Assessing Factors Controlling Structural Changes of Humic Acids in Soils Amended with Organic Materials to Improve Soil Functionality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Soil Sampling
2.1.1. Site 1: Microplot Field Trial in Skierniewice, Poland
2.1.2. Site 2: Experimental Trial in Traismauer, Austria
2.1.3. Site 3: Static Fertilisation Field Trial in Skierniewice, Poland
2.1.4. Site 4: Static Fertilisation Experiment in Bad-Lauchstadt, Germany
2.2. Humic Acid Extraction and Characterisation
2.2.1. Elemental Analysis (EA)
2.2.2. Differential Scanning Calorimetry (DSC)
2.2.3. ATR-FTIR Spectroscopy
2.2.4. CP/MAS 13C-NMR Spectroscopy
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Quantity of Humic Acid Samples and Elemental Composition
3.2. Thermal Characteristics
3.3. Structural Composition and Functional Groups
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Szara, E.; Thornton, S.F.; Fenton, O.; Malina, G. Efficacy of woodchip biochar and brown coal waste as stable sorbents for abatement of bioavailable cadmium, lead and zinc in soil. Water Air Soil Pollut. 2020, 231, 515. [Google Scholar] [CrossRef]
- Bondi, G.; Fenton, O.; Sawdekar, P.; Keane, H.; Wall, D.P. Potential of Lacto-Gypsum as an Amendment to Build Soil Quality. Front. Sustain. 2021, 1, 17. [Google Scholar] [CrossRef]
- Babla, M.; Katwal, U.; Yong, M.T.; Jahandari, S.; Rahme, M.; Chen, Z.H.; Tao, Z. Value-added products as soil conditioners for sustainable agriculture. Resour. Conserv. Recycl. 2022, 178, 106079. [Google Scholar] [CrossRef]
- Liaudanskienė, I.; Šlepetienė, A.; Velykis, A. Changes in soil humified carbon content as influenced by tillage and crop rotation. Zemdirb.-Agric. 2011, 98, 227–234. [Google Scholar]
- Mbarek, H.B.; Mahmoud, I.B.; Chaker, R.; Rigane, H.; Maktouf, S.; Arous, A.; Soua, N.; Khlifi, M.; Gargouri, K. Change of soil quality based on humic acid with date palm compost incorporation. Int. J. Recycl. Org. Waste Agric. 2019, 8, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowska-Malina, J. Structure and properties of humic substances from brown coal 11 years after addition into soil. Pol. J. Soil Sci. 2009, 2, 167–174. [Google Scholar]
- Zhang, J.; Wang, J.; An, T.; Wei, D.; Chi, F.; Zhou, B. Effects of long-term fertilization on soil humic acid composition and structure in Black Soil. PLoS ONE 2017, 12, e0186918. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Novotny, E.H.; Mao, J.D.; Hayes, M.H. Characterization of transformations of maize residues into soil organic matter. Sci. Total Environ. 2017, 579, 1843–1854. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Properties of soil and elemental composition of humic acids after treatment with brown coal and cow manure. Pol. J. Soil Sci. 2011, 1, 43–50. [Google Scholar]
- Akimbekov, N.S.; Digel, I.; Tastambek, K.T.; Sherelkhan, D.K.; Jussupova, D.B.; Altynbay, N.P. Low-Rank Coal as a Source of Humic Substances for Soil Amendment and Fertility Management. Agriculture 2021, 11, 1261. [Google Scholar] [CrossRef]
- Ali, M.; Mindari, W. Effect of humic acid on soil chemical and physical characteristics of embankment. MATEC Web Conf. EDP Sci. 2016, 58, 1028. [Google Scholar] [CrossRef]
- García, A.C.; de Souza, L.G.A.; Pereira, M.G.; Castro, R.N.; García-Mina, J.M.; Zonta, E.; Lisboa, F.J.G.; Berbara, R.L.L. Structure-property-function relationship in humic substances to explain the biological activity in plants. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatkowska-Malina, J. Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals. Appl. Soil Ecol. 2018, 123, 542–545. [Google Scholar] [CrossRef]
- Ciarkowska, K.; Sołek-Podwika, K.; Filipek-Mazur, B.; Tabak, M. Comparative effects of lignite-derived humic acids and FYM on soil properties and vegetable yield. Geoderma 2017, 303, 85–92. [Google Scholar] [CrossRef]
- Pukalchik, M.; Kydralieva, K.; Yakimenko, O.; Fedoseeva, E.; Terekhova, V. Outlining the potential role of humic products in modifying biological properties of the soil—a review. Front. Environ. Sci. 2019, 7, 80. [Google Scholar] [CrossRef]
- Giannis, A.; Gidarakos, E.; Skouta, A. Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil. Desalination 2007, 211, 249–260. [Google Scholar] [CrossRef]
- Jindo, K.; Sánchez-Monedero, M.A.; Matsumoto, K.; Sonoki, T. The efficiency of a low dose of biochar in enhancing the aromaticity of humic-like substance extracted from poultry manure compost. Agronomy 2019, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Mikos-Szymańska, M.; Schab, S.; Rusek, P.; Borowik, K.; Bogusz, P.; Wyzińska, M. Preliminary study of a method for obtaining Brown coal and biochar based granular compound fertilizer. Waste Biomass Valorization 2019, 10, 3673–3685. [Google Scholar] [CrossRef] [Green Version]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S.F.; Fenton, O.; Malina, G.; Szara, E. Restoration of soil quality using biochar and brown coal waste: A review. Sci. Total Environ. 2020, 722, 137852. [Google Scholar] [CrossRef]
- Antilén, M.; Silva, K.; Acevedo, S.; Amiama, F.; Faúndez, M.; Knicker, H.; Pizarro, C. Characterization of humic acids extracted from biosolid amended soils. J. Soil Sci. Plant Nutr. 2014, 14, 1005–1020. [Google Scholar] [CrossRef] [Green Version]
- Asing, J.; Wong, N.C.; Lau, S. Optimization of extraction method and characterization of humic acid derived from coals and composts. J. Trop. Agric. Food Sci. 2009, 37, 211–223. [Google Scholar]
- Fujisaki, K.; Chevallier, T.; Chapuis-Lardy, L.; Albrecht, A.; Razafimbelo, T.; Masse, D.; Ndour, Y.B.; Chotte, J.L. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agric. Ecosyst. Environ. 2018, 259, 147–158. [Google Scholar] [CrossRef]
- Cybulak, M.; Sokołowska, Z.; Boguta, P. Impact of biochar on physicochemical properties of Haplic Luvisol soil under different land use: A plot experiment. Agronomy 2019, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Amir, S.; Hafidi, M.; Merlina, G.; Hamdi, H.; Revel, J.C. Elemental analysis, FTIR and 13C-NMR of humic acids from sewage sludge composting. Agron. EDP Sci. 2004, 24, 13–18. [Google Scholar] [CrossRef]
- Lucas, E.G.; Izquierdo, C.G.; Fernández, M.T.H. Changes in humic fraction characteristics and humus-enzyme complexes formation in semiarid degraded soils restored with fresh and composted urban wastes. A 5-year field experiment. J. Soils Sediments 2018, 18, 1376–1388. [Google Scholar] [CrossRef]
- Moraes, G.M.D.; Xavier, F.A.D.S.; Mendonça, E.D.S.; Araújo Filho, J.A.D.; Oliveira, T.S.D. Chemical and structural characterization of soil humic substances under agroforestry and conventional systems. Rev. Bras. De Ciência Do Solo 2011, 35, 1597–1608. [Google Scholar] [CrossRef] [Green Version]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Fenton, O.; Szara, E.; Thornton, S.F.; Malina, G. Holistic Assessment of Biochar and Brown Coal Waste as Organic Amendments in Sustainable Environmental and Agricultural Applications. Water Air Soil Pollut. 2021, 232, 1–25. [Google Scholar] [CrossRef]
- Karer, J.; Wimmer, B.; Zehetner, F.; Kloss, S.; Soja, G. Biochar application to temperate soils: Effects on nutrient uptake and crop yield under field conditions. Agric. Food Sci. 2013, 22, 390–403. [Google Scholar] [CrossRef] [Green Version]
- Mercik, S.; Stepien, W.; Łabetowicz, J. The fate of nitrogen, phosphorus and potassium in long-term experiments in Skierniewice. J. Plant. Soil Sci. 2000, 163, 273–278. [Google Scholar] [CrossRef]
- Altermann, M.; Rinklebe, J.; Merbach, I.; Körschens, M.; Langer, U.; Hofmann, B. Chernozem—soil of the year 2005. J. Plant Nutr. Soil Sci. 2005, 168, 725–740. [Google Scholar] [CrossRef]
- Merbach, I.; Schulz, E. Long-term fertilization effects on crop yields, soil fertility and sustainability in the Static Fertilization Experiment Bad Lauchstädt under climatic conditions 2001–2010. Arch. Agron. Soil Sci. 2013, 59, 1041–1057. [Google Scholar] [CrossRef]
- Kuwatsuka, S.; Watanabe, A.; Itoh, K.; Arai, S. Comparison of two methods of preparation of humic and fulvic acids, IHSS method and NAGOYA method. Soil Sci. Plant Nutr. 1992, 38, 23–30. [Google Scholar] [CrossRef]
- De Mastro, F.; Cocozza, C.; Traversa, A.; Savy, D.; Abdelrahman, H.M.; Brunetti, G. Influence of crop rotation, tillage and fertilization on chemical and spectroscopic characteristics of humic acids. PLoS ONE 2019, 14, e0219099. [Google Scholar] [CrossRef] [PubMed]
- Kholodov, V.A.; Yaroslavtseva, N.V.; Konstantinov, A.I.; Perminova, I.V. Preparative yield and properties of humic acids obtained by sequential alkaline extractions. Eurasian Soil Sci. 2015, 48, 1101–1109. [Google Scholar] [CrossRef]
- Ghabbour, E.A.; Davies, G.; Daggett Jr, J.L.; Worgul, C.A.; Wyant, G.A.; Sayedbagheri, M.M. Measuring the humic acids content of commercial lignites and agricultural top soils in the national soil project. Ann. Environ. Sci. 2012, 6, 1–12. [Google Scholar]
- Dong, X.; Li, G.; Lin, Q.; Zhao, X. Quantity and quality changes of biochar aged for 5 years in soil under field conditions. Catena 2017, 159, 136–143. [Google Scholar] [CrossRef]
- Bonanomi, G.; De Filippis, F.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.; Abd-ElGawad, A. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 2020, 156, 103714. [Google Scholar] [CrossRef]
- Zavarzina, A.G.; Kravchenko, E.G.; Konstantinov, A.I.; Perminova, I.V.; Chukov, S.N.; Demin, V.V. Comparison of the properties of humic acids extracted from soils by alkali in the presence and absence of oxygen. Eurasian Soil Sci. 2019, 52, 880–891. [Google Scholar] [CrossRef]
- Fernández, J.M.; Hockaday, W.C.; Plaza, C.; Polo, A.; Hatcher, P.G. Effects of long-term soil amendment with sewage sludges on soil humic acid thermal and molecular properties. Chemosphere. 2008, 73, 1838–1844. [Google Scholar] [CrossRef]
- Gerzabek, M.H.; Pichlmayer, F.; Kirchmann, H.; Haberhauer, G. The response of soil organic matter to manure amendments in a long-term experiment at Ultuna, Sweden. Eur. J. Soil Sci. 1997, 48, 273–282. [Google Scholar] [CrossRef]
- Zhang, X.; Dou, S.; Ndzelu, B.S.; Guan, X.W.; Zhang, B.Y.; Bai, Y. Effects of different corn straw amendments on humus composition and structural characteristics of humic acid in black soil. Commun. Soil Sci. Plant Anal. 2020, 51, 107–117. [Google Scholar] [CrossRef]
- Heymann, K.; Mashayekhi, H.; Xing, B. Spectroscopic analysis of sequentially extracted humic acid from compost. Spectrosc. Lett. 2005, 38, 293–302. [Google Scholar] [CrossRef]
- Sarlaki, E.; Paghaleh, A.S.; Kianmehr, M.H.; Vakilian, K.A. Chemical, spectral and morphological characterization of humic acids extracted and membrane purified from lignite. Chem. Chem. Technol. 2020, 14, 353–361. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Chang, L.; Zi, C.; Liang, G.; Zhang, D.; Xie, W. Analyses on thermal stability of lignites and its derived humic acids. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–12. [Google Scholar] [CrossRef]
- De Souza, F.; Bragança, S.R. Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders. J. Mater. Res. Technol. 2018, 7, 254–260. [Google Scholar] [CrossRef]
- Das, T.; Saikia, B.K.; Baruah, B.P.; Das, D. Characterizations of humic acid isolated from coals of two Nagaland Coalfields of India in relation to their origin. J. Geol. Soc. India 2015, 86, 468–474. [Google Scholar] [CrossRef]
- Boguta, P.; Sokołowska, Z.; Skic, K. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids. PLoS ONE 2017, 12, e0189653. [Google Scholar] [CrossRef] [Green Version]
- Laplante, M.; Mehrotra, A.K. An investigation of the interactions between organic contaminants and soil humic acids using DSC. Adv. Environ. Res. 1999, 2, 467–484. [Google Scholar]
- Gondar, D.; Lopez, R.; Fiol, S.; Antelo, J.M.; Arce, F. Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma 2005, 126, 367–374. [Google Scholar] [CrossRef]
- Naithani, V.; Singh, A.P.; Nautiyal, M.K. Spectroscopic Characterization of Humic Acids Extracted from Different Type of Soils of Punjab. J. Indian Soc. Soil Sci. 2017, 65, 24–31. [Google Scholar] [CrossRef]
- El Hassani, F.Z.; Fadile, A.; Faouzi, M.; Zinedine, A.; Merzouki, M.; Benlemlih, M. The long term effect of Olive Mill Wastewater (OMW) on organic matter humification in a semi-arid soil. Heliyon 2020, 6, e03181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senesi, N.; Plaza, C. Role of humification processes in recycling organic wastes of various nature and sources as soil amendments. Clean-Soil Air Water 2007, 35, 26–41. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E. Assessments of Organic Carbon Stabilization Using the Spectroscopic Characteristics of Humic Acids Separated from Soils of the Lena River Delta. Separations 2021, 8, 87. [Google Scholar] [CrossRef]
- El Fels, L.; Zamama, M.; Hafidi, M. Advantages and limitations of using FTIR spectroscopy for assessing the maturity of sewage sludge and olive oil waste co-composts. In Biodegradation and Bioremediation of Polluted Systems: New Advances and Technologies; InTech: London, UK, 2015; pp. 127–144. [Google Scholar]
- Ellerbrock, R.H.; Gerke, H.H. FTIR spectral band shifts explained by OM–cation interactions. J. Plant Nutr. Soil Sci. 2021, 184, 388–397. [Google Scholar] [CrossRef]
Site | Type | Texture | pH (CaCl2) | CEC (cmol+ kg−1) | C (%) | N (%) | C/N | Reference |
---|---|---|---|---|---|---|---|---|
S1 | Haplic Luvisol | Loamy sand | 5.9 | 5.14 | 0.72 | 0.07 | 10.29 | Amoah-Antwi et al. [27] |
S2 | Chernozem | Silt loam | 7.4 | 20.9 | - | - | 11.9 | Karer et al. [28] |
S3 | Haplic Luvisol | Loamy sand | 5.9 | 5.14 | 0.72 | 0.07 | 10.29 | Mercik et al. [29] |
S4 | Haplic Chernozem | Clayey silt | 7.5 | 24.4 | 2.06 | 0.18 | 11.3 | Alterman et al. [30] |
Treatment | Amendment | Rate of Amendment | Frequency of Amendment (years) | Field Age (years) | Site |
---|---|---|---|---|---|
T1 | FYM | 30 t ha−1 | 5 | Short (0.5) | S1 |
T2 | BCW | C eq. in 30 t FYM ha−1 | 5 | Short (0.5) | S1 |
T3 | BIO | C eq. in 30 t FYM ha−1 | 5 | Short (0.5) | S1 |
T4 | FYM | 30 t ha−1 | 5 | Short (1.5) | S1 |
T5 | BCW | C eq. in 30 t FYM ha−1 | 5 | Short (1.5) | S1 |
T6 | BIO | C eq. in 30 t FYM ha−1 | 5 | Short (1.5) | S1 |
T7 | None | n.a. | n.a. | Medium (8) | S2 |
T8 | BIO | 72 t ha−1 | 8 | Medium (8) | S2 |
T9 | None | n.a. | n.a. | Long (94) | S3 |
T10 | FYM + Ca | 30 t ha−1 FYM; 1.6 t ha−1 Ca | 5 | Long (94) | S3 |
T11 | None | n.a. | n.a. | Long (116) | S4 |
T12 | FYM | 30 t ha−1 | 2 | Long (116) | S4 |
Treatment (Site) | Quantity (g kg−1) | C (%) | N (%) | C/N |
---|---|---|---|---|
T1 (S1) | 2.1 | 52.7 ± 0.6 a | 5.7 ± 0.4 abc | 9.3 ± 0.6 b |
T2 (S1) | 2.4 | 49.9 ± 0.4 ab | 5.2 ± 0.3 bcd | 9.6 ± 0.4 b |
T3 (S1) | 2.3 | 52.3 ± 1.5 a | 5.7 ± 0.2 abc | 9.2 ± 0.5 b |
T4 (S1) | 1.7 | 49.2 ± 2.8 ab | 4.9 ± 0.2 cde | 10.1 ± 0.3 ab |
T5 (S1) | 1.9 | 47.9 ± 1.8 b | 4.9 ± 0.3 cde | 9.8 ± 0.9 b |
T6 (S1) | 1.9 | 49.4 ± 0.7 ab | 4.9 ± 0.2 cde | 10.1 ± 0.5 ab |
T7 (S2) | 1.0 | 46.4 ± 1.3 bc | 6.4 ± 0.5 a | 7.3 ± 0.7 c |
T8 (S2) | 1.1 | 43.1 ± 1.3 c | 6.0 ± 0.4 ab | 7.2 ± 0.5 c |
T9 (S3) | 1.9 | 49.7 ± 1.0 ab | 5.5 ± 0.1 bcd | 9.0 ± 0.3 b |
T10 (S3) | 2.0 | 49.6 ± 1.4 ab | 4.8 ± 0.3 de | 10.4 ± 0.7 ab |
T11 (S4) | 2.8 | 49.0 ± 1.8 ab | 5.0 ± 0.4 cde | 9.8 ± 0.6 b |
T12 (S4) | 3.0 | 50.6 ± 1.3 ab | 4.3 ± 0.2 e | 11.8 ± 0.7 a |
LSD | 4.2 | 0.8 | 1.7 |
Treatment (Site) | Carbonyl (160–200 ppm) | Aromatic (110–160 ppm) | O-alkyl C (50–110 ppm) | Alkyl-C (0–50 ppm) | Aromaticity |
---|---|---|---|---|---|
T1 (S1) | 0.101 | 0.229 | 0.373 | 0.201 | 0.28 |
T2 (S1) | 0.121 | 0.240 | 0.344 | 0.183 | 0.31 |
T3 (S1) | 0.121 | 0.261 | 0.364 | 0.164 | 0.33 |
T4 (S1) | 0.125 | 0.238 | 0.351 | 0.177 | 0.31 |
T5 (S1) | 0.112 | 0.234 | 0.365 | 0.175 | 0.30 |
T6 (S1) | 0.130 | 0.268 | 0.357 | 0.157 | 0.34 |
T7 (S2) | 0.123 | 0.213 | 0.334 | 0.213 | 0.28 |
T8 (S2) | 0.132 | 0.208 | 0.328 | 0.218 | 0.28 |
T9 (S3) | 0.087 | 0.222 | 0.359 | 0.212 | 0.28 |
T10 (S3) | 0.130 | 0.256 | 0.359 | 0.164 | 0.33 |
T11 (S4) | 0.141 | 0.275 | 0.265 | 0.168 | 0.39 |
T12 (S4) | 0.127 | 0.330 | 0.273 | 0.175 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Szara, E.; Fenton, O.; Thornton, S.F.; Malina, G. Assessing Factors Controlling Structural Changes of Humic Acids in Soils Amended with Organic Materials to Improve Soil Functionality. Agronomy 2022, 12, 283. https://doi.org/10.3390/agronomy12020283
Amoah-Antwi C, Kwiatkowska-Malina J, Szara E, Fenton O, Thornton SF, Malina G. Assessing Factors Controlling Structural Changes of Humic Acids in Soils Amended with Organic Materials to Improve Soil Functionality. Agronomy. 2022; 12(2):283. https://doi.org/10.3390/agronomy12020283
Chicago/Turabian StyleAmoah-Antwi, Collins, Jolanta Kwiatkowska-Malina, Ewa Szara, Owen Fenton, Steven F. Thornton, and Grzegorz Malina. 2022. "Assessing Factors Controlling Structural Changes of Humic Acids in Soils Amended with Organic Materials to Improve Soil Functionality" Agronomy 12, no. 2: 283. https://doi.org/10.3390/agronomy12020283
APA StyleAmoah-Antwi, C., Kwiatkowska-Malina, J., Szara, E., Fenton, O., Thornton, S. F., & Malina, G. (2022). Assessing Factors Controlling Structural Changes of Humic Acids in Soils Amended with Organic Materials to Improve Soil Functionality. Agronomy, 12(2), 283. https://doi.org/10.3390/agronomy12020283