Seed Quality of Lablab Bean (Lablab purpureus) as Influenced by Seed Maturity and Drying Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Field Experiments
2.2. Colour and Seed and Pod Size
2.3. Moisture Content and Seed Dry Weight
2.4. Protein Content
2.5. Germination Percentage
2.6. Germination Index (GI)
2.7. Electrical Conductivity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Maturity Stages and Different Drying Methods on Germination Percentage and Germination Index
3.2. Effect of Maturity Stages and Different Drying Methods on Electrical Conductivity (EC)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudrappa, U. Winged Bean Nutrition Facts. Available online: https://www.nutrition-and-you.com/mung-bean.html (accessed on 20 September 2019).
- Al-Snafi, P.D.A.E. The pharmacology and medical importance of Dolichos lablab (Lablab purpureus)—A review. IOSR J. Pharm. 2017, 7, 22–30. [Google Scholar] [CrossRef]
- Subagio, A. Characterization of hyacinth bean (Lablab purpureus (L.) sweet) seeds from Indonesia and their protein isolate. Food Chem. 2006, 95, 65–70. [Google Scholar] [CrossRef]
- Naeem, M.; Shabbir, A.; Ansari, A.; Aftab, T.; Khan, M.; Uddin, M. Hyacinth bean (Lablab purpureus L.)-An underutilised crop with future potential. Sci. Hortic. 2020, 272, 109551. [Google Scholar] [CrossRef]
- Maass, B.L.; Knox, M.R.; Venkatesha, S.C.; Angessa, T.T.; Ramme, S.; Pengelly, B.C. Lablab purpureus—A crop lost for Africa. Trop. Plant Biol. 2010, 3, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.J.; Yiljep, Y.D.; Oyatoyan, O.B.; Bawa, G.S. Effect of moisture content on some physical properties of Lablab purpureus sweet seeds. Agric. Eng. Int. 2009, 11, 1279. [Google Scholar]
- Beckett, C. Dolichos Lablab: A Legume that Feeds People, Animals and the Soil. Available online: https://www.echocommunity.org/en/resources/c82a56e2-82a2-4ac1-9873-c4bff04e1480 (accessed on 9 January 2020).
- De Cianzio, S.R.; Ortiz, C.E. A visual indicator for harvest of immature viable seed of indeterminate soybean genotypes. J. Agric. Univ. Puerto Rico 1993, 77, 33–44. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Samarah, N.H. Effect of air-drying immature seeds in harvested pods on seed quality of common vetch (Vicia sativa L.). N. Z. J. Agric. Res. 2006, 49, 331–339. [Google Scholar] [CrossRef]
- Lima, M.D.V.; Ellis, R.H.; Hong, T.D.; Ferraz, I.D.K. Drying method influences the development of germinability, dessication tolerance and subsequent longevity of immature seeds of sumaúma (Ceiba pentandra (L.) Gaertn. [Bombacaceae]). Seed Sci. Technol. 2005, 33, 147–156. [Google Scholar] [CrossRef]
- Vidigal, D.d.S.; Dias, D.C.F.d.S.; Dias, L.A.d.S.; Finger, F.L. Changes in seed quality during fruit maturation of sweet pepper. Sci. Agric. 2011, 68, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Harington, J. Seed Storage and longevity. In Seed Biology; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA, 1972; p. 145. [Google Scholar]
- Tekrony, D.M.; Hunter, J.L. Effect of seed maturation and genotype on seed vigor in maize. Crop Sci. 1995, 35, 857–862. [Google Scholar] [CrossRef]
- Tekrony, D.M.; Egli, D.B. Accumulation of seed vigour during development and maturation. In Basic and Applied Aspects of Seed Biology; Springer: Dordrecht, The Netherlands, 1997; pp. 369–384. [Google Scholar]
- Bewley, J.D. Black Seeds: Physiology of Development and Germination, 2nd ed.; Springer: New York, NY, USA, 1994. [Google Scholar]
- Kermode, A.R. Regulatory mechanisms involved in the transition from seed development to germination. Plant Sci. 1990, 9, 155–195. [Google Scholar] [CrossRef]
- Angelovici, R.; Galili, G.; Fernie, A.R.; Fait, A. Seed Desiccation: A Bridge between Maturation and Germination. Trends Plant Sci. 2010, 15, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, Z.; Saleh, N.; Ramazan, A.; Aftab, A. Post harvesting techniques and maintenance of seed quality. In New Challenges in Seed Biology-Basic and Translational Research Driving Seed Technology; Intech: Rijeka, Croatia, 2016; pp. 114–135. [Google Scholar]
- Opondo, F.B.O.K. Influence of drying method and fruit position on the motherplant on seed quality of spiderplant (Cleome gynandra L.) morphotypes from western Kenya. Adv. Appl. Sci. Res. 2011, 2, 74–83. [Google Scholar]
- Chala, M.; Bekana, G. Review on seed process and storage condition in relation to seed moisture and ecological factor. J. Nat. Sci. Res. 2017, 7, 84–90. [Google Scholar] [CrossRef]
- Doijode, S. Seed Storage of Horticultural Crops, 1st ed.; CRC Press: London, UK, 2001. [Google Scholar]
- International Seed Testing Association. International Rules for Seed Testing; ISTA: Wallisellen Switzerland, 2016. [Google Scholar]
- Pearson, D. The Chemical Analysis of Food, 6th ed.; Henry Edward Cox.: London, UK, 1970. [Google Scholar]
- Kader, M.A. A Comparison of Seed Germination Calculation Formulae and the Associated Interpretation of Resulting Data. J. Proc. R. Soc. N. S. W. 2005, 138, 65–75. [Google Scholar]
- Manju, V.; Kumar, S. Seed leachate conductivity and its correlation with the seed viability and germination of Tnau Papaya Cv. Co8 seeds stored under different environmental conditions. Int. J. Agric. Sci. Res. (IJASR) 2015, 5, 127–130. [Google Scholar]
- Demir, E.; Balkaya, A. Seed development stages of kale (Brassica oleracea var. acephala L.) genotypes in Turkey. Hortic. Sci. 2005, 32, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Massimi, M. Impact of seed size on seeds viability, vigor and storability of Hordeum vulgare (L.). Agric. Sci. Dig. Res. J. 2018, 38, 62–64. [Google Scholar] [CrossRef]
- Barnwal, A.K.; Pal, A.K.; Tiwari, A.; Pal, S.; Singh, A.K. Effect of picking stages on fruit and seed development in Okra (Abelmoschus esculentus (L.) Moench) cultivars Kashi Pragati and Kashi Kranti. Int. J. Agric. Environ. Biotechnol. 2017, 10, 695. [Google Scholar] [CrossRef]
- Gaikwad, A.P. Effect of time of harvesting on physical and chemical properties of soybean (Glycine max M.) seed. Int. J. Curr. Microbiol. Appl. Sci. 2017, 28, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Weerasekara, I.; Sinniah, U.R.; Namasivayam, P.; Nazli, M.H.; Abdurahman, S.A.; Ghazali, M.N. The Influence of Seed Production Environment on Seed Development and Quality of Soybean (Glycine max (L.) Merrill). Agronomy 2021, 11, 1430. [Google Scholar] [CrossRef]
- Elias, S.G.; Copeland, L.O. Physiological and harvest maturity of canola in relation to seed quality. Agron. J. 2001, 93, 1054–1058. [Google Scholar] [CrossRef]
- Wang, Y.; Mu, C.; Hou, Y.; Li, X. Optimum harvest time of Vicia cracca in relation to high seed quality during pod development. Crop Sci. 2008, 48, 709–715. [Google Scholar] [CrossRef]
- De Lima, C.R.d.; Bruno, R.d.L.A.; da Silva, K.d.R.G.; Pacheco, M.V.; Alves, E.U.; de Andrade, A.P. Physiological maturity of fruits and seeds of Poincianella pyramidalis (Tul.) L.P. Queiroz. Rev. Bras. De Sementes 2012, 34, 231–240. [Google Scholar] [CrossRef]
- Gurusamy, C.; Thiagarajan, C.P. The pattern of seed development and maturation in cauliflower (Brassica oleracea L. var. botrytis). Phyton—Ann. Rei Bot. 1998, 38, 259–268. [Google Scholar]
- Browne, C.L. Identification of physiological maturity in sunflowers Helianthus annuus. Aust. J. Exp. Agric. 1978, 18, 282–286. [Google Scholar] [CrossRef]
- Das, S.S.; Fakir, M.S.A. Pod growth and seed composition in two genotypes of Lablab Purpureus. Legume Res. Int. J. 2014, 37, 306–310. [Google Scholar] [CrossRef]
- Nitsch, J.P. The physiology of fruit growth. Annu. Rev. Plant Physiol. 1953, 4, 199–236. [Google Scholar] [CrossRef]
- Darby, H.M.; Lauer, J.G. Harvest date and hybrid influence on corn forage yield, quality and preservation. Agron. J. 2002, 94, 281–289. [Google Scholar] [CrossRef]
- Hill, J.E.; Breidenbach, R.W. Proteins of soybean seeds. Plant Physiol. 1974, 53, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Siddique, A.B.; Wright, D. Effects of time of harvest at different moisture contents on seed fresh weight, dry weight, quality (viability and vigour) and food reserves of peas (Pisum sativum L.). Asian J. Plant Sci. 2003, 2, 983–992. [Google Scholar] [CrossRef]
- Almansouri, M.; Kinet, J.; Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 2001, 231, 12. [Google Scholar] [CrossRef]
- Hoekstra, F.A.; Golovina, E.A.; Buitink, J. Mechanism of plant desiccation tolerance. Trends Plant Sci. 2001, 6, 431–438. [Google Scholar] [CrossRef]
- Krzyzanowski, F.C.; West, S.H.; Neto, J.D.B.F. Drying peanut seed using air ambient temperature at low relative humidity. Rev. Bras. De Sementes 2006, 28, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tucker, W.G.; Gray, D. The effect of seed drying and gibberellin treatment on the germination performance of developing carrot seed. Plant Growth Regul. 1986, 4, 363–370. [Google Scholar] [CrossRef]
- Wright, D.; Siddique, A.B. Effects of different drying time and temperature on moisture percentage and seed quality (viability and vigour) of pea Seeds (Pisum sativum L.). Asian J. Plant Sci. 2003, 2, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Enoch, A.D.; Ehsan, D.M.; Sognon, V.; Florent, E. Investigating the effects of low input drying procedures on maize (Zea mays L.), cowpea (Vigna unguiculata L.) and bambara groundnut (Vigna subterranea (L.) Verde.) Seed quality in Benin. Plant Genet. Resour. Newsl. 2004, 140, 1–8. [Google Scholar]
- Kanmegne, G.; Anouma, M.; Fotso, A.; Mbouobda, H.; Mbibong, D.; Omokolo, D. Germination of Cola anomala (K. Shum.) Shott and Endl seeds: Effects of provenance, substrate and dehydration. Int. J. Biol. Chem. Sci. 2015, 9, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Panza, V.; Láinez, V.; Maldonado, S.; Maroder, H.L. Effects of desiccation on Euterpe edulis Martius seeds. Biocell 2008, 31, 383–390. [Google Scholar] [CrossRef]
- Da Silva, L.J.; Dias, D.C.F.d.S.; Oliveira, G.L.; da Silva, R.A. The effect of fruit maturity on the physiological quality and conservation of Jatropha curcas seeds. Rev. Cienc. Agron. 2017, 48, 487–495. [Google Scholar] [CrossRef]
- Martins, D.C.; Vilela, F.K.J.; Guimarães, R.M.; Gomes, L.A.A.; da Silva, P.A. Physiological maturity of eggplant seeds. Rev. Bras. De Sementes 2012, 34, 534–540. [Google Scholar] [CrossRef] [Green Version]
Pod | Seed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DAA | Pod Length (mm) | Pod Width (mm) | No. RHS2015 | Colour | Pictures | Seed Length (mm) | Seed Width (mm) | No. RHS2015 | Colour | Pictures |
5 | 66.15d | 9.69d | 144B | Strong Yellow Green | 4.91d | 1.97d | 144A | Strong Yellow Green | ||
10 | 78.08abc | 12.15abc | 145A | Strong Yellow Green | 12.21ab | 7.12c | 144C | Strong Yellow Green | ||
15 | 78.47ab | 13.27ab | 147C | Moderate Yellow Green | 13.35a | 12.45a | N144C | Strong Yellow Green | ||
20 | 81.82a | 15.00a | 148D | Moderate Yellow Green | 13.56a | 9.02c | 200B | Dark Greyish Brown | ||
25 | 73.29abcd | 10.66cd | N 138C | Pale Greenish Yellow | 11.52bc | 7.74c | 202A | Black | ||
30 | 72.55abcd | 10.71cd | 177B | Light Reddish Brown | 10.27cd | 7.041c | 203C | Black | ||
35 | 72.54abcd | 10.35cd | N199B | Dark Greyish Yellowish Brown | 11.17bc | 7.93bc | 203C | Black | ||
40 | 71.13bcd | 10.37cd | 165A | Moderate Brown | 11.38bc | 7.29c | 203C | Black | ||
45 | 68.51cd | 9.05d | N199B | Dark Greyish Yellowish Brown | 11.57bc | 7.89bc | 203C | Black | ||
50 | 67.63d | 9.69d | N199C | Moderate Yellowish Brown | 10.55c | 7.09c | 203C | Black | ||
f-test | ** | ** | ** | ** |
Pod Length (mm) | Pod Width (mm) | Seed Length (mm) | Seed Width (mm) | Moisture Content | |
---|---|---|---|---|---|
Pod Length (mm) | 1.00000 | 0.77313 ** | 0.58436 ** | 0.54476 ** | 0.27337 ns |
Pod Width (mm) | 1.00000 | 0.56144 ** | 0.54128 ** | 0.39670 ** | |
Seed Length (mm) | 1.00000 | 0.88549 ** | −0.24677 ns | ||
Seed Width (mm) | 1.00000 | −0.15273 ns | |||
Moisture content | 1.00000 |
Germination Percentage (%) | Germination Index | Electrical Conductivity (µS cm−1 g−1) | |
---|---|---|---|
Germination percentage (%) | 1.00000 | 0.15395 ns | 0.08531 ns |
Germination index | 1.00000 | 0.78234 ** | |
Electrical conductivity (µS cm−1 g−1) | 1.00000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanapiah, N.F.H.; Sinniah, U.R.; Yusoff, M.M. Seed Quality of Lablab Bean (Lablab purpureus) as Influenced by Seed Maturity and Drying Methods. Agronomy 2022, 12, 363. https://doi.org/10.3390/agronomy12020363
Hanapiah NFH, Sinniah UR, Yusoff MM. Seed Quality of Lablab Bean (Lablab purpureus) as Influenced by Seed Maturity and Drying Methods. Agronomy. 2022; 12(2):363. https://doi.org/10.3390/agronomy12020363
Chicago/Turabian StyleHanapiah, Nurul Fatin Hanani, Uma Rani Sinniah, and Martini Mohammad Yusoff. 2022. "Seed Quality of Lablab Bean (Lablab purpureus) as Influenced by Seed Maturity and Drying Methods" Agronomy 12, no. 2: 363. https://doi.org/10.3390/agronomy12020363
APA StyleHanapiah, N. F. H., Sinniah, U. R., & Yusoff, M. M. (2022). Seed Quality of Lablab Bean (Lablab purpureus) as Influenced by Seed Maturity and Drying Methods. Agronomy, 12(2), 363. https://doi.org/10.3390/agronomy12020363