Characterization of Berry Aromatic Profile of cv. Trebbiano Romagnolo Grapes and Effects of Intercropping with Salvia officinalis L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental Design, and Vineyard Management
2.2. Climatic Conditions
2.3. Productive Parameters
2.4. Sampling
2.5. Grape Composition
2.5.1. Technological Parameters
2.5.2. Volatile Compounds
2.6. Gas Chromatography–Mass Spectrometry (GC-MS)
2.7. Statistical Analysis
3. Results
3.1. Plant Productive Parameters
3.2. Technological Parameters of Grapes
3.3. Volatile Compounds Identified in cv. Trebbiano Romagnolo Berries
3.4. Volatile Compounds Identified in Trebbiano Romagnolo Berries Intercropped with Salvia officinalis
4. Discussion
4.1. Volatile Profile of Berries of cv. Trebbiano Romagnolo
4.2. Berry Volatile Composition of cv. Trebbiano Romagnolo Intercropped with Salvia officinalis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Lopez, R. The actual and potential aroma of winemaking grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Onofrio, C. Chapter 5: Changes in volatile compounds. In Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 91–103. [Google Scholar]
- Lund, S.T.; Bohlmann, J. The molecular basis for wine grape quality-volatile subject. Science 2006, 311, 804–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilanova, M.; Genisheva, Z.; Bescansa, L.; Masa, A.; Oliveira, J.M. Changes in free and bound fractions of aroma compounds of four Vitis vinifera cultivars at the last ripening stages. Phytochemistry 2012, 74, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaste, M.; Narduzzi, L.; Carlin, S.; Vrhovsek, U.; Shulaev, V.; Mattivi, F. Chemical composition of volatile aroma metabolites and their glycosylated precursors that can uniquely differentiate individual grape cultivars. Food Chem. 2015, 188, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Sevindik, O.; Guclu, G.; Bombai, G.; Rombolá, A.D.; Kelebek, H.; Selli, S. Volatile compounds of cvs Magliocco canino and Dimrit grape seed oils. J. Raw Mater. Process. Foods 2020, 1, 47–54. [Google Scholar]
- Lin, J.; Massonnet, M.; Cantu, D. The genetic basis of grape and wine aroma. Hortic. Res. 2019, 6, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Strauss, C.R.; Wilson, B.; Gooley, P.R.; Williams, P.J. Role of monoterpenes in grape and wine flavor. In Biogeneration of Aromas; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1986; Volume 317, pp. 222–242. ISBN 978-0-8412-0987-9. [Google Scholar]
- Mateo, J.J.; Jiménez, M. Monoterpenes in grape juice and wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Walker, R.P.; Famiani, F.; Castellarin, S.D. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario—A review. Front. Plant Sci. 2021, 12, 262. [Google Scholar] [CrossRef]
- Alem, H.; Rigou, P.; Schneider, R.; Ojeda, H.; Torregrosa, L. Impact of agronomic practices on grape aroma composition: A review: Impact of agronomic practices on grape aroma composition. J. Sci. Food Agric. 2019, 99, 975–985. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Mattii, G.B. Effect of agronomic techniques on aroma composition of white grapevines: A review. Agronomy 2021, 11, 2027. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Mota-Segantini, D.; Lombini, A.; Rodríguez Declet, A.; De Giorgio, R.; D’Onofrio, C.; Rombolà, A.D. Effects of intercropping medicinal and aromatic plants (MAPs) on grapevine cv. Sangiovese berry volatile compounds. Agroecol. Sustain. Food Syst. 2021, 1–11. [Google Scholar] [CrossRef]
- Consorzio Vini Di Romagna. Available online: https://www.consorziovinidiromagna.it/vini/trebbiano (accessed on 10 December 2021).
- Vernocchi, P.; Patrignani, F.; Ndagijimana, M.; Lopez, C.C.; Suzzi, G.; Gardini, F.; Lanciotti, R. Trebbiano wine produced by using Saccharomyces cerevisiae strains endowed with β-glucosidase activity. Ann. Microbiol. 2015, 65, 1565–1571. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Cioni, P.L.; Amadei, L.; Maccioni, S.; Flamini, G. Geographical patterns of in vivo spontaneously emitted volatile organic compounds in Salvia species. Microchem. J. 2017, 133, 13–21. [Google Scholar] [CrossRef]
- Di Stefano, R. Proposal for a method of sample preparation for the determination of free and glycoside terpenes of grapes and wines [rapid analysis method, reproductibility, aromatic wines]. Bull. De L’oiv 1991, 122, 219–223. [Google Scholar]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Effect of methyl jasmonate on the aroma of Sangiovese grapes and wines. Food Chem. 2018, 242, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Castro-Marín, A.; Buglia, A.G.; Riponi, C.; Chinnici, F. Volatile and fixed composition of sulphite-free white wines obtained after fermentation in the presence of chitosan. LWT 2018, 93, 174–180. [Google Scholar] [CrossRef]
- Rosillo, L.; Salinas, M.R.; Garijo, J.; Alonso, G.L. Study of volatiles in grapes by dynamic headspace analysis. J. Chromatogr. A 1999, 847, 155–159. [Google Scholar] [CrossRef]
- Sefton, M.A.; Francis, I.L.; Williams, P.J. The volatile composition of Chardonnay juices: A study by flavor precursor analysis. Am. J. Enol. Vitic. 1993, 44, 359–370. [Google Scholar]
- Sefton, M.A.; Francis, I.L.; Williams, P.J. The free and bound volatile secondary metabolites of Vitis vinifera grape cv. Semillon. Aust. J. Grape Wine Res. 1996, 2, 179–183. [Google Scholar] [CrossRef]
- Nasi, A.; Ferranti, P.; Amato, S.; Chianese, L. Identification of free and bound volatile compounds as typicalness and authenticity markers of non-aromatic grapes and wines through a combined use of mass spectrometric techniques. Food Chem. 2008, 3, 762–768. [Google Scholar] [CrossRef]
- Carpentieri, A.; Sebastianelli, A.; Melchiorre, C.; Pinto, G.; Trifuoggi, M.; Lettera, V.; Amoresano, A. Fiano, Greco and Falanghina grape cultivars differentiation by volatiles fingerprinting, a case study. Heliyon 2019, 5, e02287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, K.L.; Bomben, J.L.; McFadden, W.H. Volatiles from grapes. Vitis vinifera (Linn.) cultivar Grenache. J. Agric. Food Chem. 1967, 15, 378–380. [Google Scholar] [CrossRef]
- Gómez, E.; Martínez, A.; Laencina, J. Changes in volatile compounds during maturation of some grape varieties. J. Sci. Food Agric. 1995, 67, 229–233. [Google Scholar] [CrossRef]
- Sánchez Palomo, E.; Díaz-Maroto, M.C.; Viñas González, M.A.; Soriano-Pérez, A.; Pérez-Coello, M.S. Aroma profile of wines from Albillo and Muscat grape varieties at different stages of ripening. Food Control 2007, 18, 398–403. [Google Scholar] [CrossRef]
- Bahena-Garrido, S.M.; Ohama, T.; Suehiro, Y.; Hata, Y.; Isogai, A.; Iwashita, K.; Goto-Yamamoto, N.; Koyama, K. The potential aroma and flavor compounds in Vitis sp. cv. Koshu and V. vinifera L. cv. Chardonnay under different environmental conditions. J. Sci. Food Agric. 2019, 99, 1926–1937. [Google Scholar] [CrossRef]
- Martin, D.M.; Aubourg, S.; Schouwey, M.B.; Daviet, L.; Schalk, M.; Toub, O.; Lund, S.T.; Bohlmann, J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLCDNA cloning, and enzyme assays. BMC Plant Biol. 2010, 10, 226. [Google Scholar] [CrossRef] [Green Version]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Günata, Z. Aroma components of cv. Muscat of Bornova wines and influence of skin contact treatment. Food Chem. 2006, 94, 319–326. [Google Scholar] [CrossRef]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Lepoutre, J.-P.; Gunata, Z. Effect of skin contact on the free and bound aroma compounds of the white wine of Vitis vinifera L. cv Narince. Food Control 2006, 17, 75–82. [Google Scholar] [CrossRef]
- Ilc, T.; Werck-Reichhart, D.; Navrot, N. Meta-analysis of the core aroma components of grape and wine aroma. Front. Plant Sci. 2016, 7, 1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugliano, M.; Moio, L. Free and hydrolytically released volatile compounds of Vitis vinifera L. cv. Fiano grapes as odour-active constituents of Fiano wine. Anal. Chim. Acta 2008, 621, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on varietal aromas during wine making: A review of the impact of varietal aromas on the flavor of wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, F.; Chinnici, F.; Serrazanetti, D.I.; Vernocchi, P.; Ndagijimana, M.; Riponi, C.; Lanciotti, R. Production of volatile and sulfur compounds by 10 Saccharomyces cerevisiae strains inoculated in Trebbiano must. Front. Microbiol. 2016, 7, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, P.; Navarro, J.M.; Ordaz, P.B. Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agric. Water Manag. 2022, 259, 107216. [Google Scholar] [CrossRef]
- Krstic, M.P.; Johnson, D.L.; Herderich, M.J. Review of smoke taint in wine: Smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Aust. J. Grape Wine Res. 2015, 21, 537–553. [Google Scholar] [CrossRef]
- Capone, D.L.; Jeffery, D.W.; Sefton, M.A. Vineyard and fermentation studies to elucidate the origin of 1,8-cineole in Australian red wine. J. Agric. Food Chem. 2012, 60, 2281–2287. [Google Scholar] [CrossRef]
- Ju, Y.-L.; Liu, M.; Zhao, H.; Meng, J.-F.; Fang, Y.-L. Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of Cabernet sauvignon (Vitis vinifera L.) grape berries. Molecules 2016, 21, 1354. [Google Scholar] [CrossRef] [Green Version]
- El Euch, S.K.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. S. Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Carlomagno, A.; Schubert, A.; Ferrandino, A. Screening and evolution of volatile compounds during ripening of ‘Nebbiolo’, ‘Dolcetto’ and ‘Barbera’ (Vitis vinifera L.) neutral grapes by SBSE–GC/MS. Eur. Food Res. Technol. 2016, 8, 1221–1233. [Google Scholar] [CrossRef]
- Khedher, M.R.B.; Khedher, S.B.; Chaieb, I.; Tounsi, S.; Hammami, M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI J. 2017, 16, 160–173. [Google Scholar] [CrossRef] [PubMed]
Berry Weight (g) | Total Soluble Solids (°Brix) | pH | Titratable Acidity (gL−1) | |||||
---|---|---|---|---|---|---|---|---|
Treatments | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 |
Control | 2.31 ± 0.12 | 2.15 ± 0.12 | 19.13 ± 1.43 | 16.50 ± 1.07 | 3.34 ± 0.11 | 3.23 ± 0.09 | 7.94 ± 1.33 | 8.89 ± 1.73 |
Sage | 2.18 ± 0.11 | 2.11 ± 0.10 | 18.89 ± 0.84 | 17.08 ± 1.17 | 3.36 ± 0.09 | 3.28 ± 0.10 | 7.81 ± 1.00 | 8.47 ± 1.60 |
Significance | ns | ns | ns | ns | ns | ns | ns | ns |
LRI | Compounds | Identification Method° | Free Compounds (µg kg−1 fw) | Glycosylated Compounds (µg kg−1 fw) | ||||
---|---|---|---|---|---|---|---|---|
Acids and Esters | min. | max. | average | min. | max. | average | ||
1918 | Hexanoic acid | Std, MS, LRI | 3.57 | 97.09 | 30.93 | n.d. | n.d. | - |
1974 | (E)-2-Hexenoic acid | Std, MS, LRI | 11.80 | 38.32 | 24.63 | n.d. | n.d. | - |
2114 | Octanoic acid | Std, MS, LRI | 5.08 | 9.56 | 7.32 ** | 0.83 | 2.49 | 1.66 * |
2286 | Decanoic acid | Std, MS, LRI | 2.79 | 14.65 | 8.72 * | 6.35 | 16.18 | 10.01 |
1651 | Ethyl decanoate | Std, MS, LRI | n.d. | n.d. | - | 0.81 | 0.98 | 0.90 ** |
Sum | 23.24 | 159.62 | 71.60 | 7.99 | 19.65 | 12.57 | ||
Alcohols | ||||||||
1111 | 3-Methyl-3-pentanol | Std, MS, LRI | 1.44 | 4.23 | 2.84 * | 0.81 | 10.71 | 4.53 |
1168 | 3-Penten-2-ol | Std, MS, LRI | 0.38 | 102.59 | 36.69 | 0.65 | 15.07 | 6.16 |
1206 | Isoamyl alcohol | Std, MS, LRI | 0.90 | 8.65 | 4.70 | 1.03 | 2.39 | 1.74 |
1250 | 1-Pentanol | Std, MS, LRI | 1.83 | 4.70 | 3.19 | n.d. | n.d. | - |
1310 | 2-Hexanol | Std, MS, LRI | 31.63 | 2.69 | 12.88 | 1.75 | 11.15 | 5.27 |
1350 | (Z)-2-Penten-1-ol | MS, LRI | 2.14 | 4.28 | 3.34 | 1.64 | 2.20 | 1.92 * |
1446 | 1-Octen-3-ol | Std, MS, LRI | 1.01 | 2.33 | 1.67 ** | 5.26 | 6.39 | 5.83 * |
1479 | 2-Ethylhexanol | MS, LRI | 1.54 | 35.01 | 16.49 | 1.06 | 6.47 | 2.86 |
1557 | 1-Octanol | MS, LRI | 1.47 | 5.29 | 3.57 | 2.97 | 6.17 | 4.40 |
1627 | (E)-2-Octen-1-ol | MS, LRI | n.d. | n.d. | - | 0.67 | 1.68 | 1.32 |
1683 | 1-Nonanol | MS, LRI | 0.46 | 6.43 | 3.22 | 1.33 | 4.52 | 2.71 |
Sum | 42.80 | 176.20 | 88.59 | 17.17 | 66.75 | 36.74 | ||
Benzenes | ||||||||
1821 | 1-Phenylethanol | Std, MS, LRI | 0.02 | 4.55 | 2.60 | n.d. | n.d. | - |
2180 | 2-Phenoxy ethanol | Std, MS, LRI | 2.23 | 150.98 | 60.64 | 2.96 | 47.14 | 17.42 |
1525 | Benzaldehyde | Std, MS, LRI | n.d. | n.d. | - | 0.70 | 6.22 | 2.97 |
1671 | Acetophenone | Std, MS, LRI | 0.02 | 3.28 | 1.57 | 0.06 | 0.84 | 0.60 |
1913 | Benzyl alcohol | Std, MS, LRI | 2.68 | 32.91 | 15.58 | 12.05 | 23.57 | 17.02 |
1939 | Phenethyl alcohol | Std, MS, LRI | 31.26 | 120.38 | 67.28 | 16.21 | 64.33 | 37.04 |
2401 | Benzoic acid | Std, MS, LRI | 8.45 | 56.30 | 35.42 | 6.91 | 15.87 | 11.20 |
Sum | 44.66 | 368.40 | 183.09 | 38.89 | 157.87 | 86.25 | ||
C6 Derivatives | ||||||||
1355 | n-Hexanol | Std, MS, LRI | 20.17 | 143.54 | 70.43 | 4.20 | 9.41 | 6.99 |
1386 | (Z)-3-Hexen-1-ol | Std, MS, LRI | 3.09 | 12.14 | 7.62 * | 1.39 | 3.66 | 2.53 * |
1409 | (E)-2-Hexen-1-ol | Std, MS, LRI | 30.90 | 106.14 | 71.43 | 0.45 | 1.43 | 0.95 |
1085 | Hexanal | Std, MS, LRI | 0.49 | 7.15 | 3.22 | 1.06 | 7.06 | 2.94 |
1248 | 2-Hexenal | Std, MS, LRI | 51.88 | 209.45 | 145.33 | 0.04 | 2.60 | 1.17 |
Sum | 106.53 | 478.42 | 298.03 | 7.14 | 24.16 | 14.58 | ||
Norisoprenoids | ||||||||
2600 | Dihydro-3-oxo-β-ionol | MS, LRI | n.d. | n.d. | - | 3.00 | 25.69 | 12.89 |
2610 | Dihydro-β-ionone | MS, LRI | n.d. | n.d. | - | 4.90 | 16.02 | 10.46 * |
2642 | 3-Oxo-α-ionol | MS, LRI | n.d. | n.d. | - | 11.56 | 45.12 | 28.71 |
2708 | 3-Oxo-7,8-dihydro-α-ionol | MS, LRI | n.d. | n.d. | - | 8.57 | 25.69 | 16.80 |
Sum | - | - | - | 28.03 | 112.52 | 68.86 | ||
Phenols | ||||||||
2196 | Eugenol | Std, MS, LRI | 0.93 | 7.06 | 3.20 | 0.16 | 1.66 | 0.91 ** |
2342 | Isoeugenol | Std, MS, LRI | n.d. | n.d. | - | 3.39 | 9.21 | 4.44 |
Sum | 0.93 | 7.06 | 3.20 | 3.55 | 10.87 | 5.35 | ||
Terpenes | ||||||||
1549 | Linalool | Std, MS, LRI | 0.04 | 0.24 | 0.14 * | 0.21 | 1.27 | 0.71 |
1715 | α-Terpineol | Std, MS, LRI | 0.04 | 0.14 | 0.09 * | 0.33 | 4.53 | 1.99 |
1718 | Methyl geraniate | MS, LRI | n.d. | n.d. | - | 2.29 | 3.08 | 2.69 ** |
1748 | Citral | Std, MS, LRI | n.d. | n.d. | - | 0.59 | 1.53 | 1.06 ** |
1775 | β-Citronellol | Std, MS, LRI | 3.03 | 4.43 | 3.73 ** | 0.69 | 1.34 | 1.02 ** |
1791 | Isogeraniol | Std, MS, LRI | 0.52 | 2.55 | 1.42 | 0.61 | 1.70 | 1.06 |
1877 | Geraniol | Std, MS, LRI | 3.31 | 21.50 | 9.81 | 17.92 | 31.83 | 24.20 |
2315 | 8-Hydroxylinalool | Std, MS, LRI | n.d. | n.d. | - | 2.11 | 10.87 | 5.93 |
2334 | Geranic acid | Std, MS, LRI | 7.09 | 21.34 | 14.22 * | 6.76 | 21.46 | 12.76 |
1803 | Nerol | MS, LRI | 1.01 | 2.35 | 1.68 * | 1.64 | 4.37 | 3.01 * |
Sum | 15.04 | 52.55 | 31.09 | 33.15 | 81.98 | 54.43 | ||
Vanillins | ||||||||
2554 | Vanillin | Std, MS, LRI | 0.54 | 6.17 | 2.95 | 1.12 | 8.98 | 3.90 |
2645 | Acetovanillone | Std, MS, LRI | 0.76 | 7.77 | 3.37 | 4.00 | 9.20 | 6.60 * |
2878 | 3,4,5-Trimethoxybenzyl methyl ether | MS, LRI | n.d. | n.d. | - | 10.13 | 24.68 | 17.41 * |
Sum | 1.30 | 13.94 | 6.32 | 15.25 | 42.86 | 27.91 | ||
Miscellaneous | ||||||||
1986 | 2-Acetylpyrrole | MS, LRI | n.d. | n.d. | - | 1.12 | 3.45 | 2.41 |
2019 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Compound | Control | Sage | %C | %S | Control | Sage | %C | %S |
Acids | ||||||||
Hexanoic acid | 72.76 ± 23.76 a | 20.46 ± 9.94 b,* | 13.5 | 4.3 | 97.75 ± 9.71 | 102.72 ± 18.63 | 10.4 | 12.4 |
(E)-2-Hexenoic acid | 22.48 ± 9.13 | 23.47 ± 13.54 | 4.2 | 4.9 | 23.87 ± 8.63 | 20.35 ± 3.83 | 2.5 | 2.5 |
Octanoic acid | n.d. | n.d. | 6.09 ± 0.71 | 7.32 ± 3.17 | 0.6 | 0.9 | ||
Decanoic acid | 6.70 ± 3.29 | 6.47 ± 4.08 | 1.2 | 1.4 | n.d. | n.d. | ||
Total | 101.94 ± 36.18 | 50.4 ± 27.56 | 18.9 | 10.6 | 127.71 ± 19.05 | 130.39 ± 25.63 | 13.5 | 15.8 |
Alcohols | ||||||||
3-Methyl-3-pentanol | 3.34 ± 0.79 | 2.42 ± 0.85 | 0.6 | 0.5 | n.d. | n.d. | ||
3-Penten-2-ol | 88.71 ± 13.09 | 73.77 ± 26.81 | 16.4 | 15.5 | 0.65 ± 0.06 | 0.56 ± 0.26 | 0.1 | 0.1 |
Isoamyl alcohol | 1.45 ± 0.45 | 2.02 ± 1.61 | 0.3 | 0.4 | 7.86 ± 1.30 a | 5.61 ± 0.31 b,* | 0.8 | 0.7 |
1-Pentanol | 2.46 ± 1.01 | 2.42 ± 1.24 | 0.5 | 0.5 | 4.52 ± 0.20 a | 2.60 ± 0.26 b,** | 0.5 | 0.3 |
2-Hexanol | 27.12 ± 4.64 | 21.70 ± 8.19 | 5.0 | 4.6 | 3.24 ± 0.55 | 3.81 ± 1.21 | 0.3 | 0.5 |
(Z)-2-Penten-1-ol | 2.84 ± 1.12 | 2.64 ± 0.47 | 0.5 | 0.6 | 3.88 ± 0.41 a | 2.88 ± 0.13 b,* | 0.4 | 0.3 |
1-Octen-3-ol | n.d. | n.d. | 1.96 ± 0.39 | 1.26 ± 0.36 | 0.2 | 0.2 | ||
2-Ethylhexanol | 2.09 ± 0.69 | 1.89 ± 0.29 | 0.4 | 0.4 | 27.26 ± 0.65 | 31.41 ± 5.09 | 2.9 | 3.8 |
1-Octanol | 1.26 ± 0.60 | 2.51 ± 1.31 | 0.2 | 0.5 | 4.72 ± 0.82 | 4.24 ± 1.02 | 0.5 | 0.5 |
1-Nonanol | n.d. | 1.37 ± 1.29 | 0.3 | 4.92 ± 1.40 | 5.31 ± 0.46 | 0.5 | 0.6 | |
Total | 129.27 ± 22.39 | 110.74 ± 42.06 | 23.9 | 23.3 | 59.01 ± 5.78 | 57.68 ± 9.10 | 6.2 | 7.0 |
Benzenes | ||||||||
1-Phenylethanol | 1.21 ± 1.81 | 4.55 ± 1.55 | 0.2 | 1.0 | 2.35 ± 0.48 | 2.90 ± 2.03 | 0.2 | 0.4 |
2-Phenoxy ethanol | 0.89 ± 0.50 | 1.97 ± 1.46 | 0.2 | 0.4 | 114.56 ± 17.50 | 118.32 ± 46.19 | 12.1 | 14.3 |
Acetophenone | 1.27 ± 1.01 | 1.43 ± 1.67 | 0.2 | 0.3 | 1.69 ± 0.23 | 1.87 ± 0.41 | 0.2 | 0.2 |
Benzyl alcohol | 3.64 ± 0.41 | 4.49 ± 1.91 | 0.7 | 0.9 | 27.70 ± 6.64 | 22.04 ± 0.22 | 2.9 | 2.7 |
Phenethyl alcohol | 46.00 ± 14.92 | 54.20 ± 20.41 | 8.5 | 11.4 | 102.99 ± 17.90 a | 52.69 ± 7.88 b,* | 10.9 | 6.4 |
Benzoic acid | 11.59 ± 3.51 | 28.22 ± 14.20 | 2.1 | 5.9 | 35.56 ± 6.77 | 45.40 ± 15.42 | 3.8 | 5.5 |
Total | 64.60 ± 22.16 | 94.86 ± 41.20 | 12.0 | 20.0 | 284.85 ± 49.52 | 243.22 ± 72.15 | 30.2 | 29.5 |
C6 Derivatives | ||||||||
n-Hexanol | 38.54 ± 12.00 | 42.85 ± 31.96 | 7.1 | 9.0 | 118.49 ± 24.68 a | 43.22 ± 6.52 b,* | 12.5 | 5.2 |
(Z)-3-Hexen-1-ol | 8.47 ± 2.42 | 6.74 ± 3.01 | 1.6 | 1.4 | 27.62 ± 3.29 | 29.11 ± 6.18 | 2.9 | 3.5 |
(E)-2-Hexen-1-ol | 67.90 ± 3.23 | 57.63 ± 18.88 | 12.6 | 12.1 | 81.97 ± 21.08 | 62.60 ± 3.13 | 8.7 | 7.6 |
Hexanal | 1.82 ± 0.33 a | 0.64 ± 0.14 b,** | 0.3 | 0.1 | 5.56 ± 1.85 | 3.42 ± 0.42 | 0.6 | 0.4 |
2-Hexenal | 102.63 ± 32.09 | 77.23 ± 24.20 | 19.0 | 16.3 | 191.77 ± 10.29 | 206.36 ± 4.38 | 20.3 | 25.0 |
Total | 219.36 ± 50.07 | 185.09 ± 78.19 | 40.6 | 39.0 | 425.41 ± 61.19 | 344.71 ± 20.63 | 45.1 | 41.7 |
Phenols | ||||||||
Eugenol | 2.69 ± 0.52 | 1.78 ± 0.75 | 0.5 | 0.4 | 5.13 ± 2.02 | 1.99 ± 0.47 | 0.5 | 0.2 |
Total | 2.69 ± 0.52 | 1.78 ± 0.75 | 0.5 | 0.4 | 5.13 ± 2.02 | 1.99 ± 0.47 | 0.5 | 0.2 |
Terpenes | ||||||||
Linalool | 0.12 ± 0.01 | 0.13 ± 0.10 | 0 | 0 | n.d. | n.d. | ||
α-Terpineol | 0.11 ± 0.00 | 0.09 ± 0.05 | 0 | 0 | n.d. | n.d. | ||
β-Citronellol | n.d. | n.d. | 4.03 ± 0.57 | 3.54 ± 0.72 | 0.4 | 0.4 | ||
Isogeraniol | 0.17 ± 0.20 | 0.41 ± 0.36 | 0 | 0.1 | 2.26 ± 0.26 | 2.07 ± 0.21 | 0.2 | 0.3 |
Geraniol | 8.89 ± 2.47 | 12.45 ± 9.10 | 1.6 | 2.6 | 7.24 ± 2.87 | 7.21 ± 5.16 | 0.8 | 0.9 |
Geranic acid | 8.51 ± 2.16 | 13.23 ± 7.02 | 1.6 | 2.8 | 19.41 ± 2.83 | 26.54 ± 14.19 | 2.1 | 3.2 |
Nerol | 1.90 ± 0.65 | 1.43 ± 0.55 | 0.4 | 0.3 | n.d. | n.d. | ||
Total | 19.70 ± 5.49 | 27.74 ± 17.18 | 3.6 | 5.8 | 32.94 ± 6.53 | 39.36 ± 20.28 | 3.5 | 4.8 |
Vanillins | ||||||||
Vanillin | 1.13 ± 0.27 | 0.91 ± 0.22 | 0.2 | 0.2 | 4.06 ± 0.68 | 5.17 ± 1.42 | 0.4 | 0.6 |
Acetovanillone | 1.16 ± 0.40 | 3.45 ± 2.12 | 0.2 | 0.7 | 5.12 ± 2.42 | 3.14 ± 0.79 | 0.5 | 0.4 |
Total | 2.29 ± 0.67 | 4.36 ± 2.34 | 0.4 | 0.9 | 9.18 ± 3.1 | 8.31 ± 2.21 | 1.0 | 1.0 |
Total Sum | 539.85 ± 137.48 | 474.97 ± 209.28 | 944.23 ± 147.19 | 825.66 ± 150.47 |
2019 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Compound | Control | Sage | %C | %S | Control | Sage | %C | %S |
Acids and Esters | ||||||||
Octanoic acid | 1.23 ± 0.35 | 1.76 ± 1.04 | 0.4 | 0.6 | 6.14 ± 0.41 | 4.91 ± 1.31 | 2.2 | 2.1 |
Decanoic acid | 9.10 ± 2.03 | 11.66 ± 6.40 | 3.3 | 3.8 | 10.02 ± 0.65 | 7.96 ± 2.17 | 3.6 | 3.4 |
Ethyl decanoate | n.d. | n.d. | 0.97 ± 0.02 a | 0.83 ± 0.02 b,* | 0.3 | 0.4 | ||
Total | 10.33 ± 2.38 | 13.42 ± 7.44 | 3.7 | 4.3 | 17.13 ± 1.08 | 13.70 ± 3.50 | 6.2 | 5.8 |
Alcohols | ||||||||
3-Methyl-3-pentanol | 7.27 ± 2.98 | 6.37 ± 1.50 | 2.6 | 2.1 | 0.96 ± 0.19 | 1.01 ± 0.25 | 0.3 | 0.4 |
3-Penten-2-ol | 11.84 ± 2.8 | 10.14 ± 3.19 | 4.3 | 3.3 | 0.66 ± 0.01 b | 0.91 ± 0.10 b,* | 0.2 | 0.4 |
Isoamyl alcohol | 1.91 ± 0.47 | 1.61 ± 0.29 | 0.7 | 0.5 | 1.86 ± 0.40 | 1.51 ± 0.53 | 0.7 | 0.6 |
1-Pentanol | n.d. | n.d. | 0.27 ± 0.04 | 0.26 ± 0.20 | 0.1 | 0.1 | ||
2-Hexanol | 9.32 ± 2.57 | 8.2 ± 3.08 | 3.4 | 2.7 | 1.91 ± 0.05 | 1.99 ± 0.22 | 0.7 | 0.8 |
1-Octen-3-ol | 5.55 ± 0.29 b | 6.27 ± 0.18 a,* | 2.0 | 2.0 | 9.37 ± 0.75 | 9.18 ± 0.96 | 3.4 | 3.9 |
2-Ethylhexanol | 1.51 ± 0.47 | 1.65 ± 0.08 | 0.5 | 0.5 | 4.08 ± 2.06 | 2.67 ± 1.24 | 1.5 | 1.1 |
1-Octanol | 3.38 ± 0.69 | 3.94 ± 0.41 | 1.2 | 1.3 | 5.37 ± 0.09 | 5.41 ± 1.03 | 1.9 | 2.3 |
(E)-2-Octen-1-ol | 1.27 ± 0.31 | 0.96 ± 0.40 | 0.5 | 0.3 | 1.61 ± 0.10 | 1.45 ± 0.12 | 0.6 | 0.6 |
1-Nonanol | 1.62 ± 0.29 | 2.12 ± 0.59 | 0.6 | 0.7 | 3.24 ± 0.44 | 3.57 ± 1.06 | 1.2 | 1.5 |
Total | 43.67 ± 10.87 | 41.26 ± 9.72 | 15.7 | 13.3 | 29.33 ± 4.13 | 27.96 ± 5.71 | 10.5 | 11.8 |
Benzenes | ||||||||
2-Phenoxy ethanol | 0.15 ± 0.08 | 0.24 ± 0.10 | 0.1 | 0.1 | 29.03 ± 20.61 | 32.96 ± 12.29 | 10.4 | 13.9 |
Benzaldehyde | 1.43 ± 0.23 | 0.95 ± 0.35 | 0.5 | 0.3 | 3.30 ± 0.01 | 4.45 ± 1.54 | 1.2 | 1.9 |
Acetophenone | 0.11 ± 0.03 | 0.09 ± 0.03 | 0 | 0 | 0.55 ± 0.18 | 0.45 ± 0.34 | 0.2 | 0.2 |
Benzyl alcohol | 16.15 ± 6.38 | 15.56 ± 11.33 | 5.8 | 5.0 | 18.54 ± 1.37 a | 14.09 ± 1.26 b,* | 6.7 | 5.9 |
Phenethyl alcohol | 54.97 ± 12.07 | 49.62 ± 16.42 | 19.8 | 16.0 | 24.53 ± 7.16 | 19.40 ± 2.84 | 8.8 | 8.2 |
Benzoic acid | 7.86 ± 1.01 | 10.21 ± 4.36 | 2.8 | 3.3 | 12.41 ± 2.36 | 14.32 ± 3.69 | 4.5 | 6.0 |
Total | 80.67 ± 19.80 | 76.67 ± 32.59 | 29.1 | 24.8 | 88.36 ± 31.69 | 85.67 ± 21.96 | 31.7 | 36.1 |
C6 Compounds | ||||||||
n-Hexanol | 6.46 ± 2.38 | 5.73 ± 1.77 | 2.3 | 1.9 | 8.74 ± 0.95 | 7.48 ± 1.84 | 3.1 | 3.2 |
(Z)-3-Hexen-1-ol | 2.46 ± 1.14 | 2.01 ± 0.82 | 0.9 | 0.6 | 4.43 ± 0.26 | 4.24 ± 1.04 | 1.6 | 1.8 |
(E)-2-Hexen-1-ol | 1.37 ± 0.52 a | 0.77 ± 0.23 b,* | 0.5 | 0.2 | 1.03 ± 0.09 | 0.79 ± 0.46 | 0.4 | 0.3 |
Hexanal | 1.88 ± 0.24 a | 1.31 ± 0.35 b,* | 0.7 | 0.4 | 6.86 ± 0.29 a | 2.12 ± 0.70 b,* | 2.5 | 0.9 |
2-Hexenal | 0.01 ± 0.02 b | 1.27 ± 0.04 a,*** | 0 | 0.4 | 2.40 ± 0.29 a | 1.22 ± 0.36 b,* | 0.9 | 0.5 |
Total | 12.18 ± 4.30 | 11.09 ± 3.21 | 4.4 | 3.6 | 23.46 ± 1.88 | 15.85 ± 4.40 | 8.4 | 6.7 |
C13 Norisoprenoids | ||||||||
Dihydro-3-oxo-β-ionol | 4.00 ± 1.63 | 9.77 ± 3.38 a,* | 1.4 | 3.2 | 1.22 ± 0.86 | 0.77 ± 0.88 | 0.4 | 0.3 |
Dihydro-β-ionone | 9.03 ± 1.68 | 10.46 ± 7.86 | 3.3 | 3.4 | ||||
3-Oxo-α-ionol | 36.98 ± 2.36 | 39.69 ± 7.68 | 13.3 | 12.8 | 23.60 ± 0.44 a | 14.92 ± 3.54 b,* | 8.5 | 6.3 |
3-Oxo-7,8-dihydro-α-ionol | 13.46 ± 4.82 | 19.03 ± 4.53 | 4.9 | 6.2 | 22.64 ± 4.32 | 15.09 ± 6.22 | 8.1 | 6.4 |
Total | 63.47 ± 10.49 | 78.95 ± 23.45 | 22.9 | 25.5 | 47.46 ± 5.62 | 30.78 ± 10.64 | 17 | 13 |
Phenols | ||||||||
Eugenol | 3.26 ± 0.67 b | 4.61 ± 0.59 a,* | 1.2 | 1.5 | 0.43 ± 0.24 b | 1.29 ± 0.41 a,* | 0.2 | 0.5 |
Isoeugenol | 5.59 ± 3.14 | 4.99 ± 1.04 | 2.0 | 1.6 | 3.02 ± 0.52 | 2.21 ± 0.65 | 1.1 | 0.9 |
Total | 8.85 ± 3.81 | 9.60 ± 1.63 | 3.2 | 3.1 | 3.45 ± 0.76 | 3.50 ± 1.06 | 1.2 | 1.5 |
Terpenes | ||||||||
Linalool | 0.40 ± 0.16 | 0.45 ± 0.12 | 0.1 | 0.1 | 1.05 ± 0.30 | 0.88 ± 0.15 | 0.4 | 0.4 |
α-Terpineol | 0.61 ± 0.46 | 0.67 ± 0.34 | 0.2 | 0.2 | 3.74 ± 1.11 | 2.46 ± 0.68 | 1.3 | 1.0 |
Methyl geraniate | n.d. | n.d. | 2.54 ± 0.00 | 2.68 ± 0.39 | 0.9 | 1.1 | ||
Citral | n.d. | n.d. | 0.90 ± 0.44 | 1.41 ± 0.12 | 0.3 | 0.6 | ||
β-Citronellol | n.d. | n.d. | 1.02 ± 0.46 | 0.95 ± 0.16 | 0.4 | 0.4 | ||
Isogeraniol | 0.79 ± 0.17 | 1.09 ± 0.29 | 0.3 | 0.4 | 1.43 ± 0.32 | 1.04 ± 0.58 | 0.5 | 0.4 |
Geraniol | 19.65 ± 2.02 | 24.12 ± 3.66 | 7.1 | 7.8 | 27.51 ± 6.11 | 24.04 ± 3.34 | 9.9 | 10.1 |
8-Hydroxylinalool | 2.51 ± 0.52 | 3.27 ± 1.21 | 0.9 | 1.1 | 10.29 ± 0.82 a | 6.14 ± 1.17 b,* | 3.7 | 2.6 |
Geranic acid | 8.18 ± 1.24 | 14.96 ± 9.20 | 2.9 | 4.8 | 9.18 ± 0.67 | 11.88 ± 3.95 | 3.3 | 5.0 |
Nerol | 2.71 ± 1.45 | 2.27 ± 0.21 | 1.0 | 0.7 | n.d. | n.d. | ||
Total | 34.85 ± 6.02 | 46.83 ± 15.03 | 12.6 | 15.1 | 57.66 ± 10.23 | 51.48 ± 10.54 | 20.7 | 21.7 |
Vanillins | ||||||||
Vanillin | 1.61 ± 0.45 | 1.81 ± 0.05 | 0.6 | 0.6 | 8.24 ± 1.05 | 5.07 ± 1.42 | 3.0 | 2.1 |
Acetovanillone | 6.03 ± 2.78 | 8.23 ± 0.36 | 2.2 | 2.7 | n.d. | n.d. | ||
3,4,5-Trimethoxybenzyl methyl ether | 14.46 ± 4.21 | 19.56 ± 7.24 | 5.2 | 6.3 | n.d. | n.d. | ||
Total | 22.10 ± 7.44 | 29.60 ± 7.65 | 8.0 | 9.6 | 8.24 ± 1.05 | 5.07 ± 1.42 | 3.0 | 2.1 |
Miscellaneous | ||||||||
2-Acetylpyrrole | 1.37 ± 0.28 | 1.96 ± 0.81 | 0.5 | 0.6 | 3.32 ± 0.19 | 2.98 ± 0.39 | 1.2 | 1.3 |
Total | 1.37 ± 0.28 | 1.96 ± 0.81 | 0.5 | 0.6 | 3.32 ± 0.19 | 2.98 ± 0.39 | 1.2 | 1.3 |
Total Sum | 277.49 ± 65.39 | 309.38 ± 101.53 | 278.41 ± 56.63 | 236.99 ± 59.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Declet, A.; Castro-Marín, A.; Lombini, A.; Sevindik, O.; Selli, S.; Chinnici, F.; Rombolà, A.D. Characterization of Berry Aromatic Profile of cv. Trebbiano Romagnolo Grapes and Effects of Intercropping with Salvia officinalis L. Agronomy 2022, 12, 344. https://doi.org/10.3390/agronomy12020344
Rodríguez-Declet A, Castro-Marín A, Lombini A, Sevindik O, Selli S, Chinnici F, Rombolà AD. Characterization of Berry Aromatic Profile of cv. Trebbiano Romagnolo Grapes and Effects of Intercropping with Salvia officinalis L. Agronomy. 2022; 12(2):344. https://doi.org/10.3390/agronomy12020344
Chicago/Turabian StyleRodríguez-Declet, Arleen, Antonio Castro-Marín, Alessandra Lombini, Onur Sevindik, Serkan Selli, Fabio Chinnici, and Adamo Domenico Rombolà. 2022. "Characterization of Berry Aromatic Profile of cv. Trebbiano Romagnolo Grapes and Effects of Intercropping with Salvia officinalis L." Agronomy 12, no. 2: 344. https://doi.org/10.3390/agronomy12020344
APA StyleRodríguez-Declet, A., Castro-Marín, A., Lombini, A., Sevindik, O., Selli, S., Chinnici, F., & Rombolà, A. D. (2022). Characterization of Berry Aromatic Profile of cv. Trebbiano Romagnolo Grapes and Effects of Intercropping with Salvia officinalis L. Agronomy, 12(2), 344. https://doi.org/10.3390/agronomy12020344