Comparison of Droplet Deposition, 28-Homobrassinolide Dosage Efficacy and Working Efficiency of the Unmanned Aerial Vehicle and Knapsack Manual Sprayer in the Maize Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spray Equipment
2.2. Experimental Condition
2.3. Experimental Design
2.4. Sampling and Measurements
2.4.1. Measurement of Droplets Deposition Distribution
2.4.2. Uniformity of Droplet Deposition Distribution
2.4.3. Chlorophyll Content
2.4.4. Gas Exchange Attributes
2.4.5. Grain Filling Dynamics
2.4.6. Yield and Yield Components
2.4.7. Statistical Analysis
3. Results
3.1. Droplet Deposition Distribution Analysis
3.2. Uniformity of Droplet Deposition Distribution
3.3. Chlorophyll SPAD Values
3.4. Leaf Gas Exchange Parameters
3.5. The Grain Filling
3.6. Grain Yield and Yield Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; He, Y.; Irfan, A.R.; Liu, X.; Yu, Q.; Zhang, Q.; Yang, D. Exogenous brassinolide enhances the growth and cold resistance of maize (Zea mays L.) seedlings under chilling stress. Agronomy 2020, 10, 488. [Google Scholar] [CrossRef] [Green Version]
- Erenstein, O.; Chamberlin, J.; Sonder, K. Estimating the global number and distribution of maize and wheat farms. Glob. Food Sec. 2021, 30, 100558. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Y.; Guo, Y.; Peng, C.; Tan, W.; Zhang, M.; Li, Z.; Zhou, Y.; Duan, L. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. F. Crop. Res. 2021, 260, 107982. [Google Scholar] [CrossRef]
- Stoltz, E.; Nadeau, E. Effects of intercropping on yield, weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.). F. Crop. Res. 2014, 169, 21–29. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, K.; Gbegbelegbe, S.; Cairns, J.E.; Shiferaw, B.; Prasanna, B.M.; Sonder, K.; Boote, K.; Makumbi, D.; Robertson, R. Maize systems under climate change in sub-Saharan Africa: Potential impacts on production and food security. Int. J. Clim. Chang. Strateg. Manag. 2015, 7, 247–271. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R. IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (Desertification); Cambridge University Press: Cambridge, UK, 2019; Chapter 3. [Google Scholar]
- Choudhary, S.P.; Yu, J.-Q.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 2012, 17, 594–605. [Google Scholar] [CrossRef]
- Krishna, P. Brassinosteroid-mediated stress responses. J. Plant Growth Regul. 2003, 22, 289–297. [Google Scholar] [CrossRef]
- Trevisan, S.; Forestan, C.; Brojanigo, S.; Quaggiotti, S.; Varotto, S. Brassinosteroid application affects the growth and gravitropic response of maize by regulating gene expression in the roots, shoots and leaves. Plant Growth Regul. 2020, 92, 117–130. [Google Scholar] [CrossRef]
- Hayat, S.; Hasan, S.A.; Fariduddin, Q.; Ahmad, A. Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J. Plant Interact. 2008, 3, 297–304. [Google Scholar] [CrossRef]
- Anjum, S.A.; Wang, L.C.; Farooq, M.; Hussain, M.; Xue, L.L.; Zou, C.M. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci. 2011, 197, 177–185. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Khanam, S.; Hasan, S.A.; Ali, B.; Hayat, S.; Ahmad, A. Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol. Plant. 2009, 31, 889–897. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Arora, N.; Sharma, P.; Arora, H.K. Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L. Asian J. Plant Sci. 2007, 6, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Hasan, S.A.; Ahmad, A. Protective response of 28-homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch. Environ. Contam. Toxicol. 2011, 60, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Hayat, S.; Ahmad, A. 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ. Exp. Bot. 2007, 59, 217–223. [Google Scholar] [CrossRef]
- Ali, B.; Hayat, S.; Fariduddin, Q.; Ahmad, A. 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 2008, 72, 1387–1392. [Google Scholar] [CrossRef]
- Hayat, S.; Mori, M.; Fariduddin, Q.; Bajguz, A.; Ahmad, A. Physiological role of brassinosteroids: An update. Indian J. Plant Physiol. 2010, 15, 99–109. [Google Scholar]
- Yang, J.; Zhang, J. Grain filling of cereals under soil drying. New Phytol. 2006, 169, 223–236. [Google Scholar] [CrossRef]
- Siddiqui, H.; Hayat, S.; Bajguz, A. Regulation of photosynthesis by brassinosteroids in plants. Acta Physiol. Plant. 2018, 40, 1–15. [Google Scholar] [CrossRef]
- Yu, J.Q.; Huang, L.F.; Hu, W.H.; Zhou, Y.H.; Mao, W.H.; Ye, S.F.; Nogués, S. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J. Exp. Bot. 2004, 55, 1135–1143. [Google Scholar] [CrossRef]
- Xia, X.-J.; Huang, L.-F.; Zhou, Y.-H.; Mao, W.-H.; Shi, K.; Wu, J.-X.; Asami, T.; Chen, Z.; Yu, J.-Q. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 2009, 230, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Ali, B.; Hasan, S.A.; Ahmad, A. Effect of 28-homobrassinolide on salinity-induced changes in Brassica juncea. Turkish J. Biol. 2007, 31, 141–146. [Google Scholar]
- Farooq, M.; Wahid, A.; Basra, S.M.A. Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J. Agron. Crop Sci. 2009, 195, 262–269. [Google Scholar] [CrossRef]
- Ali, Q.; Ashraf, M. Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul. 2008, 56, 107–116. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Ahmad, A.; Hayat, S. Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. Photosynthetica 2003, 41, 307–310. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Ahmad, A.; Hayat, S. Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. Biol. Plant. 2004, 48, 465–468. [Google Scholar] [CrossRef]
- Singh, I.; Shono, M. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 2005, 47, 111–119. [Google Scholar] [CrossRef]
- Zhang, M.; Zhai, Z.; Tian, X.; Duan, L.; Li, Z. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul. 2008, 56, 257–264. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, A.; Mobin, M.; Fariduddin, Q.; Azam, Z.M. Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. Photosynthetica 2001, 39, 111–114. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, D.; Pan, H.; Li, J.; Duan, L.; Zhang, M.; Li, Z. Effect of brassinolide on leaf photosynthetic function and yield in spring maize filling stage. Acta Agron. Sin. 2015, 41, 1557–1563. [Google Scholar] [CrossRef]
- Wu, C.; Trieu, A.; Radhakrishnan, P.; Kwok, S.F.; Harris, S.; Zhang, K.; Wang, J.; Wan, J.; Zhai, H.; Takatsuto, S. Brassinosteroids regulate grain filling in rice. Plant Cell 2008, 20, 2130–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X. Physiological effect and yield increase action after spraying BR in rice early blooming stage. J. Anhui Agric. Sci. 2007, 35, 3317. [Google Scholar]
- Sridhara, S.; Ramesh, N.; Gopakkali, P.; Paramesh, V.; Tamam, N.; Abdelbacki, A.M.M.; Elansary, H.O.; El-Sabrout, A.M.; Abdelmohsen, S.A.M. Application of homobrassinolide enhances growth, yield and quality of tomato. Saudi J. Biol. Sci. 2021, 4800–4806. [Google Scholar] [CrossRef] [PubMed]
- Edupuganti, S. 28-homobrassinolide induced Proteomic Responses of maize leaves under salt and cadmium stress. J. Pharmacogn. Phytochem. 2019, 8, 70–75. [Google Scholar]
- Yang, S.; Yang, X.; Mo, J. The application of unmanned aircraft systems to plant protection in China. Precis. Agric. 2018, 19, 278–292. [Google Scholar] [CrossRef]
- Lan, Y.; Chen, S. Current status and trends of plant protection UAV and its spraying technology in China. Int. J. Precis. Agric. Aviat. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Jia, R.; Lu, Q. Land Transfer, Collective Action and the Implementation of Soil and Water Conservation Measures in the Loess Plateau of (northern Henan, Shaanxi, and eastern Gansu provinces) China. Nat. Hazards 2018. [Google Scholar]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Leon, M.E.; Schinasi, L.H.; Lebailly, P.; Beane Freeman, L.E.; Nordby, K.-C.; Ferro, G.; Monnereau, A.; Brouwer, M.; Tual, S.; Baldi, I. Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: A pooled analysis from the AGRICOH consortium. Int. J. Epidemiol. 2019, 48, 1519–1535. [Google Scholar] [CrossRef]
- Chen, Q.; Wachenheim, C.; Zheng, S. Land scale, cooperative membership and benefits information: Unmanned aerial vehicle adoption in China. Sustain. Futur 2020, 2, 100025. [Google Scholar] [CrossRef]
- Xiao, Q.; Du, R.; Yang, L.; Han, X.; Zhao, S.; Zhang, G.; Fu, W.; Wang, G.; Lan, Y. Comparison of droplet deposition control efficacy on phytophthora capsica and aphids in the processing pepper field of the unmanned aerial vehicle and knapsack sprayer. Agronomy 2020, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Lan, Y.; Yuan, H.; Qi, H.; Chen, P.; Ouyang, F.; Han, Y. Comparison of spray deposition, control efficacy on wheat aphids and working efficiency in the wheat field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack sprayers. Appl. Sci. 2019, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Xue, X.; Qin, W.; Chen, C.; Cai, C. Analysis of pesticide use efficiency of a UAV sprayer at different growth stages of rice. Int. J. Precis. Agric. Aviat. 2020, 3, 38–42. [Google Scholar] [CrossRef]
- Xiao, Q.; Xin, F.; Lou, Z.; Zhou, T.; Wang, G.; Han, X.; Lan, Y.; Fu, W. Effect of aviation spray adjuvants on defoliant droplet deposition and cotton defoliation efficacy sprayed by unmanned aerial vehicles. Agronomy 2019, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Xue, X.; Zhang, S.; Gu, W.; Wang, B. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew. Int. J. Agric. Biol. Eng. 2018, 11, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Berner, B.; Pachuta, A.; Chojnacki, J. Estimation of liquid deposition on corn plants sprayed from a drone. 4TH Worshop Appl. Sustain. Eng. Koszalin Univ. Technol. 2018, 403–407. [Google Scholar]
- Sarri, D.; Martelloni, L.; Rimediotti, M.; Lisci, R.; Lombardo, S.; Vieri, M. Testing a multi-rotor unmanned aerial vehicle for spray application in high slope terraced vineyard. J. Agric. Eng. 2019, 50, 38–47. [Google Scholar] [CrossRef]
- Gao, S.; Wang, G.; Zhou, Y.; Wang, M.; Yang, D.; Yuan, H.; Yan, X. Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops. Pest Manag. Sci. 2019, 75, 2592–2597. [Google Scholar] [CrossRef]
- Wang, G.; Lan, Y.; Qi, H.; Chen, P.; Hewitt, A.; Han, Y. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef]
- Lou, Z.; Xin, F.; Han, X.; Lan, Y.; Duan, T.; Fu, W. Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites. Agronomy 2018, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Liang, X.-G.; Zhang, L.; Lin, S.; Zhao, X.; Zhou, L.-L.; Shen, S.; Zhou, S.-L. Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. F Crop Res. 2017, 211, 1–9. [Google Scholar] [CrossRef]
- Xin, F.; Zhao, J.; Zhou, Y.; Wang, G.; Han, X.; Fu, W.; Deng, J.; Lan, Y. Effects of dosage and spraying volume on cotton defoliants efficacy: A case study based on application of unmanned aerial vehicles. Agronomy 2018, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Zhang, J.; Cao, X. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids. Physiol. Plant. 2001, 112, 470–477. [Google Scholar] [CrossRef] [PubMed]
Treatments | Spray Method | HBL Dosage (mg a.i. ha−1) | Adjuvant (g ha−1) | Spray Volume (L ha−1) |
---|---|---|---|---|
UAV1 | UAV | 18 | 225 | 15 |
UAV2 | 18 | 450 | 30 | |
UAV3 | 22 | 225 | 15 | |
UAV4 | 22 | 450 | 30 | |
UAV5 | 28 | 225 | 15 | |
UAV6 | 28 | 450 | 30 | |
KMS | KMS | 22 | 0 | 450 |
CK | 0 | 0 | 0 |
Year | Treatment | SV | HD | Middle Grain | Top Grain | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gradual Increase | Rapid Increase | Slight Increase | Gradual Increase | Rapid Increase | Slight Increase | ||||||||||
2019 | T1 | R1 | T2 | R2 | T3 | R3 | T1 | R1 | T2 | R2 | T3 | R3 | |||
CK | 0 | 0 | 21.5 a | 0.34 b | 23.4 a | 0.88 b | 29.2 a | 0.25 b | 21.9 a | 0.34 c | 23.1 a | 0.89 b | 28.7 a | 0.26 ab | |
KMS | 450 | 22 | 19.3 b | 0.38 ab | 18.8 b | 1.07 a | 23.5 bc | 0.31 a | 19.6 b | 0.37 ab | 18.7 bc | 1.08 a | 23.3 b | 0.31 a | |
UAV1 | 15 | 18 | 20.2 ab | 0.36 b | 21.5 a | 0.92 ab | 26.8 ab | 0.27 ab | 20.5 ab | 0.35 bc | 21.2 ab | 0.94 ab | 26.4 a | 0.27 ab | |
UAV2 | 30 | 18 | 19.3 b | 0.37 ab | 19.9 ab | 0.98 a | 24.8 b | 0.28 ab | 19.6 b | 0.36 ab | 19.7 b | 0.99 ab | 24.6 ab | 0.29 a | |
UAV3 | 15 | 22 | 19.0 b | 0.39 a | 19.4 ab | 1.05 a | 24.2 b | 0.31 a | 19.3 b | 0.38 a | 19.3 b | 1.06 a | 24.0 ab | 0.31 a | |
UAV4 | 30 | 22 | 19.1 b | 0.39 a | 19.6 ab | 1.04 a | 24.4 b | 0.31 a | 19.4 b | 0.38 a | 19.4 b | 1.05 a | 24.1 ab | 0.31 a | |
UAV5 | 15 | 30 | 19.0 b | 0.39 a | 19.4 ab | 1.05 a | 24.2 b | 0.31 a | 19.3 b | 0.38 a | 19.3 b | 1.06 a | 23.1 b | 0.31 a | |
UAV6 | 30 | 30 | 19.0 b | 0.39 a | 19.9 ab | 1.02 a | 24.9 b | 0.31 a | 19.4 b | 0.38 a | 19.7 b | 1.03 a | 24.6 ab | 0.30 a | |
HD | |||||||||||||||
18 | 19.7 a | 0.36 b | 20.7 a | 0.95 b | 25.6 a | 0.27 b | 20.0 a | 0.35 b | 20.5 a | 0.96 b | 25.5 a | 0.28 b | |||
22 | 19.0 b | 0.39 a | 19.5 a | 1.04 a | 24.3 b | 0.33 a | 19.3b | 0.38 a | 19.3 b | 1.05 a | 24.1 b | 0.31 a | |||
30 | 19.0 b | 0.39 a | 25.7 a | 1.03 a | 24.5 b | 0.32 a | 19.3 b | 0.38 a | 19.5 b | 1.04 a | 24.3 a | 0.30 a | |||
SV | |||||||||||||||
15 | 15.2 a | 0.38 a | 20.1 a | 1.01 a | 25.0 a | 0.29 a | 19.7 a | 0.37 b | 20.1 a | 1.01 a | 25.0 a | 0.29 a | |||
30 | 19.1 a | 0.38 a | 19.8 a | 1.01 a | 24.7 a | 0.30 a | 19.4 b | 0.37 b | 19.5 b | 1.03 a | 24.2 a | 0.31 a | |||
ANOVA | |||||||||||||||
SV | NS | NS | NS | NS | NS | ** | NS | NS | NS | NS | NS | * | |||
HD | ** | *** | ** | *** | ** | *** | *** | NS | ** | ** | ** | * | |||
SV*D | NS | NS | NS | NS | NS | * | NS | NS | NS | NS | NS | * | |||
2020 | |||||||||||||||
CK | 0 | 0 | 18.1 b | 0.37 ab | 19.7 a | 0.92 b | 24.6 a | 0.27 b | 19.1 a | 0.34 b | 21.3 ab | 0.83 ab | 26.6 ab | 0.24 a | |
KMS | 450 | 22 | 18.3 b | 0.37 ab | 19.0 b | 0.97 ab | 23.7 b | 0.28 ab | 18.8 ab | 0.36 ab | 22.9 a | 0.81 ab | 28.4 a | 0.23 a | |
UAV1 | 15 | 18 | 18.7 a | 0.36 b | 19.0 b | 0.97 ab | 23.6 b | 0.28 ab | 17.7 b | 0.34 b | 20.0 b | 0.83 ab | 24.9 b | 0.24 a | |
UAV2 | 30 | 18 | 18.1 b | 0.36 b | 19.6 a | 0.93 b | 24.4 ab | 0.27 b | 18.6 ab | 0.34 b | 22.4 a | 0.77 bc | 27.8 a | 0.22 a | |
UAV3 | 15 | 22 | 18.1 b | 0.36 b | 19.8 a | 0.91 b | 24.6 a | 0.26 b | 17.5 b | 0.41 a | 22.2 a | 0.86 a | 27.7 a | 0.25 a | |
UAV4 | 30 | 22 | 18.2 b | 0.39 a | 19.7 a | 0.98 a | 24.6 a | 0.29 a | 18.4 ab | 0.36 ab | 22.3 a | 0.82 ab | 27.7 a | 0.24 a | |
UAV5 | 15 | 30 | 18.2 b | 0.41 a | 19.7 a | 1.04 a | 24.6 a | 0.30 a | 18.5 ab | 0.39 a | 21.4 ab | 0.93 a | 26.6 ab | 0.27 a | |
UAV6 | 30 | 30 | 18.2 b | 0.42 a | 19.7 a | 1.06 a | 24.6 a | 0.31 a | 16.7 bc | 0.36 ab | 21.6 ab | 0.77 bc | 26.9 ab | 0.22 a | |
HD | |||||||||||||||
18 | 18.5 a | 0.36 b | 19.3 b | 0.95 b | 24.0 b | 0.27 b | 18.2 a | 0.34 b | 21.2 b | 0.78 b | 26.4 b | 0.24 a | |||
22 | 18.1 b | 0.37 b | 19.7 a | 0.94 b | 24.6 a | 0.27 b | 17.9 b | 0.39 a | 22.3 a | 0.84 a | 27.7 a | 0.26 a | |||
30 | 18.1 a | 0.44 a | 19.7 a | 1.05 a | 24.6 a | 0.32 a | 17.6 b | 0.37 a | 21.5 ab | 0.81 a | 26.7 ab | 0.24 a | |||
SV | |||||||||||||||
15 | 18.3 a | 0.39 a | 19.5 a | 0.97 a | 24.3a | 0.28 a | 17.9 a | 0.38 a | 21.2 b | 0.83 a | 26.4 b | 0.25 a | |||
30 | 18.1 a | 0.39 a | 19.7 a | 0.99 a | 25.6 a | 0.29 a | 17.9 a | 0.35 b | 22.1 a | 0.78 a | 27.5 a | 0.24 a | |||
ANOVA | |||||||||||||||
SV | * | NS | NS | ** | NS | NS | ** | * | ** | NS | NS | NS | |||
HD | ** | ** | ** | *** | ** | *** | *** | ** | *** | ** | ** | NS | |||
SV*D | NS | NS | NS | *** | NS | NS | ** | NS | NS | NS | NS | NS |
Treatment | SV (L ha−1) | HD ( mg a.i. ha−1) | Ear Number (m−2) | Kernel Number (ear−1) | TKW (g) | Grain Yield (t ha−1) | ||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |||
CK | 0 | 0 | 7.4 a | 7.4 a | 556 b | 564 ab | 317 c | 309 c | 10.9 c | 11.1 b |
KMS | 450 | 22 | 7.4 a | 7.4 a | 572 ab | 568 ab | 331 b | 315 bc | 11.7 ab | 11.5 ab |
UAV1 | 15 | 18 | 7.4 a | 7.3 a | 571 ab | 564 ab | 324 c | 312 bc | 11.0 bc | 11.0 b |
UAV2 | 30 | 18 | 7.3 a | 7.4 a | 558 b | 541 b | 325 bc | 304 c | 11.1 bc | 10.9 b |
UAV3 | 15 | 22 | 7.5 a | 7.4 a | 573 ab | 575 a | 343 a | 348 a | 12.4 a | 12.0 a |
UAV4 | 30 | 22 | 7.3 a | 7.4 a | 561 ab | 567 ab | 341 a | 327 b | 11.9 a | 11.7 a |
UAV5 | 15 | 30 | 7.4 a | 7.4 a | 599 a | 578 a | 343 a | 345 a | 12.4 a | 11.8 a |
UAV6 | 30 | 30 | 7.4 a | 7.3 a | 577 ab | 579 a | 340 ab | 351 a | 12.3 a | 11.8 a |
SV | ||||||||||
15 | 7.48 a | 7.45 a | 581 a | 572 a | 336.7 a | 335.1 a | 11.9 a | 11.6 a | ||
30 | 7.38 a | 7.44 a | 565 b | 562 a | 335.4 a | 327.2 a | 11.8 a | 11.5 a | ||
HD | ||||||||||
18 | 7.48 a | 7.42 a | 564 b | 552 b | 324.8 b | 307.9 b | 11.1 b | 11.0 b | ||
22 | 7.42 a | 7.46 a | 567 b | 571 a | 341.6 a | 337.4 a | 12.1 a | 11.9 a | ||
30 | 7.41 a | 7.43 a | 588 a | 578 a | 341.8 a | 348.2 a | 12.4 a | 11.8 a | ||
ANOVA | ||||||||||
Year | NS | NS | NS | * | ||||||
SV | NS | ** | NS | NS | ||||||
HD | NS | ** | *** | *** | ||||||
SV*HD | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Wang, Z.; Huang, G.; Mo, Y.; Kaousar, R.; Duan, L.; Tan, W. Comparison of Droplet Deposition, 28-Homobrassinolide Dosage Efficacy and Working Efficiency of the Unmanned Aerial Vehicle and Knapsack Manual Sprayer in the Maize Field. Agronomy 2022, 12, 385. https://doi.org/10.3390/agronomy12020385
Hussain M, Wang Z, Huang G, Mo Y, Kaousar R, Duan L, Tan W. Comparison of Droplet Deposition, 28-Homobrassinolide Dosage Efficacy and Working Efficiency of the Unmanned Aerial Vehicle and Knapsack Manual Sprayer in the Maize Field. Agronomy. 2022; 12(2):385. https://doi.org/10.3390/agronomy12020385
Chicago/Turabian StyleHussain, Mujahid, Zhao Wang, Guanmin Huang, You Mo, Rehana Kaousar, Liusheng Duan, and Weiming Tan. 2022. "Comparison of Droplet Deposition, 28-Homobrassinolide Dosage Efficacy and Working Efficiency of the Unmanned Aerial Vehicle and Knapsack Manual Sprayer in the Maize Field" Agronomy 12, no. 2: 385. https://doi.org/10.3390/agronomy12020385
APA StyleHussain, M., Wang, Z., Huang, G., Mo, Y., Kaousar, R., Duan, L., & Tan, W. (2022). Comparison of Droplet Deposition, 28-Homobrassinolide Dosage Efficacy and Working Efficiency of the Unmanned Aerial Vehicle and Knapsack Manual Sprayer in the Maize Field. Agronomy, 12(2), 385. https://doi.org/10.3390/agronomy12020385