Aggregation Index and Carbon and Nitrogen Contents in Aggregates of Pasture Soils under Successive Applications of Pig Slurry in Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Treatments and Sampling
2.3. Soil Aggregation Indexes
2.4. C and N in Soil Aggregates
2.5. Statistical Analysis
3. Results
3.1. Aggregate Classes and Aggregation Indexes
3.1.1. Mass of Aggregates
3.1.2. Geometric Mean Diameter (GMD)
3.1.3. Aggregation Indexes
3.2. C and N in Aggregates
4. Discussion
4.1. Aggregate Classes and Aggregation Indexes
4.2. C and N in Aggregates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- MAPA—Ministério da Agricultura, Pecuária e Abastecimento. Agropecuária Brasileira em Números—Maio de 2019. 2019. Available online: http://www.agricultura.gov.br/assuntos/politica-agricola/todas-publicacoes-de-politica-agricola/agropecuaria-brasileira-em-numeros/agropecuaria-brasileira-em-numeros-maio-de-2019.pdf/view (accessed on 15 May 2021).
- MAPA—Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio 2018/2019—2028/2029, 10th ed.; MAPA: Brasília, Brasil, 2019; 126p. [Google Scholar]
- ABIEC—Associação Brasileira das Indústrias Exportadoras de Carne. Beef Report—Perfil da Pecuária No Brasil. 2019. Available online: http://www.abiec.com.br/controle/uploads/arquivos/sumario2019portugues.pdf (accessed on 15 September 2021).
- Palhares, J.C.P. (Ed.) Produção Animal e Recursos Hídricos: Tecnologias Para Manejo de Resíduos e uso Eficiente dos Insumos; Embrapa: Brasília, Brasil, 2019. [Google Scholar]
- Konzen, E.A. Fertilização de Lavoura e Pastagem Com Dejetos de Suínos e Cama de Aves; Informe Técnico; Embrapa Milho e Sorgo: Sete Lagoas, Brasil, 2003; 19p. [Google Scholar]
- Konzen, E.A.; Alvarenga, R.C. Manejo e Utilização de Dejetos Animais: Aspectos Agronômicos e Ambientais; Embrapa Milho e Sorgo: Sete Lagoas, Brasil, 2005. [Google Scholar]
- Scheffer-Basso, S.M.; Scherer, C.V.; Ellwanger, M.F. Resposta de pastagens perenes à adubação com chorume suíno: Pastagem natural. Rev. Bras. Zootec. 2008, 37, 221–227. [Google Scholar] [CrossRef] [Green Version]
- De Moura Zanine, A.; Ferreira, D.J. Animal Manure as a Nitrogen Source to Grass. Am. J. Plant Sci. 2015, 6, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Parizotto, C.; Pandolfo, C.M.; Veiga, M. Dejetos líquidos de bovinos na produção de milho e pastagem anual de inverno em um Nitossolo Vermelho. Agropecu. Catarin. 2018, 31, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Loss, A.; Couto, R.R.; Brunetto, G.; Veiga, M.; Toselli, M.; Baldi, E. Animal Manure as Fertilizer: Changes in Soil Attributes, Productivity and Food Composition. Int. J. Res. Granthaalayah 2019, 7, 307–331. [Google Scholar] [CrossRef]
- Miyazawa, M.; Barbosa, G.M.C. Dejeto Líquido de Suíno Como Fertilizante Orgânico: Método Simplificado; Boletim Técnico 84; IAPAR: Londrina, Brasil, 2015. [Google Scholar]
- Balota, E.L.; Machineski, O.; Hamid, K.I.A.; Yada, I.F.U.; Barbosa, G.M.C.; Nakatani, A.S.; Coyne, M.S. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil. Sci. Total Environ. 2014, 490, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Assefa, S.; Tadesse, S. The Principal Role of Organic Fertilizer on Soil Properties and Agricultural Productivity—A Review. Agric. Res. Technol. 2019, 22, 556192. [Google Scholar] [CrossRef]
- Moraes, M.T.; Arnuti, F.; Silva, V.R.; Silva, R.F.; Basso, C.J.; Ros, C.O. Dejetos líquidos de suínos como alternativa a adubacão mineral na cultura do milho. Semin. Ciênc. Agrar. 2014, 35, 2945–2954. [Google Scholar] [CrossRef] [Green Version]
- CQFS-RS/SC—Comissão de Química e Fertilidade do Solo—RS/SC. Manual de Calagem e Adubação Para os Estados do Rio Grande do Sul e de Santa Catarina; Sociedade Brasileira de Ciência do Solo: Porto Alegre, Brasil, 2016; 376p. [Google Scholar]
- Loss, A.; Ventura, B.S.; Muller Junior, V.; Gonzatto, R.; Battisti, L.F.Z.; Lintemani, M.G.; Erthal, M.E.C.; Vidal, R.F.; SCOPEL, G.; Lourenzi, C.R.; et al. Carbon, nitrogen and aggregation index in Ultisol with 11 years of application of animal manures and mineral fertilizer. J. Soil Water Conserv. 2021, 76. [Google Scholar] [CrossRef]
- Scherer, E.E.; Nesi, C.N.; Massotti, Z. Atributos químicos do solo influenciados por sucessivas aplicações de dejetos suínos em áreas agrícolas da Região Oeste Catarinense. Rev. Bras. Ciênc. Solo 2010, 34, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Mafra, M.S.H.; Cassol, P.C.; Albuquerque, J.A.; Correa, J.C.; Grohskopf, M.A.; Panisson, J. Acúmulo de carbono em Latossolo adubado com dejeto líquido de suínos e cultivado em plantio direto. Pesqui. Agropecu. Bras. 2014, 49, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.G.R.; Tavares Filho, J.; Barbosa, G.M.C. Alterações na física do solo com a aplicação de dejetos animais. Geogr. Opportuno Tempore 2016, 2, 66–80. [Google Scholar]
- Park, S.H.; Lee, B.R.; Cho, W.M.; Kim, T.H. Comparative nitrogen use efficiency of urea and pig slurry for regrowth yield and nutritive value in perennial ryegrass sward. Asian Australas. J. Anim. Sci. 2017, 30, 514–522. [Google Scholar] [CrossRef]
- Albuquerque, D.C.K.; Scheffer-Basso, S.M.; Escosteguy, P.A.V.; Brustolin-Golin, K.; Zabot, V.; Miranda, M. Residual effect of pig slurry on common carpet grass pasture. Agriambi 2017, 21, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Brustolin-Golin, K.D.; Scheffer-Basso, S.M.; Escosteguy, P.A.V.; Miranda, M.; Travi, M.R.L.; Zabot, V. Pig slurry in carpet grass pasture: Yield and plant-available nitrogen. Rev. Bras. Eng. Agric. Ambient. 2016, 20, 795–799. [Google Scholar] [CrossRef] [Green Version]
- Lourenzi, C.R.; Scherer, E.E.; Ceretta, C.A.; Tiecher, T.L.; Cancian, A.; Ferreira, P.A.A.; Brunetto, G. Atributos químicos de Latossolo após sucessivas aplicações de composto orgânico de dejeto líquido de suínos. Pesqui. Agropecu. Bras. 2016, 51, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Benedet, L.; Ferreira, G.W.; Brunetto, G.; Loss, A.; Lovato, P.E.; Lourenzi, C.R.; Silva, H.G.; Curi, N.; Comin, J.J. Use of Swine Manure in Agriculture in Southern Brazil: Fertility or Potential Contamination? J. Soil Contam. 2020, 1, 1–27. [Google Scholar] [CrossRef]
- Comin, J.J.; Loss, A.; Veiga, M.; Guardini, R.; Schmitt, D.E.; Oliveira, P.A.V.; Belli Filho, P.; Couto, R.D.A.R.; Benedet, L.; Muller Júnior, V.; et al. Physical properties and organic carbon content of a Typic Hapludult soil fertilized with pig slurry and pig litter in a no-tillage system. Soil Res. 2013, 51, 459–470. [Google Scholar] [CrossRef]
- Loss, A.; Lourenzi, C.R.; Santos Junior, E.; Mergen Junior, C.A.; Benedet, L.; Pereira, M.G.; Piccolo, M.C.; Brunetto, G.; Lovato, P.E.; Comin, J.J. Carbon, nitrogen and natural abundance of 13C and 15N in biogenic and physicogenic aggregates in a soil with 10 years of pig manure application. Soil Tillage Res. 2017, 166, 52–58. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Beare, M.H.; Stoklas, U.; St-Georges, P. Biodegradability of soluble organic matter in maize-cropped soils. Geoderma 2003, 113, 237–252. [Google Scholar] [CrossRef]
- Giacomini, S.J.; Aita, C.; Pujol, S.B.; Miola, E.C.C. Transformações do nitrogênio no solo após adição de dejeto líquido e cama sobreposta de suínos. Pesqui. Agropecu. Bras. 2013, 48, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Navroski, D.; Filho, A.C.; Barbosa, G.M.C.; Moreira, A. Soil attributes and microbial diversity on 28 years of continuous and interrupted for 12 months of pig slurry application. Chil. J. Agric. Res. 2021, 81, 27–38. [Google Scholar] [CrossRef]
- Antoneli, V.; Mosele, A.C.; Bednarz, J.A.; Pulido-Fernández, M.; Lozano-Parra, J.; Keesstra, S.D.; Rodrigo-Comino, J. Effects of Applying Liquid Swine Manure on Soil Quality and Yield Production in Tropical Soybean Crops (Paraná, Brazil). Sustainability 2019, 11, 3898. [Google Scholar] [CrossRef] [Green Version]
- Ruangcharus, C.; Kim, S.U.; Yoo, G.; Choi, E.; Kumar, S.; Kang, N.; Hong, C.O. Nitrous oxide emission and sweet potato yield in upland soil: Effects of different type and application rate of composted animal manures. Environ. Pollut. 2021, 279, 116892. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Wang, Z.; Sun, J.; Niu, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Bertagnoli, B.G.P.; Oliveira, J.F.; Barbosa, G.M.C.; Colozzi Filho, A. Poultry litter and liquid swine slurry applications stimulate glomalin, extraradicular mycelium production, and aggregation in soils. Soil Tillage Res. 2020, 202, 104657. [Google Scholar] [CrossRef]
- Ferreira, G.W.; Benedet, L.; Trapp, T.; Lima, A.P.; Muller Junior, V.; Loss, A.; Lourenzi, C.R.; Comin, J.J. Soil aggregation indexes and chemical and physical attributes of aggregates in a Typic Hapludult fertilized with swine manure and mineral fertilizer. Int. J. Recycl. Org. Waste Agric. 2021, 10, 1–17. [Google Scholar] [CrossRef]
- Barbosa, G.M.C.; Oliveira, J.F.; Miyazawa, M.; Ruiz, D.B.; Tavares Filho, J. Aggregation and clay dispersion of an Oxisol treated with swine and poultry manures. Soil Tillage Res. 2015, 146, 279–285. [Google Scholar] [CrossRef]
- Brunetto, G.; Comin, J.J.; Schmitt, D.E.; Guardini, R.; Mezzari, C.P.; Oliveira, B.S.; Moraes, M.P.; Gatiboni, L.C.; Lovato, P.E.; Ceretta, C.A. Changes in soil acidity and organic carbon in a sandy Typic Hapludalf after medium-term pig slurry and deep-litter application. Rev. Bras. Ciênc. Solo 2012, 36, 1620–1628. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Balabane, M.; Plante, A.F. Aggregation and carbon storage in silty soil using physical fractionation techniques. Eur. J. Soil Sci. 2004, 55, 415–427. [Google Scholar] [CrossRef]
- Gol, C. The effects of land use change on soil properties and organic carbon at Dagdami river catchment in Turkey. J. Environ. Biol. 2009, 30, 825–830. [Google Scholar] [PubMed]
- Masciandaro, G. Soil Carbon in the World: Ecosystem Services Linked to Soil Carbon in Forest and Agricultural Soils. In The Future of Soil Carbon; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–38. [Google Scholar] [CrossRef]
- Loss, A.; Pereira, M.G.; Anjos, L.H.C.; Beutler, S.J.; Ferreira, E.P.; Silva, E.M.R. Oxidizable organic carbon fractions and soil aggregation in areas under different organic production systems in Rio de Janeiro, Brazil. Trop. Subtrop. Agroecosyst. Mérida 2011, 14, 699–708. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; Mcvicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scientific Data. Nature 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- INMET. Instituto Nacional de Meteorologia. Normais Climatológicas do Brasil, 1981–2010, Brasília. 2020. Available online: https://portal.inmet.gov.br/normais (accessed on 5 September 2021).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture: Washington, DC, USA, 2014.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports, 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brasil, 2018. [Google Scholar]
- Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H.; Volkweiss, S.J. Análise de Solo, Plantas e Outros Materiais, 2nd ed.; UFRGS. Boletim Técnico, 5; Departamento de Solos, Universidade Federal do Rio Grande do Sul: Porto Alegre, Brasil, 1995; 118p. [Google Scholar]
- Embrapa—Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análises de Solo, 2nd ed.; Ministério da Agricultura e do Abastecimento: Rio de Janeiro, Brasil, 1997; 212p.
- Yoder, R.E.A. Direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. J. Am. Soc. Agric. 1936, 28, 337–351. [Google Scholar] [CrossRef]
- Costa Junior, C.; Píccolo, M.d.C.; Siqueira Neto, M.; Camargo, P.B.; de Cerri, C.C.; Bernoux, M. Carbono em agregados do solo sob vegetação nativa, pastagem e sistemas agrícolas no bioma Cerrado. Rev. Bras. Ciênc. Solo 2012, 36, 1311–1322. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Pereira, M.G.; Assis, R.L.; Souza, Z.M. Atributos físicos de um latossolo vermelho cultivado com plantas de cobertura, em semeadura direta. Rev. Bras. Ciênc. Solo 2015, 39, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.F. SISVAR: Um sistema de análise de computador para efeitos fixos projetos de tipo de partida dividida. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Salton, J.C.; Tomazi, M. Sistema Radicular de Plantas e Qualidade do Solo. In Embrapa Dourados; Comunicado Técnico 198; 2015; Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/1005326/1/COT198.pdf (accessed on 15 September 2021).
- Leifheit, E.F.; Veresoglou, S.D.; Lehmann, A.; Morris, E.K.; Rillig, M.C. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis. Plant Soil 2014, 374, 523–537. [Google Scholar] [CrossRef]
- Řezáčová, V.; Czakó, A.; Stehlík, M.; Mayerová, M.; Šimon, T.; Smatanová, M.; Madaras, M. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 2021, 11, 12548. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, C.S.; Shapiro, C.A. The effects of manure application on soil aggregation. Nutr. Cycl. Agroecosyst. 2008, 80, 173–180. [Google Scholar] [CrossRef]
- Rauber, L.P.; Piccolla, C.D.; Andrade, A.P.; Friederichs, A.; Mafra, A.L.; Corrêa, J.C.; Albuquerque, J.A. Physical properties and organic carbon content of a Rhodic Kandiudox fertilized with pig slurry and poultry litter. Rev. Bras. Ciênc. Solo 2012, 36, 1323–1332. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.J.N.; Cabeda, M.S.V.; Carvalho, F.G.; Lima, J.F.W.F. Alterações físicas e químicas de um Argissolo amarelo sob diferentes sistemas de uso e manejo. Rev. Bras. Eng. Agríc. Ambient. 2006, 10, 76–83. [Google Scholar] [CrossRef]
- Wendling, B.; Jucksch, I.; Mendonça, E.S.; Neves, J.C.L. Carbono orgânico e estabilidade de agregados de um Latossolo Vermelho sob diferentes manejos. Pesqui. Agropecu. Bras. 2005, 40, 487–494. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.F.; Ilavsky, J.; Jastrow, J.D.; Mayer, L.M.; Perfect, E.; Zhuang, J. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Cosmochim 2008, 72, 4725–4744. [Google Scholar] [CrossRef]
- Oades, J.M. Soil organic matter and structural stability: Mechanisms and implications for management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- Francisco, C.A.L.; Loss, A.; Brunetto, G.; Gonzatto, R.; Giacomini, S.J.; Aita, C.; Piccolo, M.C.; Marquezan, C.; Scopel, G.E.; Vidal, R.F. Aggregation, carbon, nitrogen, and natural abundance of 13C and 15N in soils under no-tillage system fertilized with injection and surface application of pig slurry for five years. Carbon Manag. 2021, 12, 257–268. [Google Scholar] [CrossRef]
- Adeli, A.; Bolster, C.H.; Rowe, D.E.; Mclaughlin, M.R.; Brink, G.E. Effect of long-term swine effluent application on selected soil properties. Soil Sci. 2008, 173, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Grohskopf, M.A.; Cassol, P.C.; Correa, J.C.; Mafra, M.S.H.; Panisson, J. Organic nitrogen in a Typic Hapludox fertilized with pig slurry. Rev. Bras. Ciênc. Solo 2015, 39, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Yagüe, M.R.; Bosch-Serra, A.D.; Antúnez, M.; Boixadera, J. Pig slurry and mineral fertilization strategies’ effects on soil quality: Macroaggregate stability and organic matter fractions. Sci. Total Environ. 2012, 438, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Lourenzi, C.R.; Ceretta, C.A.; Silva, L.S.; Trentin, G.; Girotto, E.; Lorensini, F.; Tiecher, T.L.; Brunetto, G. Soil chemical properties related to acidity under successive pig slurry applications. Rev. Bras. Ciênc. Solo 2011, 35, 1827–1836. [Google Scholar] [CrossRef] [Green Version]
- Puget, P.; Chenu, C.; Balesdent, J. Total and young organic matter distributions in aggregates of silty cultivated soils. Eur. J. Soil Sci. 1995, 46, 449–459. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Aoyama, M.; Angers, D.A.; N’Dayegamiye, A.; Bissonnette, N. Protected organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications. Can. J. Soil Sci. 1999, 79, 419–425. [Google Scholar] [CrossRef]
- Giacomini, S.J.; Aita, C. Cama sobreposta e dejetos líquidos de suínos como fonte de nitrogênio ao milho. Rev. Bras. Ciênc. Solo 2008, 32, 195–205. [Google Scholar] [CrossRef]
- He, Y.T.; Zhang, W.J.; Xu, M.G.; Tong, X.G.; Sun, F.X.; Wang, J.Z.; Huang, S.M.; Zhu, P.; He, X.H. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Sci. Total Environ. 2015, 532, 635–644. [Google Scholar] [CrossRef]
- Basso, C.J.; Ceretta, C.A.; Pavinato, O.S.; Silveira, M.J. Perdas de nitrogênio de dejeto líquido de suínos por volatilização de amônia. Ciênc. Rural 2004, 34, 1773–1778. [Google Scholar] [CrossRef]
- Basso, C.J.; Ceretta, C.A.; Durigon, R.; Poletto, N.; Girotto, E. Dejeto líquido de suínos: II—perdas de nitrogênio e fósforo por percolação no solo sob plantio direto. Ciênc. Rural 2005, 35, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean minimum temperature (°C) | |||||||||||
18.0 | 17.4 | 16.1 | 13.3 | 10.4 | 9.0 | 8.2 | 9.6 | 10.5 | 13.0 | 15.1 | 17.0 |
Mean maximum temperature (°C) | |||||||||||
30.1 | 28.9 | 28.4 | 25.8 | 21.5 | 19.5 | 19.0 | 21.2 | 22.1 | 25.3 | 28.1 | 30.0 |
Mean rainfall depth (mm) | |||||||||||
153 | 162 | 112 | 156 | 117 | 128 | 166 | 145 | 167 | 219 | 154 | 132 |
Layer (cm) | pH (H2O) | pH (SMP) | Ca | Mg | Al | H + Al | P | K | SOC(%) | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(cmolc dm−3) | (mg dm−3) | |||||||||||
0–10 | 5.8 | 6.0 | 9.8 | 5.9 | 0.0 | 4.4 | 50 | 288 | 4.3 | 46 | 20 | 34 |
10–20 | 5.2 | 5.7 | 4.9 | 3.1 | 0.5 | 6.2 | 23 | 232 | 2.6 | 59 | 15 | 26 |
Dry Matter (%) | pH | Total C (g kg−1) | Total N (g kg−1) | TAN (g kg−1) | C to N Ratio | Total P (g kg−1) | K (g kg−1) |
---|---|---|---|---|---|---|---|
2.71 | 7.30 | 30.10 | 3.23 | 2.38 | 9.32 | 0.010 | 0.049 |
Treatments | ASI (%) | AGRI (%) | SIGMD | ||||||
---|---|---|---|---|---|---|---|---|---|
0–5 | 5–10 | 10–30 | 0–5 | 5–10 | 10–30 | 0–5 | 5–10 | 10–30 | |
PS100 | 96.16 a | 97.33 a | 94.03 a | 90.02 c | 95.75 a | 79.28 d | 1.10 a | 1.40 a | 0.81 b |
PS200 | 97.58 a | 96.12 a | 94.66 a | 96.96 a | 94.61 a | 88.48 b | 1.13 a | 1.39 a | 0.94 a |
PS300 | 93.79 b | 93.78 b | 92.57 a | 88.59 c | 92.73 b | 87.64 b | 0.95 a | 1.19 b | 0.80 b |
PS400 | 94.28 b | 91.92 b | 89.25 b | 93.43 b | 90.96 b | 84.50 c | 0.96 a | 1.08 b | 0.71 b |
Min200 | 95.20 b | 95.16 a | 87.75 b | 94.69 b | 93.90 a | 78.97 d | 0.98 a | 1.21 b | 0.60 b |
Control | 96.04 a | 92.10 b | 94.59 a | 93.58 b | 74.05 c | 92.60 a | 1.00 a | 1.00 b | 1.00 a |
F-value | 5.73 | 14.36 | 26.24 | 28.38 | 198.98 | 87.48 | 1.74 | 7.79 | 6.43 |
CV (%) | 2.05 | 2.06 | 2.09 | 2.08 | 2.11 | 2.17 | 9.80 | 8.25 | 12.35 |
Treat | Micro | Macro | CV (%) | F-Value | Micro | Macro | CV (%) | F-Value |
---|---|---|---|---|---|---|---|---|
Nitrogen (g kg−1) | Carbon (g kg−1) | |||||||
0–5 cm | ||||||||
PS100 | 1.85 Ab | 2.28 Aa | 10.17 | 1.21 | 21.52 Ab | 27.93 Aa | 9.34 | 15.52 |
PS200 | 1.89 Ab | 2.55 Aa | 21.10 | 3.99 | 22.78 Ab | 24.12 Ba | 7.13 | 2.32 |
PS300 | 1.66 Ab | 2.28 Aa | 11.65 | 2.01 | 19.09 Bb | 27.17 Aa | 5.57 | 78.44 |
PS400 | 2.09 Ab | 2.88 Aa | 19.98 | 5.04 | 23.61 Ab | 29.23 Aa | 13.34 | 5.07 |
Min200 | 2.02 Ab | 2.64 Aa | 17.68 | 4.60 | 19.02 Bb | 25.45 Ba | 13.73 | 8.83 |
Control | 1.45 Ab | 2.35 Aa | 29.77 | 5.06 | 13.30 Cb | 22.88 Ba | 17.87 | 17.54 |
F-value | 0.84 | 0.68 | 9.06 | 2.92 | ||||
CV (%) | 28.39 | 22.45 | 12.45 | 10.79 | ||||
5–10 cm | ||||||||
PS100 | 1.67 Aa | 1.72 Ba | 10.86 | 0.05 | 17.57 Aa | 18.97 Ba | 8.59 | 1.53 |
PS200 | 1.27 Ab | 1.75 Ba | 11.60 | 14.17 | 14.82 Bb | 19.85 Ba | 6.47 | 40.39 |
PS300 | 1.27 Ab | 1.75 Ba | 11.18 | 14.60 | 13.53 Bb | 18.82 Ba | 6.53 | 49.68 |
PS400 | 1.52 Ab | 2.32 Aa | 31.71 | 3.54 | 14.02 Bb | 21.32 Aa | 8.89 | 42.27 |
Min200 | 1.39 Ab | 1.74 Ba | 13.73 | 5.34 | 14.26 Bb | 18.33 Ba | 12.37 | 8.15 |
Control | 0.90 Bb | 1.10 Ca | 10.00 | 8.00 | 9.50 Cb | 13.87 Ca | 7.15 | 54.85 |
F-value | 5.45 | 4.78 | 8.70 | 28.95 | ||||
CV (%) | 16.94 | 20.50 | 12.66 | 5.04 | ||||
10–30 cm | ||||||||
PS100 | 1.05 Aa | 1.17 Aa | 9.33 | 3.71 | 11.22 Ab | 14.78 Ba | 7.39 | 27.52 |
PS200 | 0.87 Ab | 1.37 Aa | 5.76 | 115.55 | 9.54 Bb | 16.68 Aa | 6.77 | 128.51 |
PS300 | 1.12 Ab | 1.55 Aa | 14.40 | 1.75 | 9.82 Bb | 15.90 Ba | 3.63 | 339.37 |
PS400 | 0.93 Ab | 1.25 Aa | 12.99 | 10.17 | 9.52 Bb | 15.39 Ba | 9.40 | 4977 |
Min200 | 0.98 Ab | 1.25 Aa | 13.75 | 6.76 | 9.45 Bb | 15.22 Ba | 6.35 | 108.50 |
Control | 1.07 Ab | 1.65 Aa | 14.60 | 16.71 | 11.07 Ab | 18.12 Aa | 6.41 | 114.25 |
F-value | 1.06 | 2.33 | 5.23 | 5.41 | ||||
CV (%) | 19.67 | 17.94 | 7.08 | 6.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.; Loss, A.; Piccolo, M.d.C.; Girotto, E.; Ludwig, M.P.; Decarli, J.; Torres, J.L.R.; Brunetto, G. Aggregation Index and Carbon and Nitrogen Contents in Aggregates of Pasture Soils under Successive Applications of Pig Slurry in Southern Brazil. Agronomy 2022, 12, 320. https://doi.org/10.3390/agronomy12020320
Santos C, Loss A, Piccolo MdC, Girotto E, Ludwig MP, Decarli J, Torres JLR, Brunetto G. Aggregation Index and Carbon and Nitrogen Contents in Aggregates of Pasture Soils under Successive Applications of Pig Slurry in Southern Brazil. Agronomy. 2022; 12(2):320. https://doi.org/10.3390/agronomy12020320
Chicago/Turabian StyleSantos, Cristiano, Arcângelo Loss, Marisa de Cássia Piccolo, Eduardo Girotto, Marcos Paulo Ludwig, Julia Decarli, José Luiz Rodrigues Torres, and Gustavo Brunetto. 2022. "Aggregation Index and Carbon and Nitrogen Contents in Aggregates of Pasture Soils under Successive Applications of Pig Slurry in Southern Brazil" Agronomy 12, no. 2: 320. https://doi.org/10.3390/agronomy12020320
APA StyleSantos, C., Loss, A., Piccolo, M. d. C., Girotto, E., Ludwig, M. P., Decarli, J., Torres, J. L. R., & Brunetto, G. (2022). Aggregation Index and Carbon and Nitrogen Contents in Aggregates of Pasture Soils under Successive Applications of Pig Slurry in Southern Brazil. Agronomy, 12(2), 320. https://doi.org/10.3390/agronomy12020320