Effects of Nitrification Inhibitors on Nitrogen Dynamics and Ammonia Oxidizers in Three Black Agricultural Soils
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil Samples
2.2. Soil Incubation Experiment
2.3. Soil Sampling and Analysis
2.4. Soil DNA Extraction and Quantitative PCR (qPCR) Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil Inorganic Nitrogen Concentrations in Three Soils
3.2. Soil Potential Nitrification Rate (PNR)
3.3. Abundance of the AOA and AOB amoA Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, X.T.; Li, Y.Y.; Yao, H.Y.; Wang, J.; Dai, F.; Wu, Y.P.; Chapman, S. Nitrification and urease inhibitors improve rice nitrogen uptake and prevent denitrification in alkaline paddy soil. Appl. Soil Ecol. 2020, 154, 103665. [Google Scholar] [CrossRef]
- Li, Z.L.; Zeng, Z.Q.; Tian, D.S.; Wang, S.J.; Fu, Z.; Zhang, F.Y.; Zhang, R.Y.; Chen, W.N.; Luo, Y.Q.; Niu, S.L. Global patterns and controlling factors of soil nitrification rate. Glob. Chang. Biol. 2020, 26, 4147–4157. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.C.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coskun, D.; Britto, D.T.; Shi, W.M.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef] [PubMed]
- Di, H.J.; Cameron, K.C. Inhibition of ammonium oxidation by a liquid formulation of 3,4-dimethylpyrazole phosphate (DMPP) compared with a dicyandiamide (DCD) solution in six New Zealand grazed grassland soils. J. Soils Sediments 2011, 11, 1032–1039. [Google Scholar] [CrossRef]
- Hu, H.W.; Zhang, L.M.; Yuan, C.L.; Zheng, Y.; Wang, J.T.; Chen, D.L.; He, J.Z. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Front. Microbiol. 2015, 6, 938. [Google Scholar] [CrossRef]
- Cui, M.; Sun, X.C.; Hu, C.X.; Di, H.J.; Tan, Q.L.; Zhao, C.S. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide. J. Soils Sediments 2011, 11, 722–730. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Wu, D.; Bol, R.; Shi, Y.F.; Guo, Y.B.; Meng, F.Q.; Wu, W.L. Nitrification inhibitor’s effect on mitigating N2O emissions was weakened by urease inhibitor in calcareous soils. Atmos. Environ. 2017, 166, 142–150. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, L.L.; Wu, Z.J.; Chen, Z.H.; Chen, L.J. Responses of ammonia-oxidizing bacteria and archaea in two agricultural soils to nitrification inhibitors DCD and DMPP—A pot experiment. Pedosphere 2013, 23, 729–739. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chapman, S.J.; Nicol, G.W.; Yao, H.Y. Nitrification and nitrifiers in acidic soils. Soil Biol. Biochem. 2018, 116, 290–301. [Google Scholar] [CrossRef]
- Zhou, Z.F.; Zhang, Z.Y.; Wang, M.X.; Liu, Y.M.; Dai, J.S. Effect of the nitrification inhibitor (3,4-dimethylpyrazole phosphate) on the activities and abundances of ammonia-oxidizers and denitrifiers in a phenanthrene polluted and waterlogged soil. Ecotox. Environ. Safe. 2018, 161, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Morales, S.E.; Jha, N.; Saggar, S. Impact of urine and the application of the nitrification inhibitor DCD on microbial communities in dairy-grazed pasture soils. Soil Biol. Biochem. 2015, 88, 344–353. [Google Scholar] [CrossRef]
- Vannelli, T.; Hooper, A.B. Oxidation of nitrapyrin to 6-chloropicolinic acid by ammonia-oxidizing bacterium nitrosomonas europaea. Appl. Environ. Microb. 1992, 58, 2321–2325. [Google Scholar] [CrossRef] [Green Version]
- Hyman, M.R.; Russell, S.A.; Ely, R.L.; Williamson, K.J.; Arp, D.J. Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 1995, 61, 1480–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di, H.J.; Cameron, K.C. Ammonia oxidisers and their inhibition to reduce nitrogen losses in grazed grassland: A review. J. R. Soc. N. Z. 2017, 48, 127–142. [Google Scholar] [CrossRef]
- Lu, Y.F.; Zhang, X.N.; Jiang, J.F.; Kronzucker, H.J.; Shen, W.S.; Shi, W.M. Effects of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soils. Soil Biol. Biochem. 2019, 129, 48–59. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.W.; Ma, S.T.; Zheng, X.K.; Wang, Z.Y.; Lu, C.H. Effects of commonly used nitrification inhibitors—Dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin—On soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma 2020, 380, 114637. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Wang, W.J.; Bai, S.H.; Zhou, X.; Teng, Y.; Xu, Z.H. Antagonistic effects of nitrification inhibitor 3,4-dimethylpyrazole phosphate and fungicide iprodione on net nitrification in an agricultural soil. Soil Biol. Biochem. 2018, 116, 167–170. [Google Scholar] [CrossRef]
- Zhang, L.M.; Hu, H.W.; Shen, J.P.; He, J.Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 2012, 6, 1032–1045. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.J.; Wu, Z.J.; Zhou, Q.X. Dicyandiamide sorption-desorption behaviour on soils and peat humus. Pedosphere 2004, 14, 395–399. [Google Scholar]
- Guardia, G.; Marsden, K.A.; Vallejo, A.; Jones, D.L.; Chadwick, D.R. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Sci. Total Environ. 2018, 624, 1202–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.B.; Burras, C.L.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.Y.; Cruse, R.M.; Yuan, X.H. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- Yang, L.J.; Zhang, L.L.; Yu, C.X.; Li, D.P.; Gong, P.; Xue, Y.; Song, Y.C.; Cui, Y.L.; Doane, T.A.; Wu, Z.J. Nitrogen fertilizer and straw applications affect uptake of 13C,15N-Glycine by soil microorganisms in wheat growth stages. PLoS ONE 2017, 12, e0169016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Q.; Gao, Q.; Yang, J.M.; Li, L.J.; Li, Y.; Liu, J.H.; Wang, Y.J.; Su, H.G.; Wang, Y.; Wang, S.J.; et al. Effect of soil organic matter on adsorption of nitrification inhibitor nitrapyrin in black soil. Commun. Soil Sci. Plant Anal. 2020, 51, 883–895. [Google Scholar] [CrossRef]
- Kurola, J.; Salkinoja-Salonen, M.; Aarnio, T.; Hultman, J.; Romantschuk, M. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiol. Lett. 2005, 250, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Francis, C.A.; Roberts, K.J.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 14683–14688. [Google Scholar] [CrossRef] [Green Version]
- Rotthauwe, J.H.; Witzel, K.P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microb. 1997, 63, 4704–4712. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Li, D.P.; Wu, Z.J.; Xue, Y.; Xiao, F.R.; Zhang, L.L.; Song, Y.C.; Li, Y.H.; Zheng, Y.; Zhang, J.M.; et al. Effects of nitrification inhibitors on soil nitrification and ammonia volatilization in three soils with different pH. Agronomy 2021, 11, 1674. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Factors affecting nitrification in soils. Commun. Soil Sci. Plant Anal. 2008, 39, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Florio, A.; Clark, I.M.; Hirsch, P.R.; Jhurreea, D.; Benedetti, A. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil. Biol. Fertil. Soils 2014, 50, 795–807. [Google Scholar] [CrossRef]
- Chen, Q.H.; Qi, L.Y.; Bi, Q.F.; Dai, P.B.; Sun, D.S.; Sun, C.L.; Liu, W.J.; Lu, L.L.; Ni, W.Z.; Lin, X.Y. Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil. Appl. Microbiol. Biot. 2015, 99, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; Horchler von Locquenghien, K.; Pasda, G.; Rädle, M.; Wissemeier, A.H. 3,4-Dimethylpyrazole phosphate (DMPP)—A new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Dong, X.X.; Zhang, L.L.; Wu, Z.J.; Li, D.P.; Shang, Z.C.; Gong, P. Effects of the nitrification inhibitor DMPP on soil bacterial community in a Cambisol in northeast China. J. Soil Sci. Plant Nutr. 2013, 13, 580–591. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Fang, Y.T.; Sun, D.; Shi, Y.L. Efficiency of two nitrification inhibitors (dicyandiamide and 3,4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis. Sci. Rep. 2016, 6, 22075. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.F.; Li, F.B.; Deng, A.X.; Feng, X.M.; Fang, F.P.; Zhang, W.J. Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield. Agric. Ecosyst. Environ. 2016, 231, 218–228. [Google Scholar] [CrossRef]
- Hendrickson, L.L.; Keeney, D.R. A bioassay to determine the effect of organic matter and pH on the effectiveness of nitrapyrin (N-Serve) as a nitrification inhibitor. Soil Biol. Biochem. 1979, 11, 51–55. [Google Scholar] [CrossRef]
- Marsden, K.A.; Marín-Martínez, A.J.; Vallejo, A.; Hill, P.W.; Jones, D.L.; Chadwick, D.R. The mobility of nitrification inhibitors under simulated ruminant urine deposition and rainfall: A comparison between DCD and DMPP. Biol. Fertil. Soils 2016, 52, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Puttanna, K.; Nanje Gowda, N.M.; Prakasa Rao, E.V.S. Effect of concentration, temperature, moisture, liming and organic matter on the efficacy of the nitrification inhibitors benzotriazole, o-nitrophenol, m-nitroaniline and dicyandiamide. Nutr. Cycl. Agroecosyst. 1999, 54, 251–257. [Google Scholar] [CrossRef]
- Fisk, L.M.; Maccarone, L.D.; Barton, L.; Murphy, D.V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 2015, 88, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.; Power, J.F. Nitrification inhibitors for agriculture, health, and the environment. Adv. Agron. 1995, 54, 233–281. [Google Scholar]
- Shi, X.Z.; Hu, H.W.; Müller, C.; He, J.Z.; Chen, D.L.; Suter, H.C. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrification and nitrifiers in two contrasting agricultural soils. Appl. Environ. Microb. 2016, 82, 5236–5248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarty, G.W.; Bremner, J.M. Inhibition of nitrification in soil by heterocyclic nitrogen compounds. Biol. Fertil. Soils 1989, 8, 204–211. [Google Scholar] [CrossRef]
- Barth, G.; Von Tucher, S.; Schmidhalter, U. Effectiveness of 3,4-dimethylpyrazole phosphate as nitrification inhibitor in soil as influenced by inhibitor concentration, application form, and soil matric potential. Pedosphere 2008, 18, 378–385. [Google Scholar] [CrossRef]
- Hu, B.L.; Liu, S.; Wang, W.; Shen, L.D.; Lou, L.P.; Liu, W.P.; Tian, G.M.; Xu, X.Y.; Zheng, P. pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils. FEMS Microbiol. Ecol. 2014, 90, 290–299. [Google Scholar]
- Tourna, M.; Stieglmeier, M.; Spang, A.; Könneke, M.; Schintlmeister, A.; Urich, T.; Engel, M.; Schloter, M.; Wagner, M.; Richter, A.; et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA 2011, 108, 8420–8425. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.G.; Jung, M.Y.; Park, S.J.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Madsen, E.L.; Min, D.; Kim, J.S.; Kim, G.J.; Rhee, S.K. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I. 1b from an agricultural soil. Environ. Microbiol. 2012, 14, 1528–1543. [Google Scholar] [CrossRef]
- Dong, D.; Kou, Y.P.; Yang, W.C.; Chen, G.X.; Xu, H. Effects of urease and nitrification inhibitors on nitrous oxide emissions and nitrifying/denitrifying microbial communities in a rainfed maize soil: A 6-year field observation. Soil Tillage Res. 2018, 180, 82–90. [Google Scholar] [CrossRef]
- Kou, Y.P.; Wei, K.; Chen, G.X.; Wang, Z.Y.; Xu, H. Effects of 3,4-dimethylpyrazole phosphate and dicyandiamide on nitrous oxide emission in a greenhouse vegetable soil. Plant Soil Environ. 2015, 61, 29–35. [Google Scholar]
- Di, H.J.; Cameron, K.C.; Shen, J.P.; Winefield, C.S.; O’Callaghan, M.; Bowatte, S.; He, J.Z. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol. Ecol. 2010, 72, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Di, H.J.; Cameron, K.C.; Podolyan, A.; Robinson, A. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biol. Biochem. 2014, 73, 59–68. [Google Scholar] [CrossRef]
- Hu, H.W.; Zhang, L.M.; Dai, Y.; Di, H.J.; He, J.Z. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J. Soils Sediments 2013, 13, 1439–1449. [Google Scholar] [CrossRef]
- Liu, R.; Hayden, H.; Suter, H.; He, J.Z.; Chen, D.L. The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils. J. Soils Sediments 2015, 15, 1113–1118. [Google Scholar] [CrossRef]
- Jiang, X.J.; Hou, X.Y.; Zhou, X.; Xin, X.P.; Wright, A.; Jia, Z.J. pH regulates key players of nitrification in paddy soils. Soil Biol. Biochem. 2015, 81, 9–16. [Google Scholar] [CrossRef]
- Fan, X.P.; Yin, C.; Chen, H.; Ye, M.J.; Zhao, Y.H.; Li, T.Q.; Wakelin, S.A.; Liang, Y.C. The efficacy of 3,4-dimethylpyrazole phosphate on N2O emissions is linked to niche differentiation of ammonia oxidizing archaea and bacteria across four arable soils. Soil Biol. Biochem. 2019, 130, 82–93. [Google Scholar] [CrossRef]
- Ai, C.; Liang, G.Q.; Sun, J.W.; Wang, X.B.; He, P.; Zhou, W. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biol. Biochem. 2013, 57, 30–42. [Google Scholar] [CrossRef]
- Nicol, G.W.; Schleper, C. Ammonia-oxidising Crenarchaeota: Important players in the nitrogen cycle? Trends Microbiol. 2006, 14, 207–212. [Google Scholar] [CrossRef]
Soil Property | HLJ | NA | DA |
---|---|---|---|
pH | 5.44 ± 0.13 | 7.66 ± 0.07 | 9.94 ± 0.17 |
Total C (g kg−1) | 30.31 ± 1.11 | 18.94 ± 0.91 | 17.47 ± 0.32 |
Total N (g kg−1) | 2.63 ± 0.03 | 1.66 ± 0.07 | 0.92 ± 0.15 |
NH4+-N (mg kg−1) | 18.69 ± 1.05 | 27.83 ± 3.46 | 44.44 ± 3.48 |
NO3−N (mg kg−1) | 80.68 ± 1.46 | 132.73 ± 2.19 | 24.33 ± 2.16 |
Available P (mg kg−1) | 48.40 ± 2.13 | 18.42 ± 0.56 | 15.43 ± 0.32 |
Available K (mg kg−1) | 401.45 ± 34.27 | 344.04 ± 19.23 | 375.28 ± 24.33 |
SOM (g kg−1) | 52.25 ± 1.91 | 32.65 ± 1.57 | 30.12 ± 0.54 |
Clay% | 12.3 | 37.3 | 60.6 |
Silt% | 44.3 | 52.2 | 37.3 |
Sand% | 43.4 | 10.4 | 2.1 |
Texture class | loam | silt clay | clay |
Target Group | Primier Set | Sequence (5′-3′) | Annealing Temperature (°C) | Reference |
---|---|---|---|---|
AOA | Arch-amoAF | STAATGGTCTGGCTTAGACG | 58 °C | [26] |
Arch-amoAR | GCGGCCATCCATCTGTATGT | |||
AOB | AmoA-1F | GGGGTTTCTACTGGTGGT | 60 °C | [27] |
AmoA-2R | CCCCTCKGSAAAGCCTTCTTC |
Factors | DF | AOA | AOB | NH4+-N | NO3−-N | PNR | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
NIs | 3 | 1.3 | n.s. | 5.9 | ** | 7.4 | *** | 1.0 | n.s. | 12.7 | *** |
S | 2 | 273.4 | *** | 88.2 | *** | 41.9 | *** | 60.0 | *** | 45.3 | *** |
NIs × S | 6 | 1.9 | n.s. | 4.0 | ** | 1.3 | n.s. | 4.3 | *** | 7.1 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Li, D.; Wu, Z.; Xue, Y.; Song, Y.; Xiao, F.; Zhang, L.; Gong, P.; Zhang, K. Effects of Nitrification Inhibitors on Nitrogen Dynamics and Ammonia Oxidizers in Three Black Agricultural Soils. Agronomy 2022, 12, 294. https://doi.org/10.3390/agronomy12020294
Cui L, Li D, Wu Z, Xue Y, Song Y, Xiao F, Zhang L, Gong P, Zhang K. Effects of Nitrification Inhibitors on Nitrogen Dynamics and Ammonia Oxidizers in Three Black Agricultural Soils. Agronomy. 2022; 12(2):294. https://doi.org/10.3390/agronomy12020294
Chicago/Turabian StyleCui, Lei, Dongpo Li, Zhijie Wu, Yan Xue, Yuchao Song, Furong Xiao, Lili Zhang, Ping Gong, and Ke Zhang. 2022. "Effects of Nitrification Inhibitors on Nitrogen Dynamics and Ammonia Oxidizers in Three Black Agricultural Soils" Agronomy 12, no. 2: 294. https://doi.org/10.3390/agronomy12020294
APA StyleCui, L., Li, D., Wu, Z., Xue, Y., Song, Y., Xiao, F., Zhang, L., Gong, P., & Zhang, K. (2022). Effects of Nitrification Inhibitors on Nitrogen Dynamics and Ammonia Oxidizers in Three Black Agricultural Soils. Agronomy, 12(2), 294. https://doi.org/10.3390/agronomy12020294