Effects of Harvest Stage, Storage, and Preservation Technology on Postharvest Ornamental Value of Cut Peony (Paeonia lactiflora) Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Optimum Harvesting Period
2.3. Combination of Pre-Treatment Solution and Storage Mode
2.4. Preservatives Containing Different Carbon Sources
2.5. Morphological Indexes Measurements
2.6. Physiological Index Analysis
2.7. Statistical Analysis
3. Results
3.1. The Optimum Harvest Stage of Cut P. lactiflora
3.2. The Best Pre-Treatment and Storage Method for Cut P. lactiflora
3.3. The Best Carbon Source Fresh-Keeping Solution for Cut P. lactiflora
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, J.; Huang, Z.; Wang, S.; Xue, Y.; Ren, X.; Zeng, X.; Zhang, X. Dry storage improves the vase quality of cut peony by increasing water uptake efficiency through aquaporins regulation. Plant Physiol. Biochem. 2020, 148, 63–69. [Google Scholar] [CrossRef]
- Cheng, F.; Gao, S.; Yu, X. Stage division and morphological types of peony bud maturation and flowering. J. Hortic. 2009, 36, 611–613. (In Chinese) [Google Scholar] [CrossRef]
- Gao, S. Study on Postharvest Technology of Cut Peony Flowers; Beijing Forestry University: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Varu, D.K.; Barad, A.V. Effect of stem length and stage of harvest on vase-life of cut flowers in tuberose (Polianthes tuberosa L.) cv. Double. J. Hortic. Sci. 2010, 5, 42–47. [Google Scholar]
- Walton, E.F.; Boldingh, H.L.; McLaren, G.F.; Williams, M.H.; Jackman, R. The dynamics of starch and sugar utilisation in cut peony (Paeonia lactiflora Pall.) stems during storage and vase life. Postharvest Biol. Technol. 2010, 58, 142–146. [Google Scholar] [CrossRef]
- Gast, K.; McLaren, J.; Kampjes, R. Identification of bud maturity indicators for fresh-cut peony flowers. Acta Hortic. 2001, 543, 317–325. [Google Scholar] [CrossRef]
- Gao, S.; Wei, C.; Wang, Y.; Lu, M.; Fan, B. Effects of harvest stage on ornamental quality of cut flowers of herbaceous peony (Paeonia lactiflora Pall.). J. Henan Agric. Sci. 2013, 42, 115–121. (In Chinese) [Google Scholar]
- Jahnke, N.J.; Dole, J.M.; Bergmann, B.A.; Ma, G.; Perkins-Veazie, P. Extending Cut Paeonia Lactiflora Pall. Storage Duration Using Sub-Zero Storage Temperatures. Agronomy 2020, 10, 1694. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A. The cut flower: Postharvest considerations. J. Biol. Sci. 2003, 3, 406–442. [Google Scholar]
- Skutnik, E.; Rabiza-Świder, J.; Jędrzejuk, A.; Łukaszewska, A. The Effect of the Long-Term Cold Storage and Preservatives on Senescence of Cut Herbaceous Peony Flowers. Agronomy 2020, 10, 1631. [Google Scholar] [CrossRef]
- Xue, J.; Tang, Y.; Wang, S.; Xue, Y.; Liu, X.; Zhang, X. Evaluation of dry and wet storage on vase quality of cut peony based on the regulation of starch and sucrose metabolism. Postharvest Biol. Technol. 2019, 155, 11–19. [Google Scholar] [CrossRef]
- Łysiak, G.P.; Rutkowski, K.; Walkowiak-Tomczak, D. Effect of Storage Conditions on Storability and Antioxidant Potential of Pears cv. ‘Conference’. Agriculture 2021, 11, 545. [Google Scholar] [CrossRef]
- Khan, M.R.; Suwanamornlert, P.; Leelaphiwat, P.; Chinsirikul, W.; Chonhenchob, V. Quality and biochemical changes of longan (Dimocarpus longan Lour cv. ‘Daw’) fruit under different controlled atmosphere conditions. Int. J. Food Sci. Technol. 2017, 52, 2163–2170. [Google Scholar] [CrossRef]
- Skutnik, E.; Jędrzejuk, A.; Rabiza-Świder, J.; Rochala-Wojciechowska, J.; Latkowska, M.; Łukaszewska, A. Nano-silver as a novel biocide for control of senescence in garden cosmos. Sci. Rep. 2020, 10, 10274. [Google Scholar] [CrossRef]
- Edrisi, B.; Sadrpoor, A.; Saffari, V. Effects of chemicals on vase life of cut carnation (Dianthus caryophyllus L.) ‘Delphi’ and microorganisms’ population in solution. J. Ornam. Plants 2015, 2, 1–11. [Google Scholar]
- Kazaz, S.; Dogan, E.; Kılıc, T.; Sahin, E.; Seyhan, S. Influence of holding solutions on vase life of cut hydrangea flowers (Hydrangea macrophylla Thunb.). Fresenius Environ. Bull. 2019, 28, 3554–3559. [Google Scholar]
- Lama, B.; Ghosal, M.; Kumar Gupta, S.; Mandal, P. Assessment of different preservative solutions on vase life of cut roses. J. Ornam. Plants 2015, 3, 171–181. [Google Scholar]
- Sharifzadeh, K.; Asil, M.H.; Roein, Z.; Sharifzadeh, M. Effect of 8-Hydroxyquinoline Citrate, Sucrose and Peroxidase Inhibitors on Vase Life of Lisianthus (Eustoma grandiflorum L.) Cut Flowers. J. Hortic. Res. 2014, 22, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Hassan, F.A.S.; Ali, E.F.; El-Deeb, B. Improvement of postharvest quality of cut rose cv. “First Red” by biologically synthesized silver nanoparticles. Sci. Hortic. 2014, 179, 340–348. [Google Scholar] [CrossRef]
- Safa, Z.; Hashemabadi, D.; Kaviani, B.; Nikchi, N.; Zarchini, M. Studies on quality and vase life of cut Grbera jamesonii cv. ‘Balance’ flowers by silver nanoparticles and chlorophenol. J. Environ. Biol. 2015, 36, 425–431. [Google Scholar] [PubMed]
- Li, H.; Lin, Y.; Liu, C.; Huang, X.; Zhou, H.; He, S. Freshness-preserving effects of nano-silver pre-treatments on cut lily flowers. North. Hortic. 2012, 8, 166–169. (In Chinese) [Google Scholar]
- Naing, A.H.; Win, N.M.; Han, J.-S.; Lim, K.B.; Kim, C.K. Role of Nano-silver and the Bacterial Strain Enterobacter cloacae in Increasing Vase Life of Cut Carnation ‘Omea’. Front. Plant Sci. 2017, 8, 1590. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Cheng, M.; Tang, W.; Liu, D.; Zhou, S.; Meng, J.; Tao, J. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma 2018, 255, 1001–1013. [Google Scholar] [CrossRef]
- Gómez-Merino, F.C.; Castillo-González, A.M.; Ramírez-Martínez, M.; Trejo-Téllez, L.I. Lanthanum delays senescence and improves postharvest quality in cut tulip (Tulipa gesneriana L.) flowers. Sci. Rep. 2020, 10, 19437. [Google Scholar] [CrossRef]
- Asrar, A.-W.A. Effects of some preservative solutions on vase life and keeping quality of snapdragon (Antirrhinum majus L.) cut flowers. J. Saudi Soc. Agric. Sci. 2012, 11, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Li, F.; Du, R.; Geng, H.; Li, S.; Wang, J. Effects of Different Preservatives on Cut Flower of Luculia pinceana: A Novel Fragrant Ornamental Species. Hortscience 2021, 56, 795–802. [Google Scholar] [CrossRef]
- Pun, U.K.; Ichimura, K. Role of Sugars in Senescence and Biosynthesis of Ethylene in Cut Flowers. Jpn. Agric. Res. Q. JARQ 2003, 37, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.; Nakajima, T.; Shibuya, K.; Ichimura, K. Comparison of petal senescence between cut and intact carnation flowers using potted plants. Sci. Hortic. 2020, 272, 109564. [Google Scholar] [CrossRef]
- Guo, P.; Yu, X. The optimum harvesting maturity grades of introduced herbaceous peonies for cutting flower. Res. Prog. Ornam. Hortic. China 2009, 458–462. [Google Scholar]
- Eason, J.; Pinkney, T.; Heyes, J.; Brash, D.; Bycroft, B. Effect of storage temperature and harvest bud maturity on bud opening and vase life of Paeonia lactiflora cultivars. N. Z. J. Crop Hortic. Sci. 2002, 30, 61–67. [Google Scholar] [CrossRef]
- Elgar, H.J.; Fulton, T.A.; Walton, E.F. Effect of harvest stage, storage and ethylene on the vase life of Leucocoryne. Postharvest Biol. Technol. 2003, 27, 213–217. [Google Scholar] [CrossRef]
- Yoo, Y.K.; Roh, Y.S. Effects of Shipping Temperature and Harvesting Stage on Quality and Vase Life of Cut Flowers in Dendranthema grandiflorum ‘Baekma’ for Export. Korean J. Hortic. Sci. Technol. 2015, 33, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Jahnke, N.J.; Dole, J.M.; Livingston, D.P.; Bergmann, B.A. Impacts of carbohydrate pulses and short-term sub-zero temperatures on vase life and quality of cut Paeonia lactiflora Pall. hybrids. Postharvest Biol. Technol. 2020, 161, 111083. [Google Scholar] [CrossRef]
- Shahri, W.; Tahir, I.; Islam, S.T.; Bhat, M.A. Effect of dry and wet storage at cool temperatures on the post-harvest performance of Ranunculus asiaticus L. flowers. Front. Agric. China 2011, 5, 382–387. [Google Scholar] [CrossRef]
- Ahmad, I.; Dole, J.M.; Amjad, A.; Ahmad, S. Dry Storage Effects on Postharvest Performance of Selected Cut Flowers. Horttechnology 2012, 22, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Kawhena, T.G.; Fawole, O.A.; Opara, U.L. Application of Dynamic Controlled Atmosphere Technologies to Reduce Incidence of Physiological Disorders and Maintain Quality of ‘Granny Smith’ Apples. Agriculture 2021, 11, 491. [Google Scholar] [CrossRef]
- Butkeviciute, A.; Viskelis, J.; Viskelis, P.; Liaudanskas, M.; Janulis, V. Changes in the Biochemical Composition and Physicochemical Properties of Apples Stored in Controlled Atmosphere Conditions. Appl. Sci. 2021, 11, 6215. [Google Scholar] [CrossRef]
- Mditshwa, A.; Fawole, O.A.; Vries, F.; van der Merwe, K.; Crouch, E.; Opara, U.L. Repeated application of dynamic controlled atmospheres reduced superficial scald incidence in ‘Granny Smith’ apples. Sci. Hortic. 2017, 220, 168–175. [Google Scholar] [CrossRef]
- Mditshwa, A.; Fawole, O.A.; Opara, U.L. Recent developments on dynamic controlled atmosphere storage of apples—A review. Food Packag. Shelf Life 2018, 16, 59–68. [Google Scholar] [CrossRef]
- Davood, H.; Hamideh, B. Comparison Tea Extract, 8-Hydroxy Quinoline Sulfate and Rifampicin on the Vase Life of Cut Chrysanthemum (Denderanthema grandiflorum L. cv. Purple). J. Ornam. Plants 2014, 4, 39–43. [Google Scholar]
- Loubaud, M.; van Doorn, W.G. Wound-induced and bacteria-induced xylem blockage in roses, Astilbe, and Viburnum. Postharvest Biol. Technol. 2004, 32, 281–288. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.S. Changes in bent neck, water balance and vase life of cut rose cultivars as affected by preservative solution. J. Korean Soc. Hortic. Sci. 2002, 43, 201–207. [Google Scholar]
- Zou, J.; Zhou, Y.; Cai, X.; Wang, C. Increase in DNA fragmentation and the role of ethylene and reactive oxygen species in petal senescence of Osmanthus fragrans. Postharvest Biol. Technol. 2014, 93, 97–105. [Google Scholar] [CrossRef]
- Rogers, H.I. Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant Cell Environ. 2012, 35, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Rabiza-Swider, J.; Skutnik, E.; Jedrzejuk, A.; Łukaszewska, A. Postharvest Treatments Improve Quality of Cut Peony Flowers. Agronomy 2020, 10, 1583. [Google Scholar] [CrossRef]
- Villanueva, E.; Fujibayashi-Yoshii, N.; Matsuzaki, S.; Yamazaki, K.; Burana, C.; Yamane, K. Effects of Trehalose and Sucrose on the Vase Life and Physiology of Cut Astilbe (Astilbe × arendsii Arends) Flowers. Hortic. J. 2019, 88, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Tang, Y.; Wang, S.; Yang, R.; Xue, Y.; Wu, C.; Zhang, X. Assessment of vase quality and transcriptional regulation of sucrose transporter and invertase genes in cut peony (Paeonia lactiflora ‘Yang Fei Chu Yu’) treated by exogenous sucrose. Postharvest Biol. Technol. 2018, 143, 92–101. [Google Scholar] [CrossRef]
- Norikoshi, R.; Shibata, T.; Niki, T.; Ichimura, K. Sucrose treatment enlarges petal cell size and increases vacuolar sugar concentrations in cut rose flowers. Postharvest Biol. Technol. 2016, 116, 59–65. [Google Scholar] [CrossRef]
- Arrom, L.; Munné-Bosch, S. Sucrose accelerates flower opening and delays senescence through a hormonal effect in cut lily flowers. Plant Sci. 2012, 188–189, 41–47. [Google Scholar] [CrossRef]
- Rabiza-Świder, J.; Rochala, J.; Jędrzejuk, A.; Skutnik, E.; Łukaszewska, A. Symptoms of programmed cell death in intact and cut flowers of clematis and the effect of a standard preservative on petal senescence in two cultivars differing in flower longevity. Postharvest Biol. Technol. 2016, 118, 183–192. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Wang, X.; Wang, W.; Dong, L. Involvement of glucose in the regulation of ethylene biosynthesis and sensitivity in cut Paeonia suffruticosa flowers. Sci. Hortic. 2014, 169, 44–50. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, J.; Wang, Y.; Gao, S.; Du, D.; Wu, F.; Guo, J.; Dong, L. Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa ‘Luoyang Hong’ cut flowers. Postharvest Biol. Technol. 2015, 101, 73–81. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Fu, J.; Dong, L.; Gao, S.; Du, D. Transcriptomic analysis of cut tree peony with glucose supply using the RNA-Seq technique. Plant Cell Rep. 2013, 33, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Otsubo, M.; Iwaya-Inoue, M. Trehalose delays senescence in cut gladiolus spikes. Hortscience 2000, 35, 1107–1110. [Google Scholar] [CrossRef] [Green Version]
- Wada, H.; Iwaya-Inoue, M.; Akita, M.; Nonami, H. Hydraulic conductance in tepal growth and extension of vase life with trehalose in cut tulip flowers. J. Am. Soc. Hortic. Sci. 2005, 130, 275–286. [Google Scholar] [CrossRef] [Green Version]
Cultivar | Harvest Stage | Flowering Rate (%) | Vase Life (Days) |
---|---|---|---|
‘Dan Feng’ | TB (tight-bud) | 40% | 5.8 ± 0.16 a |
UT (unfold-top) | 80% | 7.2 ± 0.14 b | |
SB (soft-bud) | 100% | 7.6 ± 0.12 c | |
‘Lu Xihong’ | TB (tight-bud) | 80% | 6.1 ± 0.12 a |
UT (unfold-top) | 100% | 7.2 ± 0.13 b | |
SB (soft-bud) | 100% | 6.8 ± 0.10 c |
Cultivar | Harvest Stage | Flowering Rate (%) | Vase Life (Days) |
---|---|---|---|
‘Qihua Lushuang’ | TB (Tight-bud) | 80% | 7.8 ± 0.1 a |
CC (Changing-color) | 100% | 7.5 ± 0.12 b | |
SB (Soft-bud) | 100% | 7.0 ± 0.19 c | |
‘Lian Tai’ | TB (Tight-bud) | 80% | 7.8 ± 0.16 a |
CC (Changing-color) | 100% | 7.6 ± 0.19 b | |
SB (Soft-bud) | 100% | 7.2 ± 0.09 c |
Pre-Treatment Mode | Storage Way | Flowering Rate (%) | Vase Life (Days) |
---|---|---|---|
Deionized water 8-HQ NS | CS (Cold storage) | 60 | 5.5 ± 0.15 a |
CS + LO (Cold storage + Low oxygen) | 0 | 0 b | |
CS (Cold storage) | 80 | 5.6 ± 0.12 a | |
CS + LO (Cold storage + Low oxygen) | 80 | 5.7 ± 0.18 b | |
CS (Cold storage) | 85 | 5.6 ± 0.11 a | |
CS + LO (Cold storage + Low oxygen) | 85 | 5.8 ± 0.16 b |
Carbon Sources | Vase Life (Days) | Full Bloom (Days) |
---|---|---|
CK | 6.2 ± 0.14 a | 3.3 ± 0.12 a |
Mock | 6.5 ± 0.10 b | 3.6 ± 0.07 b |
Mannitol | 6.3 ± 0.08 a | 3.8 ± 0.11 c |
Glucose | 7.6 ± 0.12 c | 4 ± 0.04 d |
Sucrose | 8 ± 0.15 d | 4.3 ± 0.08 e |
Trehalose | 8.5 ± 0.09 e | 4.6 ± 0.1 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Guo, H.; Tao, J. Effects of Harvest Stage, Storage, and Preservation Technology on Postharvest Ornamental Value of Cut Peony (Paeonia lactiflora) Flowers. Agronomy 2022, 12, 230. https://doi.org/10.3390/agronomy12020230
Sun J, Guo H, Tao J. Effects of Harvest Stage, Storage, and Preservation Technology on Postharvest Ornamental Value of Cut Peony (Paeonia lactiflora) Flowers. Agronomy. 2022; 12(2):230. https://doi.org/10.3390/agronomy12020230
Chicago/Turabian StyleSun, Jing, Haixia Guo, and Jun Tao. 2022. "Effects of Harvest Stage, Storage, and Preservation Technology on Postharvest Ornamental Value of Cut Peony (Paeonia lactiflora) Flowers" Agronomy 12, no. 2: 230. https://doi.org/10.3390/agronomy12020230
APA StyleSun, J., Guo, H., & Tao, J. (2022). Effects of Harvest Stage, Storage, and Preservation Technology on Postharvest Ornamental Value of Cut Peony (Paeonia lactiflora) Flowers. Agronomy, 12(2), 230. https://doi.org/10.3390/agronomy12020230