Towards Climate Change Preparedness in the MENA’s Agricultural Sector
Abstract
:1. Introduction
2. Nature of Climate Change in MENA
3. Sustainability of the Rainfed-Desert Transitional Belt (Rangelands) in the MENA
4. Sustainability of Agri-Food Systems in the Food Baskets of MENA
5. The Need for a Collective Intelligence to Support Climate Change Research in the MENA
6. Need for Foresight Advice on Resilient Food Systems under Climate Change
7. The Need for Transformative Policies for Stabilization and Reconstruction under Climate Change
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berndtsson, R.; Jebari, S.; Hashemi, H.; Wessels, J. Traditional irrigation techniques in MENA with focus on Tunisia. Hydrol. Sci. J. 2016, 61, 1346–1357. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.; Kfouri, C.; Peters, M. Water information system platforms addressing critical societal needs in the MENA region. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2767–2770. [Google Scholar]
- Friend, A.D.; Arneth, A.; Kiang, N.Y.; Lomas, M.; Ogée, J.; Rödenbeck, C.; Running, S.W.; Santaren, J.-D.; Sitch, S.; Viovy, N.; et al. FLUXNET and modelling the global carbon cycle. Glob. Chang. Biol. 2006, 13, 610–633. [Google Scholar] [CrossRef]
- Bayram, H.; Öztürk, A.B. Global climate change, desertification, and its consequences in Turkey and the middle east. In Climate Change and Global Public Health; Humana: Louisville, KY, USA, 2014; pp. 445–458. [Google Scholar]
- Zittis, G.; Hadjinicolaou, P.; Lelieveld, J. Downscaling CESM1 climate change projections for the MENA-CORDEX domain using WRF. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017; p. 15344. [Google Scholar]
- Ahmadalipour, A.; Moradkhani, H. Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA). Environ. Int. 2018, 117, 215–225. [Google Scholar] [CrossRef]
- El-Shaer, H.M. Land desertification and restoration in Middle East and North Africa (MENA) region. Sci. Cold Arid Reg. 2015, 7, 7–15. [Google Scholar] [CrossRef]
- El-Beltagy, A. Sustainable management of rangelands and agricultural systems of the drylands: The ICARDA experience in combating desertification. In Desertification in the Third Millennium: Proceedings of an International Conference, Dubai, 12–15 February 2000; CRC Press: Boca Raton, FL, USA, 2003; p. 389. [Google Scholar]
- Salman, S.A.; Shahid, S.; Afan, H.A.; Shiru, M.S.; Al-Ansari, N.; Yaseen, Z.M. Changes in Climatic Water Availability and Crop Water Demand for Iraq Region. Sustainability 2020, 12, 3437. [Google Scholar] [CrossRef] [Green Version]
- Wodon, Q.; Burger, N.; Grant, A.; Liverani, A. Climate Change, Migration, and Adaptation in the MENA Region; The World Bank: Washington, DC, USA, 2014; Munich Personal RePEc Archive (MPRA) Paper No. 56927; Available online: https://mpra.ub.uni-muenchen.de/56927/ (accessed on 15 November 2021).
- Slimani, H.; Aidoud, A. Desertification in the Maghreb: A case study of an Algerian high-plain steppe. In Challenges in the Mediterranean 2000–2050; NATO Science Series; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Williams, T.O. Reconciling food and water security objectives of MENA and sub-Saharan Africa: Is there a role for large-scale agricultural investments? Food Secur. 2015, 7, 1199–1209. [Google Scholar] [CrossRef]
- Tagliapietra, S. The Political Economy of Middle East and North Africa Oil Exporters in Times of Global Decarbonisation; Bruegel Working Paper 05/2017; The World Bank: Washington, DC, USA, 2017; Available online: https://www.jstor.org/stable/pdf/resrep28636.pdf (accessed on 15 November 2021).
- United Nations Economic and Social Commission for Western Asia (ESCWA). Arab Climate Change Assessment Report—Main Report; E/ESCWA/SDPD/2017/RICCAR/Report; ESCWA: Beirut, Lebanon, 2017; Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/riccar_main_report_2017.pdf (accessed on 15 November 2021).
- The United Nations Economic and Social Commission for West Asia (ESCWA). Moving towards Water Security in the Arab Region; E/ESCWA/SDPD/2019/2; ESCWA: Beirut, Lebanon, 2019; Available online: https://www.unescwa.org/sites/default/files/pubs/pdf/annual-report-2019-english.pdf (accessed on 15 November 2021).
- Voldoire, A.; Sanchez-Gomez, E.; y Mélia, D.S.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M. The CNRM-CM5. 1 global climate model: Description and basic evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar]
- Dunne, J.P.; John, J.G.; Adcroft, A.J.; Griffies, S.M.; Hallberg, R.W.; Shevliakova, E.; Stouffer, R.J.; Cooke, W.; Dunne, K.A.; Harrison, M.J. GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 2012, 25, 6646–6665. [Google Scholar]
- Koenigk, T.; Brodeau, L.; Graversen, R.G.; Karlsson, J.; Svensson, G.; Tjernström, M.; Willén, U.; Wyser, K. Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim. Dyn. 2013, 40, 2719–2743. [Google Scholar]
- Samuelsson, P.; Gollvik, S.; Kupiainen, M.; Kourzeneva, E.; van de Berg, W.J. The Surface Processes of the Rossby Centre Regional Atmospheric Climate Model (RCA4); SMHI: Norrkoping, Sweden, 2015. [Google Scholar]
- Tomaszkiewicz, M. Future Seasonal Drought Conditions over the CORDEX-MENA/Arab Domain. Atmosphere 2021, 12, 856. [Google Scholar] [CrossRef]
- Dhehibi, B.; Haddad, M.; Strohmeier, S.; El-Hiary, M. Enhancing a Traditional Water Harvesting Technique in Jordan’s Agro-pastoral Farming System; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2020; Available online: https://repo.mel.cgiar.org/handle/20.500.11766/11506 (accessed on 15 November 2021).
- Brown, J.C.; Kastens, J.H.; Coutinho, A.C.; Victoria, D.D.C.; Bishop, C.R. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens. Environ. 2013, 130, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Nelson, J.A.; Carvalhais, N.; Migliavacca, M.; Reichstein, M.; Jung, M. Water-stress-induced breakdown of carbon-water relations: Indicators from diurnal FLUXNET patterns. Biogeosciences 2018, 15, 2433–2447. [Google Scholar] [CrossRef] [Green Version]
- Govind, A.; Biradar, C.; Gamal, R.; Mazahrih, N.; Jomaa, I.; Mosaad, A.; EL Meknassi, E.; Zaitouna, R.; Nangia, V. Output 9: Comprehensive Report Activity 9. 2: Comprehensive Report of Results including Recommendations and Strategies; ICARDA; UN-FAO: Cairo, Egypt, 2021; Available online: https://repo.mel.cgiar.org/handle/20.500.11766/66930 (accessed on 15 November 2021).
- Varma, S.; Winslow, M. Healing Wounds How the International Centers of the CGIAR Help Rebuild Agriculture in Countries Affected by Conflicts and Natural Disasters; International Center for Agricultural Research in the Dry Areas (ICARDA): Aleppo, Syria, 2005. [Google Scholar]
- Aw-Hassan, A.; Rida, F.; Telleria, R.; Bruggeman, A. The impact of food and agricultural policies on groundwater use in Syria. J. Hydrol. 2014, 513, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Karrou, M.; Oweis, T. Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment. Agric. Water Manag. 2012, 107, 94–103. [Google Scholar] [CrossRef]
- Fredenburg, P.; Bishaw, Z.; Niane, A.A.; Devlin, M. Strengthening National Seed Systems for Household Food Security in Developing Countries; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2015; Available online: https://repo.mel.cgiar.org/handle/20.500.11766/7125 (accessed on 15 November 2021).
- Frija, A.; Telleria, R. Country-Level Bio-Economic Modeling of Agricultural Technologies to Enhance Wheat-Based Systems Productivity in the Dry Areas. Sustain. Agric. Res. 2016, 5, 113. [Google Scholar] [CrossRef]
Arab Domain | |
---|---|
Spatial Extent | 27 W–76 E, 7 S–45 N |
Spatial Resolution | 0.44° (~50 km) |
Temporal Extent | 1951–2100 |
Temporal Resolution | Daily |
IPCC Scenarios | RCP4.5, RCP 8.5 |
Driving GCMs | CNRM-CM5 [16] GFDL-ESM2M [17] EC-EARTH [18] |
Downscaling Regional Circulation Model (RCM) | RCA4 [19] |
Bias Correction Method | Distribution-Based Scaling (DBS) |
Reference | RICCAR, Arab Climate Change Assessment Report Main Report [14,20]. |
Parameters | Irrigated | Rainfed | Rangeland | Desert |
---|---|---|---|---|
Hydrometeorology | ||||
Precipitation | x | x | x | x |
Radiation Components | x | x | x | x |
Net Radiation | x | x | x | x |
Air Temperature at various heights | x | x | x | x |
Relative Humidity | x | x | x | x |
Surface Pressure | x | x | x | x |
Wind Speed and Direction | x | x | x | x |
Soil Heat Flux | x | x | x | x |
Soil Temperature at various depths | x | x | x | x |
Soil Moisture at various depths | x | x | x | x |
Ecosystem Fluxes | ||||
Sensible Heat Flux | x | x | x | x |
Latent Heat Flux | x | x | x | x |
CO2 Flux | x | x | x | x |
Methane Flux | x | x | x | |
NOX Flux | x | x | ||
Hydrological Processes | ||||
Surface Runoff | x | x | ||
Sub-Surface Runoff | x | x | ||
Water Table Dynamics | x | x | x | |
Evapotranspiration | x | x | ||
Soil Parameters | ||||
Soil Carbon Stocks and Fluxes | x | x | x | x |
Static Soil Physical Properties | x | x | x | x |
Static Soil Chemical Properties | x | x | x | x |
Soil Biological Properties | x | x | x | x |
Soil Depth to Bedrock | x | x | x | |
Vegetation Parameters | ||||
Leaf Area Index | x | x | x | |
Plant Phenology | x | x | x | |
Biomass Dynamics | x | x | x | |
Vegetation Density | x | x | x | |
Species Composition | x | x | x | |
Spectral Reflectance | x | x | x | x |
Livestock Parameters | ||||
Ruminant Density | x | x | ||
Ruminant Spatial Dynamics | x | x | x | |
Animal Herbivory | x | x | x | |
Animal Population Dynamics | x | |||
Biotic Invasion. | x | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govind, A. Towards Climate Change Preparedness in the MENA’s Agricultural Sector. Agronomy 2022, 12, 279. https://doi.org/10.3390/agronomy12020279
Govind A. Towards Climate Change Preparedness in the MENA’s Agricultural Sector. Agronomy. 2022; 12(2):279. https://doi.org/10.3390/agronomy12020279
Chicago/Turabian StyleGovind, Ajit. 2022. "Towards Climate Change Preparedness in the MENA’s Agricultural Sector" Agronomy 12, no. 2: 279. https://doi.org/10.3390/agronomy12020279
APA StyleGovind, A. (2022). Towards Climate Change Preparedness in the MENA’s Agricultural Sector. Agronomy, 12(2), 279. https://doi.org/10.3390/agronomy12020279