The Potential of Biochar to Enhance the Water Retention Properties of Sandy Agricultural Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample
2.2. Biochar Sample
2.3. Zeolite and Perlite
2.4. Experiment Design
2.5. Statistical Analysis
3. Results and Discussion
3.1. Bulk Density
3.2. Water Retention Capacity and Readily Available Water Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2017—Data Booklet; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017. [Google Scholar]
- Food and Agricultural Organization. Climate Smart Agriculture: Sourcebook, 1st ed.; Food and Agricultural Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Xiubin, H.; Zhanbin, H. Zeolite application for enhancing water infiltration and retention in loess soil. Resour. Conserv. Recycl. 2001, 34, 45–52. [Google Scholar] [CrossRef]
- Wiedefeld, B. Zeolite as a soil amendment for vegetable production in the Lower Rio Grande Valley. Subtropical Plant Sci. 2003, 55, 7–10. [Google Scholar]
- Abed-Koupai, J.; Eslamian, S.S.; Kazemi, J.A. Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices. Ecohydrol. Hydrobiol. 2008, 8, 3–11. [Google Scholar]
- Torkashvand, A.M.; Shadparvar, V. Effect of some organic waste and zeolite on water holding capacity and PWP delay of soil. Current Biotica 2013, 6, 459–465. [Google Scholar]
- Dehkordi, K.D. Effect of superabsorbent polymer on salt and drought resistant of Eucalyptus globulus. Appl. Ecol. Environ. Res. 2017, 15, 1791–1802. [Google Scholar] [CrossRef]
- Abobatta, W. Impact of hydrogel polymer in agricultural sector. Adv. Agric. Environ. Sci. 2018, 1, 59–64. [Google Scholar] [CrossRef]
- Frantz, J.; Locke, J.; Pitchay, D.; Krause, C. Actual performance versus theoretical advantages of polyacrylamide hydrogel throughout bedding plant production. HortiScience 2005, 40, 2040–2046. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Earthscan, Routledge: London, UK, 2015; pp. 1–13. [Google Scholar]
- Avellan, T.; Roidt, M.; Emmer, A.; Von Koerber, J.; Schneider, P.; Raber, W. Making the water-soil-waste nexus work: Framing the bounderies of resource flow. Sustainability 2017, 9, 1881. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.P.; Prabha, R.; Renu, S.; Sahu, P.K.; Singh, V. Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising. Int. J. Recycl. Org. Waste Agric. 2019, 8, 457–472. [Google Scholar] [CrossRef] [Green Version]
- Sikder, S.; Joardar, J.C. Biochar production from poultry litter as management approach and effects on plant growth. Int. J. Recycl. Org. Waste Agric. 2019, 8, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S.G. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinney, T.J.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic properties of biochars produced at different temperatures. Biomass- Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Kameyama, K.; Iwata, Y.; Miyamoto, T. Biochar Amendment of Soils According to their Physicochemical Properties. Jpn. Agric. Res. Quarterly: JARQ 2017, 51, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Mukome, F.N.D.; Zhang, X.; Silva, L.; Six, J.; Parikh, S.J. Use of Chemical and Physical Characteristics to Investigate Trends in Biochar Feedstocks. J. Agric. Food Chem. 2013, 61, 2196–2204. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Sajjadi, B.; Chen, W.-Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Front. Energy Res. 2020, 8, 8. [Google Scholar] [CrossRef]
- Masiello, C.A.; Dugan, B.; Brewer, C.E.; Spokas, K.A.; Novak, J.M.; Liu, Z.; Sorrenti, G. Biochar effects on soil hydrology. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Earthscan, Routledge: London, UK, 2015; pp. 543–562. [Google Scholar]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape and porosity act together to inflluence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Yu, O.-Y.; Raichle, B.; Sink, S. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 2013, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Dugan, B.; Masiello, C.; Barnes, R.T.; Gallagher, M.E.; Gonnermann, H. Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. J. Hydrol. 2016, 533, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Koide, R.T.; Nguyen, B.; Skinner, R.H.; Dell, C.J.; Peoples, M.S.; Adler, P.R.; Drohan, P.J. Biochar amendment of soil improves resilience to climate change. GCB Bioenergy 2014, 7, 1084–1091. [Google Scholar] [CrossRef]
- Hansen, V.; Hauggaard-Nielsen, H.; Petersen, C.T.; Mikkelsen, T.N.; Müller-Stöver, D. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res. 2016, 161, 1–9. [Google Scholar] [CrossRef] [Green Version]
- De Melo-Carvalho, M.T.; De Holanda Nures Maia, A.; Madari, B.E.; Bastiaans, L.; Van Oort, P.A.J.; Heinemann, A.B.; Soler Da Silva, M.A.; Petter, F.A.; Marimon, B.H., Jr.; Meinke, H. Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system. Solid Earth 2014, 5, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Agronomy Monographs, ASA and SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Available online: http://www.maff.go.jp/j/seisan/kankyo/hozen_type/h_sehi_kizyun/attach/pdf/tottori01-9.pdf (accessed on 25 June 2018).
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Sun, X.; Shan, R.; Li, X.; Pan, J.; Liu, X.; Deng, R.; Song, J. Charaterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 2015, 9, 1423–1435. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202, 183–191. [Google Scholar] [CrossRef]
- Gamage, D.V.; Mapa, R.B.; Dharmakeerthi, R.S.; Biswas, A. Effect of rice-husk biochar on selected soil properties in tropical Alfisols. Soil Res. 2016, 54, 302–310. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till. Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Mollinedo, J.; Schumacher, T.E.; Chintal, R. Influence of feedstocks and pyrolysis on biochars capacity to modify soil water retention characteristics. J. Anal. Appl. Pyrol. 2015, 114, 100–108. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, L.; Zhang, Y.; Yang, L.; Yu, C.; Yin, G.; Doane, T.A.; Wu, Z.; Zhu, P.; Ma, X. Biochar improves soil aggregate stability and water availability in a Mollisol after three years of field application. PLoS ONE 2016, 11, e0154091. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Usman, A.R.A.; Al-Wabel, M.I.; Nadeem, M.; Al-Osman, A. Effect of Conocarpus biochar on hydraulic properties of calcarious sandy soil: Influence of particle size and application depth. Arch. Agron. Soil Sci. 2017, 63, 185–197. [Google Scholar] [CrossRef]
- Wang, D.; Li, C.; Parikh, S.J.; Scow, K.M. Impact of biochar on water retention of two agricultural soils—A multi-scale analysis. Geoderma 2019, 340, 185–191. [Google Scholar] [CrossRef]
- Liao, W.; Thomas, S.C. Biochar particle size and post-pyrolysis mechanical processing affects soil pH, water retention capacity and plant performance. Soil Syst. 2019, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Munoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2015, 144, 122–130. [Google Scholar] [CrossRef]
- Schmidt, H.; Anca-Couce, A.; Hagemann, N.; Werner, C.; Gerten, D.; Lucht, W.; Kammann, C. Pyrogenic carbon capture and storage. GCB Bioenergy 2018, 11, 573–591. [Google Scholar] [CrossRef] [Green Version]
Property | Biochar Type | |||
---|---|---|---|---|
WBC | BBC | PLBC | WWBC | |
Pyrolysis temperature (°C) | 450–500 | 450–500 | 450–500 | 450–500 |
Bulk density (g cm−3) | 0.107 | 0.054 | 0.583 | 0.263 |
Specific surface area (m2 g−1) | 361.5 | 29.4 | 9.5 | 29.4 |
Peak pore size (nm) | 0.63 | 0.80 | 1.00–2.00 | 1.50 |
Application Rate (%) | RAW Content (cm3 cm−3) | Mean | CV | |||
WBC | BBC | PLBC | WWBC | |||
5 | 0.085 ± 0.009a *** | 0.065 ± 0.004a *** | 0.059 ± 0.001a *** | 0.093 ± 0.008a *** | 0.076a *** | 0.11 |
10 | 0.085 ± 0.002a *** | 0.064 ± 0.003a *** | 0.058 ± 0.002a *** | 0.094 ± 0.007a *** | 0.075ab ** | 0.06 |
15 | 0.078 ± 0.010b n.s | 0.056 ± 0.003b n.s | 0.056 ± 0.002b n.s | 0.088 ± 0.007b ** | 0.070b * | 0.10 |
25 | 0.074 ± 0.009bc n.s | 0.047 ± 0.003bc n.s | 0.040 ± 0.005bc n.s | 0.069 ± 0.011cd n.s | 0.057c n.s | 0.23 |
50 | 0.064 ± 0.002c n.s | 0.041 ± 0.005c n.s | 0.033 ± 0.004c n.s | 0.053 ± 0.006d n.s | 0.048cd n.s | 0.19 |
75 | 0.050 ± 0.003d n.s | 0.033 ± 0.007d n.s | 0.026 ± 0.004d n.s | 0.040 ± 0.003de n.s | 0.037d n.s | 0.21 |
100 | 0.031 ± 0.001e n.s | 0.022 ± 0.002e n.s | 0.016 ± 0.001e n.s | 0.033 ± 0.004e n.s | 0.026e n.s | 0.19 |
Zeolite | - | - | - | - | 0.047cd n.s | 0.12 |
Perlite | - | - | - | - | 0.038d n.s | 0.17 |
Mean | 0.067a ** | 0.047b n.s | 0.041b n.s | 0.067a ** | ||
CV | 0.12 | 0.16 | 0.15 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndede, E.O.; Kurebito, S.; Idowu, O.; Tokunari, T.; Jindo, K. The Potential of Biochar to Enhance the Water Retention Properties of Sandy Agricultural Soils. Agronomy 2022, 12, 311. https://doi.org/10.3390/agronomy12020311
Ndede EO, Kurebito S, Idowu O, Tokunari T, Jindo K. The Potential of Biochar to Enhance the Water Retention Properties of Sandy Agricultural Soils. Agronomy. 2022; 12(2):311. https://doi.org/10.3390/agronomy12020311
Chicago/Turabian StyleNdede, Elizaphan Otieno, Soboda Kurebito, Olusegun Idowu, Takeo Tokunari, and Keiji Jindo. 2022. "The Potential of Biochar to Enhance the Water Retention Properties of Sandy Agricultural Soils" Agronomy 12, no. 2: 311. https://doi.org/10.3390/agronomy12020311
APA StyleNdede, E. O., Kurebito, S., Idowu, O., Tokunari, T., & Jindo, K. (2022). The Potential of Biochar to Enhance the Water Retention Properties of Sandy Agricultural Soils. Agronomy, 12(2), 311. https://doi.org/10.3390/agronomy12020311