4/2 (Munsell chart method), slightly moistened, gray with whitish dusting, loose, sandy loam, structureless, roots abundance, presence of coal particles | 3.94 ± 1.35 | 10.69 |
2 | Crown fire | 2010 | Qpyr, 0–5 | ash with needles and cones, dry, gray, 10 YR 3/2 (Munsell chart method), loose, sandy loam, loose crumbly structure, roots and coals abundance, undulating boundary | 1.42 ± 0.31 | 2.81 |
3 | Surface fire | 2010 | Qpyr, 0–4 | ash with needles, leaves and burnt pine cones, slightly moistened, loose, gray, 10 YR 3/2 (Munsell chart method) sandy loam, loose crumbly structure, roots and coals abundance, undulating boundary | 1.21 ± 0.50 | 3.93 |
4 | Crown fire | 2020 | AYpyr, 0–20 | color from gray to dark gray, 10 YR 2/1 (Munsell chart method), traces of surface water erosion, slightly moistened, loose, sandy loam, crumbly–nutty structure, roots abundance, presence of coal particles, undulating boundary | 2.09 ± 0.20 | 11.43 |
5 | Surface fire | 2020 | AYpyr, 0–29 | dark gray, 10 YR 3/1 (Munsell chart method), almost black color, no signs of erosion, slightly moistened, loose, sandy loam, crumbly–nutty structure, roots abundance, presence of coal particles, undulating boundary | 3.16 ± 0.25 | 5.69 |
Sample No. | Plot Photo | Soil Photo |
---|---|---|
1 Control 2010 | ||
2 Crown fire 2010 | ||
3 Surface fire 2010 | ||
4 Crown fire 2020 | ||
5 Surface fire 2020 |
Sample No. * | C, % | N, % | H, % | O, % | C:N | O:C | H:C | H/Cmod | Formula of Humic Acids | Combustion Value, cal/g | Oxidation Degree |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 54.7 | 4.5 | 5.5 | 35.3 | 14.15 | 0.48 | 1.20 | 1.85 | C99H119O48N7 | 4481 | −0.23 |
2 | 57.5 | 5.6 | 4.0 | 32.9 | 11.98 | 0.43 | 0.84 | 1.41 | C84H70O36N7 | 5005 | 0.02 |
3 | 55.3 | 5.6 | 4.4 | 34.7 | 11.50 | 0.47 | 0.94 | 1.57 | C58H54O27N5 | 4740 | 0.01 |
4 | 54.3 | 4.7 | 3.5 | 37.5 | 13.48 | 0.52 | 0.77 | 1.46 | C40H31O21N3 | 4316 | 0.27 |
5 | 53.7 | 4.1 | 3.5 | 38.7 | 15.28 | 0.54 | 0.78 | 1.50 | C107H83O58N7 | 4090 | 0.31 |
Post hoc test | 0.24 | p << 0.05 | p << 0.05 | p << 0.05 | 0.16 | 0.20 | 0.15 | 0.34 | p << 0.05 | p << 0.05 | |
Significance of differences | Insign. | Sign. | Sign. | Sign. | Insign. | Insign. | Insign. | Insign. | Sign. | Sign. |
Sample No. * | AR, % | AL, % | Aromaticity Degree | AR/AL | ALH,R + ARH,R | C,H-Al/O,N-Al |
---|---|---|---|---|---|---|
1 | 38 | 62 | 0.38 | 0.61 | 56 | 0.84 |
2 | 59 | 41 | 0.59 | 1.44 | 64 | 0.95 |
3 | 60 | 40 | 0.60 | 1.50 | 62 | 0.84 |
4 | 69 | 31 | 0.69 | 2.27 | 75 | 3.74 |
5 | 73 | 27 | 0.73 | 2.71 | 77 | 10.89 |
Post hoc test | p << 0.05 | p << 0.05 | p << 0.05 | p << 0.05 | p << 0.05 | 0.33 |
Singnificance of differences | Significant | Sign. | Sign. | Sign. | Sign. | Insign. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chebykina, E.; Abakumov, E. Essential Role of Forest Fires in Humic Acids Structure and Composition Alteration. Agronomy 2022, 12, 2910. https://doi.org/10.3390/agronomy12122910
Chebykina E, Abakumov E. Essential Role of Forest Fires in Humic Acids Structure and Composition Alteration. Agronomy. 2022; 12(12):2910. https://doi.org/10.3390/agronomy12122910
Chicago/Turabian StyleChebykina, Ekaterina, and Evgeny Abakumov. 2022. "Essential Role of Forest Fires in Humic Acids Structure and Composition Alteration" Agronomy 12, no. 12: 2910. https://doi.org/10.3390/agronomy12122910
APA StyleChebykina, E., & Abakumov, E. (2022). Essential Role of Forest Fires in Humic Acids Structure and Composition Alteration. Agronomy, 12(12), 2910. https://doi.org/10.3390/agronomy12122910