Development Changes in the Physicochemical Composition and Mineral Profile of Red-Fleshed Dragon Fruit Grown under Semi-Arid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Fruit Material
2.2. Treatments and Experimental Design
2.3. Measurement of Fruit Morphometric Quality
2.3.1. Fruit Firmness and Dry Matter Content
2.3.2. Fruit and Pulp Colour Characteristics
2.4. Determination of Total Soluble Solids, Acidity and Vitamin C
2.5. Determination of Bioactive Compounds and Radical Scavenging Activity
2.5.1. Protein Estimation
2.5.2. Total Soluble Sugars Estimation
2.5.3. Estimation of Betalains
2.5.4. Estimation of Total Phenol
2.5.5. Estimation of Total Flavonoids
2.5.6. Total Antioxidant Capacity (FRAP)
2.5.7. DPPH Radical Scavenging Activity
2.6. Mineral Analysis
2.7. Statistical Analysis
3. Results
3.1. Morphometric Fruit Quality Attributes
3.2. Fruit and Pulp Colour Characteristics
3.3. Bioactive Compounds and Radical Scavenging Activity
3.4. Macro- and Micro-Mineral Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- F.A.O. Fruit and Vegetables—Your Dietary Essentials; The International Year of Fruits and Vegetables, 2021, Background Paper; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Taylor, C.W.; Bailey, R.L.; Blumberg, J.B.; Freeman, B.B.; Oliver Chen, C.Y.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar]
- Arivalagan, M.; Karunakaran, G.; Roy, T.K.; Dinsha, M.; Sindhu, B.C.; Shilpashree, V.M.; Satisha, G.C.; Shivashankara, K.S. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chem. 2021, 353, 129426. [Google Scholar] [CrossRef] [PubMed]
- Molla, M.M.; Kamal, M.M.; Sabuz, A.A.; Chowdhury, M.G.F.; Khan, M.H.H.; Khatun, A.; Miaruddin, M.; Zashimuddin, M.; Islam, M.M. Chemical composition, bioactive compounds, antioxidants potential and mycotoxin of minor exotic Archidendron pauciflorum fruit with the focus to Bangladesh. Biocatal. Agric. Biotechnol. 2021, 34, 102039. [Google Scholar] [CrossRef]
- Zitha, E.Z.M.; Magalhaes, D.S.; Lago, R.C.; Carvalho, E.E.N.; Pasqual, M.; Eduardo Val’ erio de Barros Vilas Boas. Changes in the bioactive compounds and antioxidant activity in red-fleshed dragon fruit during its development. Sci. Hortic. 2022, 291, 110611. [Google Scholar] [CrossRef]
- Mercado-Silva, E.M. Pitaya—Hylocereus Undatus (Haw); Rodrigues, S., de Oliveira Silva, E., de Brito, E.S., Fruits, E., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 339–349. [Google Scholar] [CrossRef]
- Thaiudom, S.; Oonsivilai, R.; Thaiwong, N. Production of colorant powder from dragon fruit (Hylocerecus polyrhizus) peel: Bioactivity, heavy metal contamination, antimutagenicity, and antioxidation aspects. J. Food Process. Preserv. 2021, 45, 15044. [Google Scholar] [CrossRef]
- Shetty, A.A.; Rana, M.K.; Preetham, S.P. Cactus: A medicinal food. J. Food Sci. Technol. 2012, 49, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Fathordoobady, F.; Mirhosseini, H.; Selamat, J.; Manap, M.Y.A. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chem. 2016, 202, 70–80. [Google Scholar] [CrossRef]
- Leong, H.Y.; Show, P.L.; Lim, M.H.; Ooi, C.W.; Ling, T.C. Natural red pigments from plants and their health benefits: A review. Food Rev. Int. 2018, 34, 463–482. [Google Scholar] [CrossRef]
- Garcia-Cruza, L.; Duenas, M.; Santos-Buelgas, C.; Valle-Guadarrama, S.; Salinas-Moreno, Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. pruinosus and S. stellatus). Food Chem. 2017, 234, 111–118. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Schieber, A.; Carle, R. Evaluation of colour properties and chemical quality parameters of cactus juice. Eur. Food Res. Technol. 2003, 216, 303–311. [Google Scholar] [CrossRef]
- Joshi, M.; Prabhakar, B. Phytoconstituents and pharmaco-therapeutic benefits of pitaya: A wonder fruit. J. Food Biochem. 2020, 44, 13260. [Google Scholar] [CrossRef] [PubMed]
- Kishore, K. Phenological growth stages of dragon fruit (Hylocereus undatus) according to the extended BBCH-scale. Sci. Hortic. 2016, 213, 294–302. [Google Scholar] [CrossRef]
- Alanon, M.E.; Pimentel-Moral, S.; Arraez-Roman, D.; Segura-Carretero, A. HPLCDAD-Q ToF-MS profiling of phenolic compounds from mango (Mangifera indica L.) seed kernel of different cultivars and maturation stages as a preliminary approach to determine functional and nutraceutical value. Food Chem. 2021, 337, 127764. [Google Scholar] [CrossRef]
- Xu, M.; Shen, C.; Zheng, H.; Xu, Y.; Xue, C.; Zhu, B.; Hu, J. Metabolomic analysis of acerola cherry (Malpighia emarginata) fruit during ripening development via UPLC-Q-TOF and contribution to the antioxidant activity. Food Res. Int. 2020, 130, 108915. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, D.S.; Da Silva, D.M.; Ramos, J.D.; Salles Pio, L.A.; Pasqual, M.; Vilas Boas, E.V.B.; Galvao, E.C.; de Melo, E.T. Changes in the physical and physicochemical characteristics of red-pulp dragon fruit during its development. Sci. Hortic. 2019, 253, 180–186. [Google Scholar] [CrossRef]
- Phebe, D.; Chew, M.K.; Suraini, A.A.; Lai, O.M.; Janna, O.A. Red-fleshed pitaya (Hylocereus polyrhizus) fruit colour and betacyanin content depend on maturity. Int. Food Res. J. 2009, 16, 233–242. [Google Scholar]
- Gonzalez-Chavira, M.M.; Herrera-Hernandez, M.G.; Guzman-Maldonado, H.; Pons-Hernandez, J.L. Controlled water deficit as abiotic stress factor for enhancing the phytochemical content and adding-value of crops. Sci. Hortic. 2018, 234, 354–360. [Google Scholar] [CrossRef]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; Tata McGraw-Hill Education Publication: New Delhi, India, 2001; pp. 594–625. [Google Scholar]
- Bradford, M.M. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Asare, I.K.; Okyere, A.A.; Duah-Bissiw, D.; Ofosu, D.O.; Darfour, B. Nutritional and phytochemical constituents of the african star apple (Chrysophyllum albidum g. don). Ann. Food Sci. Technol. 2015, 16, 138–146. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999, 299, 265–275. [Google Scholar]
- Benzie, I.E.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Printice-Hall of India Pvt. Ltd.: New Delhi, India, 1973; p. 498. [Google Scholar]
- Chapman, D.H.; Pratt, P.F. Methods of Analysis for Soils, Plants and Water; University of California: Berkeley, CA, USA, 1961. [Google Scholar]
- Derderian, M.D. Determination of Calcium and Magnesium in Plant Material with EDTA. Anal. Chem. 1961, 33, 1796–1798. [Google Scholar] [CrossRef]
- Karunakaran, G.; Arivalagan, M. Dragon Fruit—A new introduction crop with promising market. Indian Hortic. 2019, 63, 8–11. [Google Scholar]
- Kaur, G.; Thawkar, B.; Dubey, S.; Jadhav, P. Pharmacological potentials of betalains. J. Complement. Integr. Med. 2018, 15, 1–9. [Google Scholar] [CrossRef]
- Jamaludin, N.A.; Dinga, A.P.; Hamidb, A.A. Physico-chemical and structural changes of red-fleshed dragon fruit (Hylocereus polyrhizus) during fruit development. J. Sci. Food Agric. 2011, 91, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.K.; Singh, A.; Prakash, J.; Amit, N.; Deka, B.C. Physico-biochemical changes during fruit growth, development and maturity in passion fruit genotypes. Indian J. Hortic. 2014, 71, 486–493. [Google Scholar]
- Chitarra, M.I.F.; Chitarra, A.B. Post-Harvesting of Fruits and Vegetables: Physiology and Handling, 2nd ed.; FAEPE: Lavras, Brazil, 2005; p. 785. [Google Scholar]
- Ivan, M.R.J.; Magalhaes, D.S.; Rodrigues, F.A.; Pasqual, M.; Pio, L.A.S. Growth and maturation of white-fleshed dragon fruit. Res. Soc. Dev. 2021, 10, 16822. [Google Scholar]
- Lima, C.A.; Faleiro, F.G.; Junqueira, N.T.V.; Bellon, G. Evaluation of physicochemical characteristics of fruits of two pitaya species. Ceres Mag. 2014, 61, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Shattir, A.A.E.T.; Abu-Goukh, A.B.A. Physico-chemical changes during growth and development of papaya fruits, I: Physical changes. Agric. Biol. J. N. Am. 2010, 1, 866–870. [Google Scholar] [CrossRef]
- Paliyath, G.; Murr, D.P. Biochemistry of fruits. In Postharvest Biology and Technology of Fruits, Vegetables and Flowers; Gopinadhan, P., Murr, D.P., Handa, A.K., Lurie, S., Eds.; Wiley-Bleckwell Publishing: Ames, IA, USA, 2008; pp. 19–50. [Google Scholar]
- Weiss, J.; Nerd, A.; Mizrahi, Y. Flowering behaviour and pollination requirements in climbing cacti with fruit crop potential. HortScience 1994, 29, 1487–1492. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, T.A.; Takahashi, L.S.A. Physical and chemical characteristics of pitaya fruits at physiological maturity. Genet. Mol. Res. 2015, 14, 14422–14439. [Google Scholar] [CrossRef] [PubMed]
- Nerd, A.; Gutman, F.; Mizrahi, Y. Ripening and Postharvest behaviour of fruits of two Hylocereus species (Cactaceae). Postharvest Biol. Technol. 1999, 17, 39–45. [Google Scholar] [CrossRef]
- Arevalo-Galarza, M.L.; Ortiz-Hernández, Y.D. Postcosecha behavior of the pitahaya fruit (Hylocereus undatus). Mex. Cactaceae Succul. 2004, 49, 85–90. [Google Scholar]
- Deka, B.C.; Sharma, S.; Borah, S.C. Post harvest management practices of mandarin. Indian J. Hortic. 2006, 63, 251–255. [Google Scholar]
- Kishore, K.; Bharali, R.; Pathak, K.A.; Yadav, D.S. Studies on ripening changes in purple passion fruit (Passiflora edulis Sims). J. Food Sci. Technol. Mysore 2006, 43, 599–602. [Google Scholar]
- Chandra, R. Biochemical changes during maturity and storage in guava fruits. Indian J. Hill Fmg. 1990, 8, 16–21. [Google Scholar]
- Burger, Y.; Schaffer, A.A. The contribution of sucrose metabolism enzymes to sucrose accumulation in Cucumis melo. J. Am. Soc. Hortic. Sci. 2007, 132, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C Content in Fruits: Biosynthesis and Regulation. Front. Plant Sci. 2019, 9, 2006–2027. [Google Scholar] [CrossRef] [Green Version]
- Neeraj, M.S.; Bhatia, S.K. Effect of plastic packaging on biochemical parameters of fruits during storage—A review. Haryana J. Hortic. Sci. 2002, 31, 1–7. [Google Scholar]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Guizani, M.; Maatallah, S.; Dabbou, S.; Serrano, M.; Hajlaoui, H.; Helal, A.N.; Kilani-Jaziri, S. Physiological behaviors and fruit quality changes in five peach cultivars during three ripening stages in a semi-arid climate. Acta Physiol. Plant. 2019, 41, 2950–2956. [Google Scholar] [CrossRef]
- Siriamornpun, S.; Kaewseejan, N. Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Sci. Hortic. 2017, 221, 33–42. [Google Scholar] [CrossRef]
- Singh, A.; Singh, B.K.; Deka, B.C.; Sanwal, S.K.; Patel, R.K.; Verma, M.R. The genetic variability, inheritance and inter-relationship of ascorbic acid, β-carotene, phenol and anthocyanin content in strawberry. Sci. Hortic. 2011, 129, 86–90. [Google Scholar] [CrossRef]
- Luu, T.; Le, T.; Huynh, N.; Quintela-Alonso, P. Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech J. Food Sci. 2021, 39, 71–94. [Google Scholar] [CrossRef]
- Bartosz, S.; Bartosz, G. Biological properties and applications of betalains. Molecules 2021, 26, 2520. [Google Scholar] [CrossRef] [PubMed]
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. Betalains: Natural plant pigments with potential application in functional foods. LWT Food Sci. Technol. 2015, 64, 645–649. [Google Scholar] [CrossRef]
- Azeredo, H.M.C. Betalains: Properties, sources, applications, and stability—A review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Paśko, P.; Galanty, A.; Zagrodzki, P.; Ku, Y.G.; Luksirikul, P.; Weisz, M.; Gorinstein, S. Bioactivity and cytotoxicity of different species of pitaya fruits—A comparative study with advanced chemometric analysis. Food Biosci. 2021, 40, 100888. [Google Scholar] [CrossRef]
- Hua, Q.; Chen, C.; Tel, N.; Wang, H.; Wu, J.; Chen, J.; Zhang, Z.; Zhao, J.; Hu, G.; Qin, Y. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiol. Biochem. 2018, 126, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic profiling of pitaya (Hylocereus polyrhizus) during fruit development and maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.R.; Li, H.Y.; Wei, S.Y.; Han, Q.H.; Zhao, L.; Zhang, Q.; Li, S.Q.; Qin, W.; Wu, D.T. Changes of phenolic compounds, antioxidant capacities, and inhibitory effects on digestive enzymes of kiwifruits (Actinidia chinensis) during maturation. J. Food Meas. Charact. 2020, 14, 1765–1774. [Google Scholar] [CrossRef]
- Benchikh, Y.; Louaileche, H.; George, B.; Merlin, A. Changes in bioactive phytochemical content and in vitro antioxidant activity of carob (Ceratonia siliqua L.) as influenced by fruit ripening. Ind. Crop. Prod. 2014, 60, 298–303. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Esquivel, P.; Stintzing, F.C.; Carle, R. Phenolic compound profiles and their corresponding antioxidant capacity of purple pitaya (Hylocereus sp.) genotypes. Z. Naturforsch. Sect. C J. Biosci. 2007, 62, 636–644. [Google Scholar] [CrossRef]
DAA | Longitudinal Diameter (mm) | Transverse Fruit Diameter (mm) | Fruit Weight (g) | Pulp Weight (g) | Peel Content (%) | Peel Thickness (mm) | Fruit Firmness (kg cm−2) | Pulp Firmness (kg cm−2) |
---|---|---|---|---|---|---|---|---|
20 | 82.7 c | 62.7 c | 185.4 c | 63.6 de | 62.6 a | 7.83 a | 3.42 b | 2.47 a |
25 | 87.6 c | 75.0 b | 219.6 c | 103.7 d | 52.7 b | 7.40 a | 3.87 a | 1.38 b |
30 | 90.5 bc | 77.4 b | 300.7 b | 164.5 c | 45.6 b | 6.57 b | 3.51 ab | 1.25 b |
35 | 98.2 ab | 78.1 b | 372.6 b | 225.1 b | 39.8 bc | 5.02 c | 2.90 c | 0.61 c |
40 | 106.3 a | 80.1 ab | 410.5 a | 282.0 a | 32.4 c | 3.81 d | 2.25 d | 0.46 d |
45 | 107.7 a | 82.3 a | 428.0 a | 298.3 a | 30.7 c | 3.03 d | 1.59 e | 0.40 c |
DAA | Fruit Colour | Pulp Colour | ||||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | C Value | L* | a* | b* | C Value | |
20 | 51.63 a | −9.53 d | 28.16 a | 26.5 b | 37.93 a | 4.47 d | 24.45 a | 24.8 c |
25 | 51.16 a | −5.02 d | 24.13 a | 23.6 b | 37.2 a | 7.23 d | 10.67 b | 12.9 d |
30 | 53.06 a | 8.34 c | 14.5 b | 16.7 c | 27.34 b | 25.34 c | −5.36 c | 24.7 c |
35 | 51.53 a | 20.23 b | 8.07 c | 21.7 b | 29.4 b | 34.0 b | −6.73 c | 33.3 b |
40 | 45.03 b | 41.0 a | 2.23 d | 41.0 a | 28.0 b | 57.87 a | −5.23 c | 57.8 a |
45 | 38.23 c | 37.54 a | 2.04 d | 37.6 a | 25.52 b | 58.97 a | −2.56 d | 58.9 a |
DAA | Dry Matter Content | P | K | Ca | Mg | Fe | Zn |
---|---|---|---|---|---|---|---|
g 100 g−1 DW | mg 100 g−1 DW | ||||||
20 | 17.83 c | 0.124 a | 0.681 c | 0.128 b | 0.148 b | 49.55 b | 11.4 b |
25 | 18.29 b | 0.127 a | 0.714 c | 0.132 b | 0.154 b | 60.90 a | 14.6 a |
30 | 18.90 b | 0.116 b | 0.760 b | 0.143 a | 0.159 b | 62.15 a | 15.7 a |
35 | 19.24 a | 0.114 b | 0.814 a | 0.148 a | 0.167 a | 64.85 a | 15.1 a |
40 | 18.87 b | 0.118 b | 0.803 a | 0.145 a | 0.164 a | 60.30 a | 14.9 a |
45 | 18.67 b | 0.129 a | 0.797 a | 0.143 a | 0.172 a | 59.60 a | 14.7 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Swami, S.; Panwar, N.R.; Kumar, M.; Shukla, A.K.; Rouphael, Y.; Sabatino, L.; Kumar, P. Development Changes in the Physicochemical Composition and Mineral Profile of Red-Fleshed Dragon Fruit Grown under Semi-Arid Conditions. Agronomy 2022, 12, 355. https://doi.org/10.3390/agronomy12020355
Singh A, Swami S, Panwar NR, Kumar M, Shukla AK, Rouphael Y, Sabatino L, Kumar P. Development Changes in the Physicochemical Composition and Mineral Profile of Red-Fleshed Dragon Fruit Grown under Semi-Arid Conditions. Agronomy. 2022; 12(2):355. https://doi.org/10.3390/agronomy12020355
Chicago/Turabian StyleSingh, Akath, Saurabh Swami, Nav Raten Panwar, Mahesh Kumar, Anil Kumar Shukla, Youssef Rouphael, Leo Sabatino, and Pradeep Kumar. 2022. "Development Changes in the Physicochemical Composition and Mineral Profile of Red-Fleshed Dragon Fruit Grown under Semi-Arid Conditions" Agronomy 12, no. 2: 355. https://doi.org/10.3390/agronomy12020355
APA StyleSingh, A., Swami, S., Panwar, N. R., Kumar, M., Shukla, A. K., Rouphael, Y., Sabatino, L., & Kumar, P. (2022). Development Changes in the Physicochemical Composition and Mineral Profile of Red-Fleshed Dragon Fruit Grown under Semi-Arid Conditions. Agronomy, 12(2), 355. https://doi.org/10.3390/agronomy12020355