The Individual and Combined Effect of Nanoparticles and Biofertilizers on Growth, Yield, and Biochemical Attributes of Peanuts (Arachis hypogea L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Biofertilizer Treatments
2.3. Nanoparticle Treatments
2.4. Data Recorded
2.4.1. Seed N, P, K, Oil, and Protein Contents
2.4.2. Growth Attributes
2.4.3. Yield and Its Components
2.5. Data Analysis
3. Results
3.1. Response of Peanuts to Individual Applications of Fertilization
3.1.1. Effect of Biofertilizers on Different Studied Traits
3.1.2. Effect of Nanoparticles on Different Studied Traits
3.2. Response of Peanuts to Interaction between Nanoparticle and Biofertilizer Treatments
3.2.1. Yield and Yield Component Traits
3.2.2. Growth Parameters
3.2.3. Biochemical Composition (NPK, Protein, and Oil)
3.3. Correlation between Studied Traits
3.4. Interrelationship between Combinations of Foliar Spraying Treatments and Biofertilizers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Panhwar, F. Oilseed Crops Future in Sindh Pakistan; Digit Solutions GmbH: Löhne, Germany, 2005; Volume 38, p. 64. [Google Scholar]
- Fageria, N.K.; Baligar, V.C.; Jones, C.A. Growth and Mineral Nutrition of Field Crops; CRC Press: Boca Raton, FL, USA, 2010; ISBN 1439816964. [Google Scholar]
- Rifaat, M.G.M.; El-Basioni, S.M.; Hassan, H.M. Zinc and boron for groundnut production grown on sandy soil. Zagazig J. Agric. Res. 2004, 31, 139–164. [Google Scholar]
- FAOSTAT, Food and Agriculture Organization of the United Nations Statistics Division. FAOSTAT—FAO’s Corporate Statistical Database; Economic and Social Development Department, FAO: Rome, Italy, 2019; Available online: http://faostat3.fao.org/home/E (accessed on 15 February 2021).
- da Costa, P.B.; Beneduzi, A.; de Souza, R.; Schoenfeld, R.; Vargas, L.K.; Passaglia, L.M.P. The effects of different fertilization conditions on bacterial plant growth promoting traits: Guidelines for directed bacterial prospection and testing. Plant Soil 2013, 368, 267–280. [Google Scholar] [CrossRef]
- Simpson, R.J.; Oberson, A.; Culvenor, R.A.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 2011, 349, 89–120. [Google Scholar] [CrossRef]
- Youssef, M.A.; Yousef, A.F.; Ali, M.M.; Ahmed, A.I.; Lamlom, S.F.; Strobel, W.R.; Kalaji, H.M. Exogenously applied nitrogenous fertilizers and effective microorganisms improve plant growth of stevia (Stevia rebaudiana Bertoni) and soil fertility. AMB Express 2021, 11, 133. [Google Scholar] [CrossRef]
- Jeffries, P.; Gianinazzi, S.; Perotto, S.; Turnau, K.; Barea, J.-M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 2003, 37, 1–16. [Google Scholar] [CrossRef]
- Gao, C.; El-Sawah, A.M.; Ali, D.F.I.; Hamoud, Y.A.; Shaghaleh, H.; Sheteiwy, M.S. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.C.; Cao, Z.H.; Li, Z.G.; Cheung, K.C.; Wong, M.H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005, 125, 155–166. [Google Scholar] [CrossRef]
- Azcón-Aguilar, C.; Barea, J.M. Nutrient cycling in the mycorrhizosphere. J. Soil Sci. Plant Nutr. 2015, 15, 372–396. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.-C.; Song, F.-B.; Xu, H.-W. Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 2010, 331, 129–137. [Google Scholar] [CrossRef]
- Tarnabi, Z.M.; Iranbakhsh, A.; Mehregan, I.; Ahmadvand, R. Impact of arbuscular mycorrhizal fungi (AMF) on gene expression of some cell wall and membrane elements of wheat (Triticum aestivum L.) under water deficit using transcriptome analysis. Physiol. Mol. Biol. Plants 2020, 26, 143–162. [Google Scholar] [CrossRef]
- Birhane, E.; Sterck, F.J.; Fetene, M.; Bongers, F.; Kuyper, T.W. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 2012, 169, 895–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Achari, G.A.; Kowshik, M. Recent developments on nanotechnology in agriculture: Plant mineral nutrition, health, and interactions with soil microflora. J. Agric. Food Chem. 2018, 66, 8647–8661. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.; Bindraban, P.; McLean, J.E.; Gatere, L.; Singh, U.; Hellums, D. Methods for Rapid Testing of Plant and Soil Nutrients. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–43. [Google Scholar]
- Dimkpa, C.O.; Singh, U.; Bindraban, P.S.; Adisa, I.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size-specific response of soybean to micronutrients exposure. Sci. Total Environ. 2019, 665, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Pollard, M.; Beisson, F.; Li, Y.; Ohlrogge, J.B. Building lipid barriers: Biosynthesis of cutin and suberin. Trends Plant Sci. 2008, 13, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.E. Calcium requirements for peanuts. Commun. Soil Sci. Plant Anal. 1975, 6, 299–313. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Tang, Z.; Guo, F.; Zhang, Y.; Zhang, J.; Meng, J.; Zheng, L.; Wan, S.; Li, X. Transcriptome of peanut kernel and shell reveals the mechanism of calcium on peanut pod development. Sci. Rep. 2020, 10, 15723. [Google Scholar] [CrossRef]
- Ntare, B.R.; Diallo, A.T.; Ndjeunga, J.; Waliyar, F. Groundnut Seed Production Manual; International Crops Research Institute for the Semi-Arid Tropic: Hyderabad, India, 2008. [Google Scholar]
- Pattee, H.E.; Stalker, H.T. Advances in Peanut Science; American Peanut Research and Education Society: Stillwater, OK, USA, 1995. [Google Scholar]
- Hamza, M.; Abbas, M.; Abd Elrahman, A.; Helal, M.; Shahba, M. Conventional versus Nano Calcium Forms on Peanut Production under Sandy Soil Conditions. Agriculture 2021, 11, 767. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011; ISBN 0123849063. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 3rd ed.; International Potash Institute: Bern, Switzerland, 1982. [Google Scholar]
- Jing, R.F.; Zhang, Q.G.; Han, L.F.; Zhang, F.S.; Wei, X.Q. Effect of boric fertilizer on peanut absorption of boron and nitrogen. Soils 1994, 26, 83–86. [Google Scholar]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Guru, T.; Veronica, N.; Thatikunta, R.; Reddy, S.N. Crop nutrition management with nano fertilizers. Int. J. Environ. Sci. Technol. 2015, 1, 4–6. [Google Scholar]
- El-Saadony, M.T.; Almoshadak, A.S.; Shafi, M.E.; Albaqami, N.M.; Saad, A.M.; El-Tahan, A.M.; Desoky, E.-S.M.; Elnahal, A.S.M.; Almakas, A.; Abd El-Mageed, T.A. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi J. Biol. Sci. 2021, 28, 7349–7359. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 2007; ISBN 0429126220. [Google Scholar]
- Madejón, E.; de Mora, A.P.; Felipe, E.; Burgos, P.; Cabrera, F. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ. Pollut. 2006, 139, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Bader El Din, S.M.S.; Attia, M.; Abo Sedera, S.A. Evaluation of several substrates for mass multiplication of Arbuscular mycorrhizal [AM] fungi grown on onion. Egypt. J. Microbiol. 1999, 34, 57–65. [Google Scholar]
- Nanni, A.; Dei, L. Ca(OH)2 nanoparticles from W/O microemulsions. Langmuir 2003, 19, 933–938. [Google Scholar] [CrossRef]
- Lowther, J.R. Use of a single sulphuric acid-hydrogen peroxide digest for the analysis of Pinus radiata needles. Commun. Soil Sci. Plant Anal. 1980, 11, 175–188. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plant and Water; 50, 309; Department of Agricultural Sciences, University of California: Berkeley, CA, USA, 1978; Volume 4034. [Google Scholar]
- Motsara, M.R. Guide to Laboratory Establishment for Plant Nutrient Analysis; Scientific Publishers: Jodhpur, India, 2015; ISBN 9388148339. [Google Scholar]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Heldrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 1990. [Google Scholar]
- Brown, R.H. Growth of the Green Plant. In Physiological Basis of Crop Growth and Development; Wiley: Hoboken, NJ, USA, 1984; pp. 153–174. [Google Scholar]
- Konlan, S.; Sarkodie-Addo, J.; Kombiok, M.J.; Asare, E.; Bawah, I. Yield response of three groundnut (Arachis hypogaea L.) varieties intercropped with maize (Zea mays) in the guinea savanna zone of Ghana. J. Cereal. Oilseeds 2013, 4, 76–84. [Google Scholar]
- SAS Institute. The SAS System for Windows, Version 9.2; SAS Institute Inc.: Cary, NC, USA, 2009.
- Sarker, A.; Talukder, N.M.; Islam, M.T. Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat. Plant Sci. Today 2014, 1, 86–93. [Google Scholar] [CrossRef]
- Reddy, G.C.; Goyal, R.K.; Puranik, S.; Waghmar, V.; Vikram, K.V.; Sruthy, K.S. Biofertilizers toward Sustainable Agricultural Development. In Plant Microbe Symbiosis; Springer: Cham, Switzerland, 2020; pp. 115–128. [Google Scholar]
- Nosheen, S.; Ajmal, I.; Song, Y. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 2021, 13, 1868. [Google Scholar] [CrossRef]
- Petrovic, B.; Sękara, A.; Pokluda, R. Biofertilizers Enhance Quality of Onion. Agronomy 2020, 10, 1937. [Google Scholar] [CrossRef]
- Torelli, A.; Trotta, A.; Acerbi, L.; Arcidiacono, G.; Berta, G.; Branca, C. IAA and ZR Content in Leek (Allium porrum L.), as Influenced by P Nutrition and Arbuscular Mycorrhizae, in Relation to Plant Development. In Recent Advances of Plant Root Structure and Function; Springer: Berlin/Heidelberg, Germany, 2001; pp. 55–61. [Google Scholar]
- Copetta, A.; Lingua, G.; Berta, G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 2006, 16, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.L. Mineral nutrition of groundnut. Adv. Plant Physiol. 1999, 2, 161–200. [Google Scholar]
- Lourduraj, A.C. Nutrient management in groundnut (Arachis hypogaea L.) cultivation. Agric. Rev. Res. Commun. Cent. India 1999, 20, 14–20. [Google Scholar]
- Xiumei, L.; Fudao, Z.; Shuqing, Z.; Xusheng, H.; Rufang, W.; Zhaobin, F.; Yujun, W. Responses of peanut to nano-calcium carbonate. Plant Nutr. Fertil. Sci. 2005, 11, 385–389. [Google Scholar]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Khan, M.R.; Rizvi, T.F. Application of Nanofertilizer and Nanopesticides for Improvements in Crop Production and Protection. In Nanoscience and Plant–Soil Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 405–427. [Google Scholar]
- Janmohammadi, M.; Amanzadeh, T.; Sabaghnia, N.; Dashti, S. Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agric. Slov. 2016, 107, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Salama, H.M.H. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotechnol. 2012, 3, 190–197. [Google Scholar]
- Zheng, L.; Hong, F.; Lu, S.; Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 2005, 104, 83–91. [Google Scholar] [CrossRef]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in plant biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- de Oliveira, R.H.; Dias Milanez, C.R.; Moraes-Dallaqua, M.A.; Rosolem, C.A. Boron deficiency inhibits petiole and peduncle cell development and reduces growth of cotton. J. Plant Nutr. 2006, 29, 2035–2048. [Google Scholar] [CrossRef]
- Goldbach, H.E.; Yu, Q.; Wingender, R.; Schulz, M.; Wimmer, M.; Findeklee, P.; Baluška, F. Rapid response reactions of roots to boron deprivation. J. Plant Nutr. Soil Sci. 2001, 164, 173–181. [Google Scholar] [CrossRef]
- Sheng, O.; Song, S.W.; Chen, Y.J.; Peng, S.A.; Deng, X.X. Effects of exogenous B supply on growth, B accumulation and distribution of two navel orange cultivars. Trees 2009, 23, 59. [Google Scholar] [CrossRef]
- Zhao, D.; Oosterhuis, D.M. Cotton carbon exchange, nonstructural carbohydrates, and boron distribution in tissues during development of boron deficiency. Field Crop. Res. 2002, 78, 75–87. [Google Scholar] [CrossRef]
- Zhang, L. Effects of Foliar Application of Boron and Dimilin on Soybean Yield; Mississippi Agricultural & Forestry Experiment Station: Starkville, MS, USA, 2001. [Google Scholar]
- Chitdeshwari, T.; Poongothai, S. Yield of groundnut and its nutrient uptake as influenced by Zinc, Boron and Sulphur. Agric. Sci. Dig. 2003, 23, 263–266. [Google Scholar]
- Zhou, L.-Y.; Li, X.-D.; Wang, L.-L.; Tang, X.; Lin, Y.-J. Effects of different Ca applications on physiological characteristics, yield and quality in peanut. Acta Agron. Sin. 2008, 34, 879–885. [Google Scholar] [CrossRef]
- Chirwa, M.; Mrema, J.P.; Mtakwa, P.W.; Kaaya, A.; Lungu, O.I. Yield response of groundnut (Arachis hypogaea L.) to boron, calcium, nitrogen, phosphorus and potassium fertilizer application. Int. J. Soil Sci. 2017, 12, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Meng, J.; Yang, S.; Guo, F.; Zhang, J.; Geng, Y.; Cui, L.; Wan, S.; Li, X. Transcriptome analysis of calcium-and hormone-related gene expressions during different stages of peanut pod development. Front. Plant Sci. 2017, 8, 1241. [Google Scholar] [CrossRef] [Green Version]
- Kamara, E.G. Effect of Calcium and Phosphorus Fertilization on the Growth, Yield and Seed Quality of Two Groundnut (Arachis hypogaea, L.) Varieties. Ph.D. Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2010. [Google Scholar]
- Gashti, A.H.; Vishekaei, M.N.S.; Hosseinzadeh, M.H. Effect of potassium and calcium application on yield, yield components and qualitative characteristics of peanut (Arachis hypogaea L.) in Guilan Province, Iran. World Appl. Sci. J. 2012, 16, 540–546. [Google Scholar]
- Rahman, M.A. Effect of Calcium and Bradyrhizobium inoculation of the Growth, Yield and quality of groundnut (A. hypogaea L.). Bangladesh J. Sci. Ind. Res. 2006, 41, 181–188. [Google Scholar] [CrossRef]
- Zharare, G.E.; Blamey, F.C.; Asher, C.J. Effects of pod-zone calcium supply on dry matter distribution at maturity in two groundnut cultivars grown in solution culture. J. Plant Nutr. 2012, 35, 1542–1556. [Google Scholar] [CrossRef]
- Sampathkumar, G.; Ganeshkumar, A. Effect of AM fungi and Rhizobium on growth and nutrition of Vigna mungo L. and Vingna unguiculata. Mycorrhiza News 2003, 14, 15–18. [Google Scholar]
Yield Components | ||||||||||
Source of Variance | Number of Pods/Plant | 100-Seed Weight | Shelling | Biological Yield | Seed Yield | |||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Biofertilizer (BF) | *** | ns | *** | *** | *** | *** | *** | *** | *** | *** |
Nanoparticles (NPs) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
BF × NPs | *** | * | *** | *** | *** | *** | *** | * | *** | *** |
CV | 3.71 | 4.69 | 2.62 | 4.28 | 4.61 | 5.42 | 3.71 | 4.69 | 6.18 | 7.06 |
R2 | 0.97 | 0.83 | 0.99 | 0.98 | 0.94 | 0.91 | 0.97 | 0.83 | 0.99 | 0.96 |
RMSE | 1.41 | 2.06 | 2.66 | 2.55 | 1.66 | 19.91 | 1.41 | 2.06 | 1.99 | 1.22 |
Growth Attributes | ||||||||||
Source of Variance | Branching Number | Chlorophyll | Dry Weight | Plant Height | Crop Growth Rate | |||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2021 | 2021 | 2021 | 2021 | |
Biofertilizer (BF) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Nanoparticles (NPs) | *** | *** | ns | *** | *** | *** | *** | *** | *** | *** |
BF × NPs | *** | *** | ns | ns | *** | *** | *** | *** | *** | *** |
CV | 3.54 | 3.94 | 11.4 | 8.25 | 0.75 | 4.30 | 3.71 | 3.94 | 3.94 | 3.71 |
R2 | 0.94 | 0.96 | 0.80 | 0.92 | 0.94 | 0.92 | 0.97 | 0.96 | 0.96 | 0.97 |
RMSE | 1.18 | 1.44 | 1.25 | 1.00 | 0.02 | 0.92 | 1.41 | 1.44 | 1.44 | 1.41 |
Biochemical Parameters | ||||||||||
Source of Variance | Nitrogen | Phosphorous | Potassium | Protein Content | Oil Content | |||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2021 | 2021 | 2021 | 2021 | |
Biofertilizer (BF) | *** | ns | *** | *** | *** | *** | *** | *** | *** | *** |
Nanoparticles (NPs) | *** | ns | *** | *** | *** | *** | *** | *** | *** | *** |
BF × NPs | * | ns | *** | *** | *** | *** | *** | *** | *** | *** |
CV | 6.23 | 5.59 | 3.20 | 2.94 | 3.27 | 2.6 | 3.75 | 4.30 | 3.94 | 3.71 |
R2 | 0.95 | 0.88 | 0.94 | 0.94 | 0.99 | 0.90 | 0.94 | 0.92 | 0.96 | 0.97 |
RMSE | 0.19 | 0.18 | 0.03 | 0.03 | 0.00 | 0.04 | 0.02 | 0.92 | 1.44 | 1.41 |
Bio-Fertilizers | Nano- Particles | NPP | Sh | HSW | SY | BY | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
Control | Control | 22.3d | 20.7f | 55.0f | 43.6d | 36.7e | 39.8e | 1.0e | 1.0d | 6.5f | 6.9bc |
Ca | 24.0cd | 21.7ef | 57.4ef | 56.6bc | 50.9d | 55.6bc | 1.1de | 1.6c | 6.6ef | 7.6ab | |
B | 23.6cd | 24.0cdef | 54.4f | 55.2bc | 56.2bcd | 52.9cd | 1.2dce | 1.9b | 7.7cd | 7.2abc | |
Ca+B | 22.7d | 22.0def | 65.8cd | 55.9bc | 54.5cd | 54.9bc | 1.3bce | 1.9b | 7.3de | 6.8bc | |
Mycorrhiza | Control | 29.0abcd | 23.3cdef | 56.1f | 44.7d | 56.7bcd | 54.8bcd | 1.0e | 1.0d | 6.8fe | 6.9bc |
Ca | 36.3ab | 28.0bc | 67.3c | 77.3a | 59.1abc | 59.5ab | 1.9b | 2.0a | 8.6ab | 7.5ab | |
B | 38.7a | 22.7def | 76.1b | 76.9a | 62.0ab | 61.7a | 2.4a | 2.4a | 8.8ab | 8.1a | |
Ca+B | 37.7a | 27.0cd | 82.2a | 83.5a | 63.4a | 64.4a | 2.4a | 2.3a | 8.9a | 7.7ab | |
Phosphorine | Control | 27.7bcd | 19.0f | 46.3g | 48.9cd | 52.9cd | 49.1d | 1.0e | 1.0c | 6.3f | 6.4c |
Ca | 33.3abc | 34.0a | 62.2de | 62.2b | 51.2d | 52.2cd | 1.5c | 1.9b | 7.8cd | 7.5ab | |
B | 32.7abc | 32.7ab | 56.3f | 56.6bc | 55.0cd | 54.0bcd | 1.4e | 2.3a | 8.1bc | 8a | |
Ca+B | 22.3d | 26.0cd | 62.4cde | 62.4b | 53.6cd | 54.6bcd | 2.0b | 2.4a | 8.4 | 6.7bc |
Bio-Fertilizers | Nano- Particles | BN | PH | DW | CGR | Ch | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
Control | Control | 8.0bc | 8.0f | 28.3e | 31.3cd | 82.7cd | 76.0cd | 2.3c | 2.3bc | 38.2cd | 41.8bcde |
Ca | 7.7c | 11.0def | 31.3bcd | 35.3abc | 72.3d | 89.3abcd | 2.4c | 2.4bc | 40.5bcd | 45.2abcd | |
B | 10.3abc | 11.3cde | 34.7b | 32.0cd | 82.0cd | 87.3abcd | 2.9abc | 2.4bc | 35.9d | 46.3abc | |
Ca+B | 9.3abc | 11.0def | 34.7b | 33.0bcd | 88.7c | 85.0abcd | 2.3c | 2.5bc | 37.7cd | 47.5ab | |
Mycorrhiza | Control | 12.7a | 12.0cde | 30.3de | 32.6bcd | 84.3cd | 88.3abcd | 2.4c | 2.1c | 41.6abc | 39.9de |
Ca | 12.3a | 14.3abc | 34.7b | 34.3bc | 124.0ab | 90.7abc | 2.7abc | 2.8abc | 41.1bcd | 41.1cde | |
B | 13.0a | 15.7ab | 40.3a | 40.0a | 108.0b | 99.7a | 3.4a | 3.4a | 46.8a | 50.4a | |
Ca+B | 12.0a | 17.3a | 38.7a | 37.7ab | 118.7ab | 87.7abcd | 3.2ab | 2.3bc | 43.7ab | 42.7bcde | |
Phosphorine | Control | 11.3abc | 9.7ef | 30.7bcde | 28.1d | 86.3cd | 75.3d | 2.2c | 2.4bc | 38.0cd | 38.0e |
Ca | 11.3abc | 11.7cde | 32.0bcd | 32.0cd | 82.7cd | 83.7bcd | 2.4c | 2.9ab | 44.5ab | 44.5abcd | |
B | 11.3abc | 11.7cde | 32.0bcd | 33.7bc | 85.0cd | 95.3ab | 2.5bc | 2.9abc | 44.4ab | 44.8abcd | |
Ca+B | 11.7ab | 13.0bcd | 34.0bc | 34.0bc | 85.3c | 84.0bcd | 2.9abc | 3.0ab | 44.3ab | 44.3abcd |
Biofertilizers | Nano- Particles | Nitrogen | Phosphorus | Potassium | Oil | Protein | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
Control | Control | 2.2e | 2.6d | 1.1d | 1.1f | 0.1cde | 0.1c | 29.1d | 29.1f | 18.3f | 18.3f |
Ca | 2.2e | 3.4abc | 1.2bcd | 1.2def | 0.1cde | 0.1bc | 33.6c | 32.6ef | 20.6def | 19.4ef | |
B | 2.6de | 3.7ab | 1.1d | 1.1ef | 0.3a | 0.2c | cd | 38.6cd | 19.3ef | 20.5cdef | |
Ca+B | 2.3e | 3.5abc | 1.3ab | 1.3abc | 0.1cde | 0.1c | 32.4cd | 32.4ef | 21.6cde | 19.9def | |
Mycorrhiza | Control | 3.0cd | 3.0cd | 1.1cd | 1.1f | 0.1fg | 0.1c | 35.1c | 35.1de | 20.9de | 20.3cdef |
Ca | 3.2bcd | 3.2bc | 1.3ab | 1.2def | 0.3a | 0.3a | 39.8b | 41.5bc | 22.2bcd | 24.1ab | |
B | 3.9a | 3.9a | 1.4a | 1.4ab | 0.1def | 0.4a | 39.2b | 48.9a | 25.1a | 25.1a | |
Ca+B | 3.7ab | 3.6abc | 1.4a | 1.4a | 0.1c | 0.1c | 44.9a | 47.2a | 23.6abc | 23.0abc | |
Phosphorine | Control | 3.5abc | 3.0cd | 1.1d | 1.1f | 0.1cd | 0.1c | 32.9cd | 32.9ef | 19.3ef | 19.3ef |
Ca | 3.2bcd | 3.2bcd | 1.3ab | 1.3bcd | 0.3b | 0.3ab | 33.9c | 33.6e | 21.0de | 21.4de | |
B | 3.8a | 3.8a | 1.1d | 1.2def | 0.1efg | 0.1c | 39.6b | 39.6c | 24.3ab | 24.3ab | |
Ca+B | 3.5abc | 3.5abc | 1.3bc | 1.2cde | 0.1g | 0.1c | 45.6a | 45.6ab | 22.7bcd | 22.7abcd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelghany, A.M.; El-Banna, A.A.A.; Salama, E.A.A.; Ali, M.M.; Al-Huqail, A.A.; Ali, H.M.; Paszt, L.S.; El-Sorady, G.A.; Lamlom, S.F. The Individual and Combined Effect of Nanoparticles and Biofertilizers on Growth, Yield, and Biochemical Attributes of Peanuts (Arachis hypogea L.). Agronomy 2022, 12, 398. https://doi.org/10.3390/agronomy12020398
Abdelghany AM, El-Banna AAA, Salama EAA, Ali MM, Al-Huqail AA, Ali HM, Paszt LS, El-Sorady GA, Lamlom SF. The Individual and Combined Effect of Nanoparticles and Biofertilizers on Growth, Yield, and Biochemical Attributes of Peanuts (Arachis hypogea L.). Agronomy. 2022; 12(2):398. https://doi.org/10.3390/agronomy12020398
Chicago/Turabian StyleAbdelghany, Ahmed M., Aly A. A. El-Banna, Ehab A. A. Salama, Muhammad Moaaz Ali, Asma A. Al-Huqail, Hayssam M. Ali, Lidia Sas Paszt, Gawhara A. El-Sorady, and Sobhi F. Lamlom. 2022. "The Individual and Combined Effect of Nanoparticles and Biofertilizers on Growth, Yield, and Biochemical Attributes of Peanuts (Arachis hypogea L.)" Agronomy 12, no. 2: 398. https://doi.org/10.3390/agronomy12020398
APA StyleAbdelghany, A. M., El-Banna, A. A. A., Salama, E. A. A., Ali, M. M., Al-Huqail, A. A., Ali, H. M., Paszt, L. S., El-Sorady, G. A., & Lamlom, S. F. (2022). The Individual and Combined Effect of Nanoparticles and Biofertilizers on Growth, Yield, and Biochemical Attributes of Peanuts (Arachis hypogea L.). Agronomy, 12(2), 398. https://doi.org/10.3390/agronomy12020398