Mineral Fertilization and Maize Cultivation as Factors Which Determine the Content of Trace Elements in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Design
2.2. Methods of Laboratory and Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lemaire, G.; Tang, L.; Bélanger, G.; Zhu, Y.; Jeuffroy, M.-H. Forward new paradigms for crop mineral nutrition and fertilization towards sustainable agriculture. Eur. J. Agron. 2021, 125, 126248. [Google Scholar] [CrossRef]
- Buchner, B.; Fischler, C.; Gustafson, E.; Reilly, J.; Riccardi, G.; Ricordi, C.; Veronesi, U. Eating in 2030: Trends and Perspectives. Barilla Center for Food and Nutrition, 2012; p. 52. Available online: https://www.barillacfn.com/m/publications/eating-in-2030-trends-and-perspectives.pdf (accessed on 10 September 2021).
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; p. 403. Available online: http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf (accessed on 10 September 2021).
- Latifi, Z.; Jalali, M. Trace element contaminants in mineral fertilizers used in Iran. Environ. Sci. Pollut. Res. 2018, 25, 31917–31928. [Google Scholar] [CrossRef] [PubMed]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Belon, E.; Boisson, M.; Deportes, I.Z.; Eglin, T.K.; Feix, I.; Bispo, A.O.; Galsomies, L.; Leblond, S.; Guellier, C.R. An inventory of trace elements inputs to French agricultural soils. Sci. Total Environ. 2012, 439, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Alloway, B.J., Ed.; Environmental Pollution, 22; Springer: Dordrecht, The Netherlands, 2013; pp. 11–50. [Google Scholar] [CrossRef]
- Regulation of Minister of the Environment of 1 September 2016 on the Procedures for the Assessment of Land Surface Contamination. In Journal of Laws; 2016; Poz. 1395. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf (accessed on 10 September 2021).
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Chen, W.; Chang, A.C.; Page, A.L. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environ. Pollut. 2012, 168, 44–53. [Google Scholar] [CrossRef]
- Gorlach, E.; Gambuś, F. Phosphorus and compound fertilizers as a source of soil contamination with heavy metals. Probl. J. Adv. Agric. Sci. 1997, 448a, 139–146. [Google Scholar]
- Park, H.J.; Kim, S.U.; Jung, K.Y.; Lee, S.; Choi, Y.D.; Owens, V.N.; Kumar, S.; Yun, S.W.; Hong, C.O. Cadmium phytoavailability from 1976 through 2016: Changes in soil amended with phosphate fertilizer and compost. Sci. Total Environ. 2021, 762, 143132. [Google Scholar] [CrossRef] [PubMed]
- Bracher, C.; Frossard, E.; Bigalke, M.; Imseng, M.; Mayer, J.; Wiggenhauser, M. Tracing the fate of phosphorus fertilizer derived cadmium in soil-fertilizer-wheat systems using enriched stable isotope labeling. Environ. Pollut. 2021, 287, 117314. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.W.; McLaren, R.G.; Roberts, A.H.C. An assessment of the effect of contact time on cadmium phytoavailability in a pasture soil. Environ. Sci. Pollut. Res. 2016, 23, 22212–22217. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Brodowska, M.S. Potassium and nitrogen fertilization vs. trace element content of maize (Zea mays L.). Agriculture 2021, 11, 96. [Google Scholar] [CrossRef]
- Czarnecki, S.; Düring, R.-A. Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany. Soil 2015, 1, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Qiu, S.; He, P. Changes of heavy metals in soil and wheat grain under long-term environmental impact and fertilization practices in North China. J. Plant Nutr. 2018, 41, 1970–1979. [Google Scholar] [CrossRef]
- Rolka, E.; Wyszkowski, M. Availability of trace elements in soil with simulated cadmium, lead and zinc pollution. Minerals 2021, 11, 879. [Google Scholar] [CrossRef]
- Nunes, J.R.; Ramos-Miras, J.; Lopez-Piñeiro, A.; Loures, L.; Gil, C.; Coelho, J.; Loures, A. Concentrations of available heavy metals in Mediterranean agricultural soils and their relation with some soil selected properties: A case study in typical Mediterranean soils. Sustainability 2014, 6, 9124–9138. [Google Scholar] [CrossRef] [Green Version]
- Ok, Y.S.; Usman, A.R.A.; Lee, S.S.; El-Azeem, S.A.M.A.; Choi, B.; Hashimoto, Y.; Yang, J.E. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere 2011, 85, 677–682. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Różański, S. Fractionation of selected heavy metals in agricultural soils. Ecol. Chem. Eng. S 2013, 20, 117–125. [Google Scholar]
- Wyszkowska, J.; Borowik, A.; Kucharski, M.; Kucharski, J. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 2013, 18, 769–796. [Google Scholar] [CrossRef]
- Wang, L.; Chen, H.; Wu, J.; Huang, L.; Brookes, P.C.; Rodrigues, M.J.L.; Xu, J.; Liu, X. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil. J. Hazard. Mater. 2021, 414, 125494. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference base for soil resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; WRB: London, UK, 2014; Volume 106, p. 182. [Google Scholar]
- US-EPA Method 3051A; Microwave Assisted Acid Digestion of Sediment, Sludges, Soils and Oils. Office of Solid Waste and Emergency Response, United States Government Printing Office: Washington, DC, USA, 2007; pp. 1–30. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 23 June 2021).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties; IOŚ: Warszawa, Poland, 1991; pp. 1–334. (In Polish) [Google Scholar]
- PN-R-04032; Soil and Mineral Materials—Sampling and Determination of Particle Size Distribution. Polish Committee for Standardization: Warszawa, Poland, 1998.
- ISO 10390; Soil Quality—Determination of Ph. International Organization for Standardization: Geneva, Switzerland, 2005.
- Shimadzu, Co. Analytical and Measuring Instruments; Shimadzu Corporation: Kyoto, Japan, 2019; Available online: https://solutions.shimadzu.co.jp/an/n/en/etc/jpz19014.pdf?_ga=2.50821161.1231336941.1597769507-1298426863.1597769507 (accessed on 11 September 2021).
- ISO 11261; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995.
- PN-R-04023; Chemical and Agricultural Analysis—Determination of the Content of Available Phosphorus in Mineral Soils. Polish Standards Committee: Warszawa, Poland, 1996.
- PN-R-04022; Chemical and Agricultural Analysis—Determination of the Content Available Potassium in Mineral Soils. Polish Standards Committee: Warszawa, Poland, 1996.
- PN-R-04020; Chemical and Agricultural Analysis—Determination of the Content Available Magnesium. Polish Standards Committee: Warszawa, Poland, 1994.
- Boratyński, K.; Grom, A.; Ziętecka, M. Research on the content of sulfur in soil. Part I. Rocz. Gleboz. 1975, 3, 121–139. [Google Scholar]
- Dell Inc. Dell Statistica (Data Analysis Software System), Version 13. 2016. Available online: http://software.dell.com (accessed on 29 July 2021).
- Alloway, B.J. Micronutrients and crop production: An introduction. In Micronutrient Deficiencies in Global Crop Production; Alloway, B.J., Ed.; Springer Science + Business Media, B.V.: Dordrecht, The Netherlands, 2008; p. 370. [Google Scholar]
- Symanowicz, B.; Kalembasa, S.; Becher, M.; Toczko, M.; Skwarek, K. Effect of varied levels of fertilization with potassium on field pea yield and content and uptake of nitrogen. Acta Sci. Pol. Agric. 2017, 16, 163–173. [Google Scholar] [CrossRef]
- Symanowicz, B. Antagonistic changes in the content of molybdenum and boron in field pea and in soil under of the influence potassium fertilisation. J. Elem. 2020, 25, 193–203. [Google Scholar] [CrossRef]
- Li, B.Y.; Zhou, D.M.; Cang, L.; Zhang, H.L.; Fan, X.H.; Qin, S.W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Tillage Res. 2007, 96, 166–173. [Google Scholar] [CrossRef]
- Rutkowska, B.; Szulc, W.; Sosulski, T.; Stępień, W. Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant Soil Environ. 2014, 60, 198–203. [Google Scholar] [CrossRef]
- Singh, A.; Agrawal, M.; Marshall, F.M. The role of organic vs. inorganic fertilizers in reducing phytoavailability of heavy metals in a wastewater-irrigated area. Ecol. Eng. 2010, 36, 1733–1740. [Google Scholar] [CrossRef]
- Gudžić, N.; Šekularac, G.; Djikić, A.; Djekić, V.; Aksić, M.; Gudžić, S. The impact of the long-term fertilisation with mineral fertilizers on the chemical properties of Vertisol (central Serbia). Appl. Ecol. Environ. Res. 2019, 17, 12385–12396. [Google Scholar] [CrossRef]
- Jaskulska, I.; Lemanowicz, J.; Breza-Boruta, B.; Siwik-Ziomek, A.; Radziemska, M.; Dariusz, J.; Białek, M. Chemical and biological properties of sandy loam soil in response to long-term organic–mineral fertilisation in a warm-summer humid continental climate. Agronomy 2020, 10, 1610. [Google Scholar] [CrossRef]
- Mazur, Z.; Mazur, T. The influence of long-term fertilization with slurry, manure and NPK on the soil content of trace elements. J. Elem. 2016, 21, 131–139. [Google Scholar] [CrossRef]
- Zahoor, M.; Afzal, M.; Ali, M.; Mohammad, W.; Khan, N.; Adnan, M.; Ali, A.; Saeed, M. Effect of organic waste and NPK fertilizer on potato yield and soil fertility. Pure Appl. Biol. 2016, 5, 439–445. [Google Scholar] [CrossRef]
- Sungur, A.; Kavdir, Y.; Özcan, H.; İlay, R.; Soylak, M. Geochemical fractions of trace metals in surface and core sections of aggregates in agricultural soils. Catena 2021, 197, 104995. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Smolders, E.; Zhao, F.J.; Grant, C.; Montalvo, D. Managing cadmium in agricultural systems. Adv. Agron. 2020, 166, 1–129. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Brodowska, M.S. Content of trace elements in soil fertilized with potassium and nitrogen. Agriculture 2020, 10, 398. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, J.; Tao, L.; Cao, Z.; Tang, W.; Zhang, J.; Yu, X.; Fu, G.; Zhang, X.; Lu, Y. Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: A review. Sci. Total Environ. 2020, 708, 135186. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichry, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrient. In Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: London, UK, 2011; pp. 135–189. [Google Scholar] [CrossRef]
- Parkinson, R.; Willson, R. Soils and plant nutrition. In The Agricultural Notebook, 21st ed.; Soffe, R.J., Lobley, M., Eds.; John Wiley & Sons Ltd., Wiley-Blackwell: Hoboken, NJ, USA, 2021; pp. 1–50. [Google Scholar]
- Bąk, K.; Gaj, R.; Budka, A. Distribution of zinc in maize fertilized with different doses of phosphorus and potassium. J. Elem. 2016, 21, 989–999. [Google Scholar] [CrossRef]
Nitrogen Dose (mg kg−1 of Soil) | Potassium Dose (mg kg−1 of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 140 | 190 | 240 | |||
Cd | ||||||
130 | 0.292 | 0.308 | 0.229 | 0.104 | 0.233 | −0.743 ** |
170 | 0.300 | 0.325 | 0.271 | 0.254 | 0.288 | −0.608 * |
Average | 0.296 | 0.317 | 0.250 | 0.179 | 0.260 | −0.722 ** |
LSD for: | N dose—0.039 *, K dose—0.055 **, interaction—n.s. | |||||
Pb | ||||||
130 | 25.48 | 25.61 | 23.64 | 26.51 | 25.31 | 0.034 |
170 | 21.41 | 21.81 | 21.62 | 24.62 | 22.37 | 0.686 ** |
Average | 23.45 | 23.71 | 22.63 | 25.57 | 23.84 | 0.435 |
LSD for: | N dose—0.69 **, K dose—0.97 **, interaction—1.37 * | |||||
Cr | ||||||
130 | 40.60 | 42.21 | 42.50 | 39.44 | 41.19 | −0.060 |
170 | 43.81 | 44.53 | 40.31 | 45.35 | 43.50 | −0.026 |
Average | 42.21 | 43.37 | 41.41 | 42.40 | 42.34 | −0.089 |
LSD for: | N dose—1.46 **, K dose—n.s., interaction—2.91 ** | |||||
Co | ||||||
130 | 3.516 | 3.545 | 3.929 | 4.544 | 3.884 | 0.806 ** |
170 | 3.525 | 3.910 | 4.102 | 3.564 | 3.775 | 0.351 |
Average | 3.521 | 3.728 | 4.016 | 4.054 | 3.829 | 0.959 ** |
LSD for: | N dose—n.s., K dose—0.107 **, interaction—n.s. | |||||
Ni | ||||||
130 | 14.67 | 15.00 | 19.04 | 20.20 | 17.23 | 0.857 ** |
170 | 17.53 | 17.99 | 19.03 | 19.63 | 18.55 | 0.925 ** |
Average | 16.10 | 16.50 | 19.04 | 19.92 | 17.89 | 0.877 ** |
LSD for: | N dose—1.31 *, K dose—1.86 **, interaction—2.63 * |
Nitrogen Dose (mg kg−1 of Soil) | Potassium Dose (mg kg−1 of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 140 | 190 | 240 | |||
Zn | ||||||
130 | 35.11 | 35.60 | 36.09 | 39.14 | 36.49 | 0.779 ** |
170 | 33.59 | 36.59 | 37.69 | 39.03 | 36.73 | 0.999 ** |
Average | 34.35 | 36.10 | 36.89 | 39.09 | 36.61 | 0.948 ** |
LSD for: | N dose—n.s., K dose—1.09 **, interaction—1.54 * | |||||
Cu | ||||||
130 | 6.611 | 7.098 | 8.105 | 9.186 | 7.750 | 0.906 ** |
170 | 8.228 | 8.179 | 7.565 | 6.398 | 7.593 | −0.794 ** |
Average | 7.420 | 7.639 | 7.835 | 7.792 | 7.671 | 0.953 ** |
LSD for: | N dose—n.s., K dose—0.271 **, interaction—0.383 ** | |||||
Mn | ||||||
130 | 321.8 | 332.8 | 321.2 | 320.0 | 324.0 | −0.125 |
170 | 332.4 | 338.8 | 339.1 | 344.5 | 338.7 | 0.965 ** |
Average | 327.1 | 335.8 | 330.2 | 332.3 | 331.3 | 0.551 |
LSD for: | N dose—8.3 *, K dose—n.s., interaction—n.s. | |||||
Fe | ||||||
130 | 12,224 | 11,384 | 11,186 | 11,384 | 11,545 | −0.900 ** |
170 | 11,494 | 11,287 | 11,264 | 11,912 | 11,489 | 0.326 |
Average | 11,859 | 11,336 | 11,225 | 11,648 | 11,517 | −0.549 |
LSD for: | N dose—n.s., K dose—392 *, interaction—554 * |
Element | Cd | Pb | Cr | Co | Ni | Zn | Cu | Mn |
---|---|---|---|---|---|---|---|---|
Pb | −0.440 * | |||||||
Cr | 0.392 | −0.427 * | ||||||
Co | −0.484 * | 0.102 | −0.366 | |||||
Ni | −0.532 ** | −0.219 | 0.157 | 0.555 ** | ||||
Zn | −0.243 | 0.152 | 0.110 | 0.582 ** | 0.569 ** | |||
Cu | −0.352 | −0.116 | −0.259 | 0.706 ** | 0.422 * | 0.184 | ||
Mn | 0.474 * | −0.442 * | 0.606 ** | 0.018 | 0.206 | 0.380 | −0.117 | |
Fe | 0.034 | 0.314 | 0.108 | −0.040 | −0.285 | 0.078 | −0.361 | 0.099 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodowska, M.S.; Wyszkowski, M.; Bujanowicz-Haraś, B. Mineral Fertilization and Maize Cultivation as Factors Which Determine the Content of Trace Elements in Soil. Agronomy 2022, 12, 286. https://doi.org/10.3390/agronomy12020286
Brodowska MS, Wyszkowski M, Bujanowicz-Haraś B. Mineral Fertilization and Maize Cultivation as Factors Which Determine the Content of Trace Elements in Soil. Agronomy. 2022; 12(2):286. https://doi.org/10.3390/agronomy12020286
Chicago/Turabian StyleBrodowska, Marzena S., Mirosław Wyszkowski, and Barbara Bujanowicz-Haraś. 2022. "Mineral Fertilization and Maize Cultivation as Factors Which Determine the Content of Trace Elements in Soil" Agronomy 12, no. 2: 286. https://doi.org/10.3390/agronomy12020286
APA StyleBrodowska, M. S., Wyszkowski, M., & Bujanowicz-Haraś, B. (2022). Mineral Fertilization and Maize Cultivation as Factors Which Determine the Content of Trace Elements in Soil. Agronomy, 12(2), 286. https://doi.org/10.3390/agronomy12020286