Will Climate Warming Alter Biotic Stresses in Wild Lowbush Blueberries?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Treatments
2.3. Pest Rating
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Janowiak, M.K.; D’Amato, A.W.; Swanston, C.W.; Iverson, L.; Thompson, F.R.; Dijak, W.D.; Matthews, S.; Peters, M.P.; Pra-sad, A.; Fraser, J.S.; et al. New England and Northern New York Forest Ecosystem Vulnerability Assessment and Synthesis: A Report from the New England Climate Change Response Framework Project; In Gen. Tech. Rep. NRS-173; Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2018. [CrossRef]
- National Ocean and Atmospheric Administration (NOAA). Climate at a Glance. In National Centers for Environmental Information (NCEI); 2021. Available online: https://www.ncdc.noaa.gov/cag (accessed on 29 January 2022).
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Fernandez, I.; Birkel, S.; Schmitt, C.; Simonson, J.; Lyon, B.; Pershing, A.; Stancioff, E.; Jacobson, G.; Mayewski, P. Maine’s Climate Future 2020 Update. In Climate Change Institute: University of Maine, Orono, Maine, USA; 2020; Available online: Climatechange.umaine.edu/climate-matters/maines-climate-future/ (accessed on 17 May 2020).
- Scherm, H.; Sutherst, R.W.; Harrington, R.; Ingram, J.S.I. Global networking for assessment of impacts of global change on plant pests. Environ. Pollut. 2000, 108, 333–341. [Google Scholar] [CrossRef]
- Tasnim, R.; Drummond, F.A.; Zhang, Y.J. Climate change patterns of wild blueberry fields in Downeast, Maine over the past 40 years. Water 2021, 13, 594. [Google Scholar] [CrossRef]
- Juroszek, P.; Von Tiedemann, A. Plant pathogens, insect pests and weeds in a changing global climate: A review of approaches, challenges, research gaps, key studies and concepts. J. Agric. Sci. 2013, 151, 163–188. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesias, A.; Yang, X.B.; Epstein, P.R.; Chivian, E. Implications for food production, plant diseases, and pests. Glob. Change Hum. Health 2001, 2, 90–104. Available online: http://link.springer.com/10.1023/A:1015086831467 (accessed on 27 January 2022). [CrossRef]
- Gregory, P.J.; Johnson, S.N.; Newton, A.C.; Ingram, J.S.I. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 2009, 60, 2827–2838. [Google Scholar] [CrossRef]
- Huo, Z.; Li, M.; Wang, L.; Wen, Q.; Xiao, J.; Huang, D.; Wang, C. Impacts of climate warming on crop diseases and pests in China. Sci. Agric. Sin. 2012, 45, 1926–1934. [Google Scholar]
- Boyd, K.S.; Drummond, F.A.; Donahue, C.; Groden, E. Factors influencing the population fluctuations of Euproctis chrysorrhoea (Lepidoptera: Erebidae) in Maine. Environ. Ent. 2021, 50, 1203–1216. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S.; et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Roos, J.; Hopkins, R.; Kvarnheden, A.; Dixelius, C. The impact of global warming on plant diseases and insect vectors in Sweden. Eur. J. Plant Pathol. 2011, 129, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D. Climate warming and disease risks for terrestrial and marine biota. Science 2002, 296, 2158–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, D.T. Weeds in a Changing Climate. Weed Sci. 1995, 43, 685–701. [Google Scholar] [CrossRef]
- Vilà, M.; Beaury, E.M.; Blumenthal, D.M.; Bradley, B.A.; Early, R.; Laginhas, B.B.; Trillo, A.; Dukes, J.S.; Sorte, C.J.B.; Ibáñez, I. Understanding the combined impacts of weeds and climate change on crops. Environ. Res. Lett. 2021, 16. [Google Scholar] [CrossRef]
- Tungate, K.D.; Israel, D.W.; Watson, D.M.; Rufty, T.W. Potential changes in weed competitiveness in an agroecological system with elevated temperatures. Environ. Exp. Bot. 2007, 60, 42–49. [Google Scholar] [CrossRef]
- Sugiura, T.; Sumida, H.; Yokoyama, S.; Ono, H. Overview of recent effects of global warming on agricultural production in Japan. Jpn. Agric. Res. Q. 2012, 46, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Paal, T.; Starast, M.; Noormets-Šanski, M.; Vool, E.; Tasa, T.; Karp, K. Influence of liming and fertilization on lowbush blueberry in harvested peat field condition. Sci. Hortic. 2021, 130, 157–163. [Google Scholar] [CrossRef]
- Eaton, E.; Maxwell, C.; Hockey, F. The Blueberry; Department of Agriculture: Ottawa, ON, Canada, 1949.
- Yarborough, D.E. Production trends in the wild blueberry industry in North America. Acta Hortic. 1997, 446, 33–35. [Google Scholar] [CrossRef]
- Wood, G.W. The Wild Blueberry Industry—Past. Small Fruits Rev. 2004, 3, 11–18. [Google Scholar] [CrossRef]
- Yarborough, D.E. Establishment and Management of the Cultivated Lowbush Blueberry (Vaccinium angustifolium). Int. J. Fruit Sci. 2012, 12, 14–22. [Google Scholar] [CrossRef]
- Yarborough, D.E. Production trends in the wild blueberry industry in North America. VI Int. Symp. Vaccinium Cult. 1996, 446, 33–36. [Google Scholar]
- Hepler, P.R.; Yarborough, D.E. Natural Variability in Yield of Lowbush Blueberries. HortScience 2019, 26, 245–246. [Google Scholar] [CrossRef] [Green Version]
- Yarborough, D.E. Factor contributing to the increased in productivity in the wild blueberry industry. Small Fruits Rev. 2004, 3, 33–43. [Google Scholar] [CrossRef]
- Annis, S.L.; Stubbs, C.S. Stem and leaf diseases and their effects on yield in Maine lowbush blueberry fields. Small Fruits Rev. 2004, 3, 159–167. [Google Scholar] [CrossRef]
- Caruso, F.; Ramsdell, D. Compendium of Blueberry and Cranberry Diseases; APS Press: St. Paul, MN, USA, 1995. [Google Scholar]
- Hildebrand, P.D.; Nickerson, N.L.; McRae, K.B.; Lu, X. Incidence and impact of red leaf disease caused by Exobasidium vaccinii in lowbush blueberry fields in Nova Scotia. Can. J. Plant Pathol. 2000, 22, 364–367. [Google Scholar] [CrossRef]
- Drummond, F.A.; Groden, E. Evaluation of Entomopathogens for Biological Control of Insect Pests of Lowbush (Wild) Blueberry. In University of Maine; University of Maine: Orono, ME, USA, 2000. [Google Scholar]
- Drummond, F.; Smagula, J.; Annis, S.; Yarborough, D. Organic Wild Blueberry Production. Maine Agric. For. Exp. Stn. Tech. Bull. 2009, 852, 43. [Google Scholar]
- Yarborough, D.; Drummond, F.; Annis, S.; D’Appollonio, J. Maine wild blueberry systems analysis. Acta Hortic. 2017, 1180, 151–159. [Google Scholar] [CrossRef]
- Collins, J.A.; Drummond, F.A. The blueberry gall midge (Diptera: Cecidomyiidae) a recent pest of wild blueberry (Vaccinium angustifolium Aiton; Ericales: Ericaceae) and its impact on potential yield. J. Econ. Entomol. 2019, 112, 1151–1161. [Google Scholar] [CrossRef]
- Drummond, F.A.; Collins, J. Dispersal from Overwintering Sites, Action Thresholds for Rhagoletis mendax (Diptera: Tephritidae), and Factors that can Influence Variation in Predicted Fruit Infestation Levels in Maine Wild Blueberry. Part I. J. Econ. Ent. 2020, 113, 851–859. [Google Scholar] [CrossRef]
- Drummond, F.A.; Collins, J.; Ballman, E. Population dynamics of spotted wing drosophila (Drosophila suzukii (Matsumura)) in Maine wild blueberry. Insects 2019, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, D.A.; Drummond, F.A.; Gómez, M.I.; Fan, X. The economic impacts and management of Spotted Wing Drosophila (Drosophila Suzukii): The case of wild blueberries in Maine. J. Econ. Ent. 2020, 113, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Yarborough, D.E.; Smagula, J.; Drummond, F.; Annis, S. Organic production of wild blueberries iii Fruit quality. Acta Hortic. 2009, 810, 847–852. [Google Scholar] [CrossRef]
- Jensen, K.I.N.; Yarborough, D.E. An overview of weed management in the wild lowbush blueberry—Past and present. Small Fruits Rev. 2004, 3, 229–255. [Google Scholar] [CrossRef]
- McCully, K.V.; Sampson, M.G.; Watson, A.K. Weed Survey of Nova Scotia Lowbush Blueberry (Vaccinium angustifolium) Fields. Weed Sci. 1991, 39, 180–185. [Google Scholar] [CrossRef]
- Bell, D.J.; Rowland, L.J.; Drummond, F.A. Recent Advances in the Biology and Genetics of Lowbush Blueberry. Maine Agric. For. Exp. Stn. Tech. Bull. 2009, 203, 1–28. [Google Scholar]
- United States Department of Agriculture (USDA). In USDA/NASS QuickStats Ad-hoc Query Tool; 2021. Available online: https://quickstats.nass.usda.gov/ (accessed on 29 January 2022).
- Tasnim, R.; Calderwood, L.; Annis, S.; Drummond, F.A.; Zhang, Y.J. The future of wild blueberries: Testing warming impacts using open-top chambers. Spire 2020. Available online: https://umaine.edu/spire/2020/02/10/wildblueberries/ (accessed on 29 January 2022).
- Venturini, E.M.; Drummond, F.A.; Hoshide, A.K. Organic establishment of pollination reservoirs in the lowbush blueberry (Ericales: Ericaceae) agroecosystem. Open Agric. 2018, 3, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.-Q.; Peng, L.; Wang, G.-X.; Wu, Y.-H.; Zhou, J.; Bing, H.-J.; Yu, D.; Luo, J. An improved open-top chamber warming system for global change research. Silva Fenn. 2013, 47, 960. [Google Scholar] [CrossRef]
- Collins, J.A.; Drummond, F.A. Fertilizer and fungicides: Effects on wild blueberry growth, insect attack, and leaf spot disease incidence. In North American Blueberry Research and Extension Workers Conference; 2018; Available online: https://digitalcommons.library.umaine.edu/nabrew2018/proceedingpapers/proceedingpapers/7 (accessed on 29 January 2022).
- Collins, J.A.; Drummond, F.A. Red-striped fireworm control, 2006. Arthropod Manag. Tests 2007, 32, C4. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–pathogen warfare under changing climate conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrand, P.; Braun, P. Factors affecting infection of lowbush blueberry by ascospores of Monilinia vaccinii-corymbosi. Can. J. Plant Pathol. 1991, 13, 232–240. [Google Scholar] [CrossRef]
- Pervaiz, A.; Abbasi, P.D.; Hildebrand, S.A.; Debra, L.M.; Willy, E.R. Effect of RH, Temperature, Light, and Plant Age on Infection of Lowbush Blueberry by Sphaerulina vaccinii. Plant Dis. 2022. [Google Scholar] [CrossRef]
- Annis, S.L.; Slemmons, C.R.; Hildebrand, P.D.; Delbridge, R. An Internet-served forecast system for mummy berry disease in Maine lowbush blueberry fields using weather stations with cellular telemetry. Abstract. Phytopathol. 2013, 6, 103. [Google Scholar]
- Dai, A. Increasing drought under global warming in observations and Models. Nat. Clim. Chang. 2012, 3, 52–58. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Watt, M.S.; Potter, K.J.B.; Manning, L.K.; Alexander, N.S.; Tallent-Halsell, N. Managing invasive weeds under climate change: Considering the current and potential future distribution of Buddleja davidii. Weed Res. 2011, 51, 85–96. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-Y.; Pahadi, P.; Calderwood, L.; Annis, S.; Drummond, F.; Zhang, Y.-J. Will Climate Warming Alter Biotic Stresses in Wild Lowbush Blueberries? Agronomy 2022, 12, 371. https://doi.org/10.3390/agronomy12020371
Chen Y-Y, Pahadi P, Calderwood L, Annis S, Drummond F, Zhang Y-J. Will Climate Warming Alter Biotic Stresses in Wild Lowbush Blueberries? Agronomy. 2022; 12(2):371. https://doi.org/10.3390/agronomy12020371
Chicago/Turabian StyleChen, Yu-Ying, Pratima Pahadi, Lily Calderwood, Seanna Annis, Francis Drummond, and Yong-Jiang Zhang. 2022. "Will Climate Warming Alter Biotic Stresses in Wild Lowbush Blueberries?" Agronomy 12, no. 2: 371. https://doi.org/10.3390/agronomy12020371
APA StyleChen, Y. -Y., Pahadi, P., Calderwood, L., Annis, S., Drummond, F., & Zhang, Y. -J. (2022). Will Climate Warming Alter Biotic Stresses in Wild Lowbush Blueberries? Agronomy, 12(2), 371. https://doi.org/10.3390/agronomy12020371