Grain Yield, Nitrogen Use Efficiency and Antioxidant Enzymes of Rice under Different Fertilizer N Inputs and Planting Density
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site Description
2.2. Experimental Treatment and Design
2.3. Measurement Items and Methods
2.3.1. Yield and Yield Components
2.3.2. Photosynthetic Rate
2.3.3. Antioxidase
2.3.4. Nitrogen Use Efficiency
2.4. Statistical Analyses
3. Results
3.1. Effect of Nitrogen Application and Planting Density on Yield and Yield Components
3.2. Effect of Nitrogen Application and Planting Density on Net Photosynthetic Rate
3.3. Effect of Nitrogen Application and Planting Density on Antioxidant Enzyme Activities
3.4. Effect of Nitrogen Application and Planting Density on N Use Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C.S. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Banwart, S. Save our soils. Nature 2011, 7350, 151–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, L.B. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Q.; Zhang, H.; Wei, H.; Zhang, Y.; Wang, B.; Xia, K.; Huo, Z.; Dai, Q.; Xu, K. Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions. Front. Agric. China 2007, 1, 30–36. [Google Scholar] [CrossRef]
- Xu, G.; Lu, D.; Wang, H.; Li, Y. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric. Water Manag. 2018, 203, 385–394. [Google Scholar] [CrossRef]
- Ju, C.; Buresh, R.J.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Ju, X.; Xing, G.; Chen, X.; Zhang, S.; Zhang, L.; Liu, X.; Cui, Z.; Yin, B.; Christie, P.; Zhu, Z. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Lu, J.; Wang, Y.; Wang, S.; Hussain, S.; Ren, T.; Cong, R.; Li, X. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric. Ecosyst. Eenviron. 2018, 251, 78–87. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Yuan, S.; Nie, L.; Wang, F.; Huang, J.; Peng, S. Agronomic performance of inbred and hybrid rice cultivars under simplified and reduced-input practices. Field Crops Res. 2017, 210, 129–135. [Google Scholar] [CrossRef]
- Hakeem, K.R.; Ahmad, A.; Iqbal, M.; Gucel, S.; Ozturk, M. Nitrogen-efficient rice cultivars can reduce nitrate pollution. Environ. Sci. Pollut. Res. 2011, 18, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Caine, R.S.; Yin, X.; Sloan, J.; Harrison, E.L.; Mohammed, U.; Fulton, T.; Biswal, A.K.; Dionora, J.; Chater, C.C.; Coe, R.A.; et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol. 2019, 221, 371–384. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, X.; Li, J.; Xin, C. Effects of seedling age and cultivation density on agronomic characteristics and grain yield of mechanically transplanted rice. Sci. Rep. 2017, 7, 14072. [Google Scholar] [CrossRef] [Green Version]
- Berhanu, A.A. Effect of planting density on growth, yield and yield attributes of rice (Oryza sativa L.). Afr. J. Agric. Res. 2017, 12, 2713–2721. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Chen, J.; Cao, F.; Zou, Y. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crops Res. 2018, 221, 333–338. [Google Scholar] [CrossRef]
- Katsura, K.; Okami, M.; Mizunuma, H.; Kato, Y. Radiation use efficiency, N accumulation and biomass production of high-yielding rice in aerobic culture. Field Crops Res. 2010, 117, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Chen, B.; Shen, T.; Zhang, Y.; Zhou, Z. Effect of cropping system on radiation use efficiency in double-cropped wheat–cotton. Field Crops Res. 2015, 170, 21–31. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, N.; Lai, S.; Frei, M.; Wang, Y.; Yang, L. Elevated CO2 improves lodging resistance of rice by changing physicochemical properties of the basal internodes. Sci. Total Environ. 2019, 647, 223–231. [Google Scholar] [CrossRef]
- Lu, G.; Casaretto, J.A.; Ying, S.; Mahmood, K.; Liu, F.; Bi, Y.; Rothstein, S.J. Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting. Plant Mol. Biol. 2017, 94, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Gao, H.; Yoshihiro, H.; Koki, H.; Tetsuya, N.; Liu, T.; Tatsuhiko, S.; Xu, Z. Erect panicle super rice varieties enhance yield by harvest index advantages in high nitrogen and density conditions. J. Integr. Agric. 2017, 16, 1467–1473. [Google Scholar] [CrossRef]
- Hou, W.; Khan, M.R.; Zhang, J.; Lu, J.; Ren, T.; Cong, R.; Li, X. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agric. Ecosyst. Environ. 2019, 269, 183–192. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, S.; Dou, F.; Samonte, S.O.P.; Chen, K.; Wang, Y. Optimization of Nitrogen Rate and Planting Density for Improving the Grain Yield of Different Rice Genotypes in Northeast China. Agronomy 2019, 9, 555. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, C.; Fang, B.; Fang, Y.; Chen, K.; Zhang, Y.; Zhang, H. Potential for high yield with increased seedling density and decreased N fertilizer application under seedling-throwing rice cultivation. Sci. Rep. 2019, 9, 731. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.; Gao, L.; Kong, Y.; Hu, X.; Xie, K.; Zhang, R.; Ling, N.; Shen, Q.; Guo, S. Improving rice population productivity by reducing nitrogen rate and increasing plant density. PLoS ONE 2017, 12, e182310. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Shan, S.; Wang, Y.; Cao, F.; Chen, J.; Huang, M.; Zou, Y. Dense planting with reducing nitrogen rate increased grain yield and nitrogen use efficiency in two hybrid rice varieties across two light conditions. Field Crops Res. 2019, 236, 24–32. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, J.; Zhang, Z.; Deng, A.; Zhang, W. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. Eur. J. Agron. 2016, 75, 50–59. [Google Scholar] [CrossRef]
- Du, B.; Luo, H.; He, L.; Zheng, A.; Chen, Y.; Zhang, T.; Wang, Z.; Hu, L.; Tang, X. Deep fertilizer placement improves rice growth and yield in zero tillage. Appl. Ecol. Environ. Res. 2018, 16, 8045–8054. [Google Scholar] [CrossRef]
- Gu, J.; Chen, Y.; Zhang, H.; Li, Z.; Zhou, Q.; Yu, C.; Kong, X.; Liu, L.; Wang, Z.; Yang, J. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Res. 2017, 206, 74–85. [Google Scholar] [CrossRef]
- Lv, Y.; Xu, J.; Liu, X.; Wang, H. Vertical profile of photosynthetic light response within rice canopy. Int. J. Biometeorol. 2020, 64, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.F.; Niinemets, Ü. Global leaf trait estimates biased due to plasticity in the shade. Nat. Plants 2017, 3, 16201. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wan, X.; Shah, F.; Fahad, S.; Huang, J. The Role of Antioxidant Enzymes in Adaptive Responses to Sheath Blight Infestation under Different Fertilization Rates and Hill Densities. Sci. World J. 2014, 2014, 502134. [Google Scholar] [CrossRef]
- Zhong, C.; Cao, X.; Hu, J.; Zhu, L.; Zhang, J.; Huang, J.; Jin, Q. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels. Front. Plant Sci. 2017, 8, 1079. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Liu, Y.; Dong, H.; Teng, K.; Han, L.; Zhang, X. Effects of Cytokinin and Nitrogen on Drought Tolerance of Creeping Bentgrass. PLoS ONE 2016, 11, e154005. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Luo, H.; Liu, C.; Lei, C.; Jiang, S.; Lou, Y.; Xu, Y.; Wang, M.; Shi, L.; Xing, D. Effects of different water management methods on seeding rate, phenological and yielding properties of different rice cultivars (Oryza sativa L.). Appl. Ecol. Environ. Res. 2019, 17, 4269–4279. [Google Scholar] [CrossRef]
- Vijayan, J.; Senapati, S.; Ray, S.; Chakraborty, K.; Molla, K.A.; Basak, N.; Pradhan, B.; Yeasmin, L.; Chattopadhyay, K.; Sarkar, R.K. Transcriptomic and physiological studies identify cues for germination stage oxygen deficiency tolerance in rice. Environ. Exp. Bot. 2018, 147, 234–248. [Google Scholar] [CrossRef]
- Lu, J.; Wang, D.; Liu, K.; Chu, G.; Huang, L.; Tian, X.; Zhang, Y. Inbred varieties outperformed hybrid rice varieties under dense planting with reducing nitrogen. Sci. Rep. 2020, 10, 8769. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Beebout, S.S.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res. 2016, 193, 54–69. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Zhong, X.; Lampayan, R.M.; Singleton, G.R.; Huang, N.; Liang, K.; Peng, B.; Tian, K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
Year | Total N (g kg−1) | Available N (mg kg−1) | Total P (g kg−1) | Total K (g kg−1) | Organic Matter (g kg−1) | pH |
---|---|---|---|---|---|---|
2017 | 2.24 | 83.94 | 0.57 | 3.49 | 21.61 | 6.80 |
2018 | 2.27 | 87.16 | 0.53 | 3.55 | 21.41 | 6.70 |
2019 | 2.25 | 86.88 | 0.59 | 3.67 | 21.39 | 6.70 |
Year | Density | Nitrogen | Panicle Number (m2) | Grain Number per Panicle | Seed Setting Rate (%) | 1000-Grain Weight (g) | Grain Yield Kg ha−1 |
---|---|---|---|---|---|---|---|
2017 | Low | 0 | 243.02 ± 21.32 d | 107.08 ± 6.07 c | 86.85 ± 1.94 a | 27.93 ± 1.12 ab | 6875.18 ± 301.54 e |
Low | 120 | 277.58 ± 10.59 cd | 125.52 ± 7.33 ab | 86.37 ± 1.31 a | 28.30 ± 0.74 a | 9399 ± 513.06 c | |
Low | 180 | 309.40 ± 38.32 bc | 141.38 ± 3.47 a | 82.13 ± 2.25 b | 28.33 ± 0.74 a | 12,020.45 ± 672.57 a | |
High | 0 | 312.99 ± 15.69 abc | 102.46 ± 12.57 c | 84.71 ± 2.80 ab | 26.48 ± 0.87 b | 8313.39 ± 338.08 d | |
High | 120 | 340.72 ± 11.14 ab | 117.22 ± 9.62 bc | 84.47 ± 1.76 ab | 26.98 ± 1.11 ab | 10,275.74 ± 467.44 b | |
High | 180 | 355.27 ± 20.42 a | 129.74 ± 12.72 ab | 84.05 ± 0.66 ab | 27.79 ± 0.24 ab | 12,142.64 ± 761.39 a | |
2018 | Low | 0 | 267.33 ± 23.45 d | 103.46 ± 4.96 c | 80.02 ± 3.19 a | 26.30 ± 1.40 a | 6760.89 ± 293.81 d |
Low | 120 | 305.34 ± 11.65 c | 123.27 ± 1.39 ab | 76.46 ± 3.75 ab | 27.60 ± 0.72 a | 9907.6 ± 381.05 b | |
Low | 180 | 340.34 ± 23.67 b | 133.89 ± 13.77 a | 73.58 ± 3.13 b | 27.97 ± 1.66 a | 11,944.88 ± 776.25 a | |
High | 0 | 344.29 ± 17.26 b | 106.34 ± 4.90 c | 79.29 ± 3.05 ab | 27.09 ± 0.37 a | 9202.4 ± 562.99 c | |
High | 120 | 374.79 ± 12.26 ab | 120.82 ± 3.88 b | 77.39 ± 1.08 ab | 27.46 ± 0.32 a | 11,777.75 ± 525.56 a | |
High | 180 | 390.79 ± 22.46 a | 125.31 ± 1.60 ab | 75.57 ± 3.32 ab | 26.71 ± 0.64 a | 12,085.52 ± 573.21 a | |
2019 | Low | 0 | 239.94 ± 10.06 d | 96.59 ± 7.13 d | 78.67 ± 3.07 a | 28.07 ± 0.99 a | 5890.52 ± 346.88 f |
Low | 120 | 271.25 ± 9.75 c | 125.41 ± 6.55 ab | 76.41 ± 1.78 ab | 27.42 ± 0.92 ab | 8335.34 ± 517.67 d | |
Low | 180 | 305.33 ± 24.31 b | 133.15 ± 8.69 a | 76.52 ± 1.31 ab | 28.24 ± 0.36 a | 10,792.49 ± 361.78 b | |
High | 0 | 322.86 ± 10.08 ab | 100.18 ± 7.62 cd | 76.46 ± 2.25 ab | 26.05 ± 0.65 b | 7772.91 ± 403.85 e | |
High | 120 | 332.45 ± 0.91 a | 112.53 ± 5.54 bc | 77.10 ± 1.71 ab | 27.72 ± 0.51 ab | 9581.52 ± 447.51 c | |
High | 180 | 326.05 ± 11.57 ab | 131.88 ± 13.03 a | 73.56 ± 2.89 b | 28.06 ± 1.82 a | 11,692.59 ± 420.98 a | |
ANOVA | |||||||
Year (Y) | *** | ** | *** | * | *** | ||
Density (D) | *** | * | ns | *** | *** | ||
Nitrogen (N) | *** | *** | *** | *** | *** | ||
Y × D | * | ns | ** | ** | *** | ||
Y × N | ns | * | ** | ** | *** | ||
D × N | *** | ** | *** | ns | *** | ||
Y × D × N | *** | ns | *** | *** | * |
Year | Density | Nitrogen | At Mid-Tillering µM CO2 m−2 s−1 | At Heading µM CO2 m−2 s−1 | At Maturity µM CO2 m−2 s−1 |
---|---|---|---|---|---|
2017 | Low | 0 | 18.80 ± 0.35 d | 22.40 ± 0.17 cd | 16.71 ± 0.35 d |
Low | 120 | 21.81 ± 0.33 c | 25.16 ± 0.64 ab | 19.48 ± 0.52 b | |
Low | 180 | 25.35 ± 0.09 a | 26.71 ± 1.48 a | 20.69 ± 0.45 a | |
High | 0 | 18.19 ± 0.43 d | 21.43 ± 0.35 d | 18.26 ± 0.31 c | |
High | 120 | 23.70 ± 0.45 b | 25.27 ± 1.03 b | 19.58 ± 0.51 b | |
High | 180 | 21.53 ± 0.96 c | 23.62 ± 0.53 c | 18.63 ± 0.42 c | |
2018 | Low | 0 | 19.58 ± 0.45 d | 23.81 ± 0.22 c | 18.37 ± 0.24 b |
Low | 120 | 23.70 ± 0.35 b | 27.37 ± 0.13 a | 20.62 ± 0.75 a | |
Low | 180 | 26.00 ± 0.71 a | 27.66 ± 0.45 a | 21.58 ± 0.25 a | |
High | 0 | 19.31 ± 0.29 d | 21.85 ± 0.67 c | 19.08 ± 0.26 b | |
High | 120 | 24.56 ± 0.19 b | 25.59 ± 0.71 b | 20.62 ± 1.23 a | |
High | 180 | 21.93 ± 0.83 c | 26.00 ± 0.64 b | 18.97 ± 0.64 b | |
2019 | Low | 0 | 18.72 ± 0.54 e | 22.42 ± 0.31 c | 17.10 ± 0.62 c |
Low | 120 | 22.58 ± 0.21 c | 25.00 ± 0.50 ab | 19.22 ± 0.50 ab | |
Low | 180 | 25.30 ± 0.64 a | 25.80 ± 0.56 a | 20.10 ± 0.85 a | |
High | 0 | 17.76 ± 0.47 e | 20.98 ± 0.63 d | 18.70 ± 0.14 b | |
High | 120 | 23.67 ± 0.71 b | 25.35 ± 0.75 ab | 19.28 ± 0.13 ab | |
High | 180 | 21.18 ± 0.76 d | 24.24 ± 1.23 b | 18.68 ± 0.38 b | |
ANOVA | |||||
Year (Y) | *** | *** | *** | ||
Density (D) | *** | *** | * | ||
Nitrogen (N) | *** | *** | *** | ||
Y × D | ** | ** | ** | ||
Y × N | ** | ns | ns | ||
D × N | *** | *** | *** | ||
Y × D × N | * | *** | ** |
Year | Density | Nitrogen | SOD U min−1 g−1 FW | POD U min−1 g−1 FW | CAT U min−1 g−1 FW | APX U min−1 g−1 FW |
---|---|---|---|---|---|---|
2017 | Low | 0 | 337.55 ± 6.80 e | 416.93 ± 11.28 b | 176.41 ± 5.10 e | 134.18 ± 2.06 d |
Low | 120 | 407.23 ± 2.77 b | 485.88 ± 16.63 a | 314.50 ± 12.97 b | 181.27 ± 3.74 b | |
Low | 180 | 430.91 ± 10.97 a | 486.14 ± 18.52 a | 338.41 ± 7.94 a | 208.15 ± 14.24 a | |
High | 0 | 331.01 ± 5.02 e | 395.37 ± 6.48 b | 166.36 ± 7.51 e | 118.09 ± 2.31 e | |
High | 120 | 393.13 ± 7.67 c | 472.54 ± 1.86 a | 288.42 ± 11.70 c | 167.54 ± 4.93 c | |
High | 180 | 373.42 ± 2.61 d | 437.22 ± 9.05 b | 240.77 ± 5.77 d | 158.87 ± 3.91 c | |
2018 | Low | 0 | 350.38 ± 11.43 c | 416.42 ± 8.76 c | 186.02 ± 7.23 e | 134.19 ± 2.69 e |
Low | 120 | 409.91 ± 9.36 a | 471.00 ± 24.28 b | 314.12 ± 7.69 b | 184.76 ± 6.25 b | |
Low | 180 | 425.43 ± 7.78 a | 510.87 ± 1.98 a | 338.84 ± 15.02 a | 205.86 ± 4.81 a | |
High | 0 | 322.17 ± 6.75 d | 383.79 ± 10.7 d | 165.13 ± 8.43 f | 120.30 ± 3.92 f | |
High | 120 | 386.21 ± 2.93 b | 458.7 ± 4.45 b | 288.11 ± 13.53 c | 169.19 ± 2.22 c | |
High | 180 | 364.55 ± 16.58 c | 431.3 ± 13.53 c | 251.80 ± 10.22 d | 154.81 ± 2.52 d | |
2019 | Low | 0 | 335.69 ± 8.6 d | 413.35 ± 17.65 b | 177.93 ± 8.90 e | 134.05 ± 0.44 d |
Low | 120 | 410.59 ± 19.91 b | 467.11 ± 3.39 a | 317.27 ± 6.04 b | 181.51 ± 5.78 b | |
Low | 180 | 438.80 ± 16.01 a | 488.43 ± 19.31 a | 340.43 ± 9.88 a | 202.93 ± 2.98 a | |
High | 0 | 330.41 ± 4.64 d | 380.68 ± 8.87 c | 167.48 ± 5.37 e | 119.68 ± 2.41 e | |
High | 120 | 391.74 ± 15.01 b | 469.87 ± 12.01 a | 283.64 ± 5.73 c | 169.30 ± 4.30 c | |
High | 180 | 362.91 ± 17.22 c | 435.98 ± 17.84 b | 241.31 ± 4.39 d | 165.40 ± 4.09 c | |
ANOVA | ||||||
Year (Y) | ns | * | * | ns | ||
Density (D) | *** | *** | *** | *** | ||
Nitrogen (N) | *** | *** | *** | *** | ||
Y × D | ns | * | ns | * | ||
Y × N | * | *** | ns | ns | ||
D × N | *** | *** | *** | *** | ||
Y × D × N | * | * | *** | ns |
Year | Density | Nitrogen | REn (%) | AEn (kg kg−1) | PFPn (kg kg−1) | PEn (kg kg−1) | IEN (kg kg−1) | HIn (%) |
---|---|---|---|---|---|---|---|---|
2017 | Low | 0 | 62.50 ± 2.04 d | |||||
Low | 120 | 32.36 ± 2.86 a | 28.41 ± 2.44 a | 65.18 ± 1.57 a | 88.40 ± 12.24 a | 101.73 ± 6.66 a | 68.57 ± 0.32 b | |
Low | 180 | 30.90 ± 1.67 a | 25.76 ± 3.33 a | 50.27 ± 4.03 b | 83.67 ± 12.98 a | 96.50 ± 8.39 a | 65.90 ± 0.86 c | |
High | 0 | 63.29 ± 1.00 d | ||||||
High | 120 | 34.38 ± 1.71 a | 26.54 ± 5.68 a | 66.77 ± 3.41 a | 76.78 ± 12.42 a | 98.21 ± 3.33 a | 69.21 ± 0.42 a | |
High | 180 | 30.92 ± 1.76 a | 22.92 ± 3.23 a | 49.74 ± 1.82 b | 73.90 ± 6.11 a | 93.30 ± 1.54 a | 61.55 ± 1.86 d | |
2018 | Low | 0 | 63.11 ± 1.90 bc | |||||
Low | 120 | 35.16 ± 0.80 a | 27.04 ± 3.53 a | 61.55 ± 3.48 b | 76.81 ± 8.40 a | 90.23 ± 4.48 a | 67.38 ± 1.85 a | |
Low | 180 | 30.62 ± 2.21 a | 23.82 ± 4.82 a | 46.82 ± 4.44 c | 78.53 ± 19.28 a | 89.23 ± 11.60 a | 64.63 ± 1.16 b | |
High | 0 | 64.00 ± 0.53 b | ||||||
High | 120 | 34.83 ± 3.18 a | 28.59 ± 8.22 a | 70.10 ± 4.89 a | 84.12 ± 33.00 a | 98.78 ± 9.74 a | 68.89 ± 0.35 a | |
High | 180 | 33.45 ± 2.47 a | 20.40 ± 3.12 a | 48.08 ± 3.39 c | 60.78 ± 4.90 a | 83.41 ± 4.78 a | 61.36 ± 1.36 c | |
2019 | Low | 0 | 63.62 ± 1.39 c | |||||
Low | 120 | 31.57 ± 4.20 ab | 25.87 ± 7.10 a | 57.59 ± 5.46 a | 84.53 ± 32.85 a | 90.68 ± 9.86 a | 68.46 ± 1.50 a | |
Low | 180 | 30.03 ± 1.74 ab | 25.70 ± 2.16 a | 46.84 ± 0.69 a | 85.57 ± 4.37 a | 91.29 ± 4.08 a | 66.17 ± 2.10 b | |
High | 0 | 63.94 ± 0.67 bc | ||||||
High | 120 | 34.68 ± 2.00 a | 25.6 ± 2.85 a | 65.04 ± 5.43 a | 73.75 ± 5.70 a | 94.61 ± 7.76 a | 70.29 ± 0.65 a | |
High | 180 | 28.84 ± 1.22 b | 21.08 ± 1.91 a | 47.38 ± 3.43 a | 73.36 ± 9.51 a | 92.06 ± 9.34 a | 59.99 ± 0.52 d | |
ANOVA | ||||||||
Year (Y) | *** | ns | ** | ns | *** | ** | ||
Density (D) | ns | ns | *** | ** | ns | ** | ||
Nitrogen (N) | *** | *** | *** | * | *** | *** | ||
Y × D | ns | ns | ** | ns | ns | * | ||
Y × N | ns | ns | ns | ns | * | *** | ||
D × N | ns | ns | *** | ns | ns | *** | ||
Y × D × N | *** | ns | * | ns | *** | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Shen, C.; Xu, Q.; Zafar, S.; Du, B.; Xing, D. Grain Yield, Nitrogen Use Efficiency and Antioxidant Enzymes of Rice under Different Fertilizer N Inputs and Planting Density. Agronomy 2022, 12, 430. https://doi.org/10.3390/agronomy12020430
Wang W, Shen C, Xu Q, Zafar S, Du B, Xing D. Grain Yield, Nitrogen Use Efficiency and Antioxidant Enzymes of Rice under Different Fertilizer N Inputs and Planting Density. Agronomy. 2022; 12(2):430. https://doi.org/10.3390/agronomy12020430
Chicago/Turabian StyleWang, Wenxi, Congcong Shen, Qin Xu, Sundus Zafar, Bin Du, and Danying Xing. 2022. "Grain Yield, Nitrogen Use Efficiency and Antioxidant Enzymes of Rice under Different Fertilizer N Inputs and Planting Density" Agronomy 12, no. 2: 430. https://doi.org/10.3390/agronomy12020430
APA StyleWang, W., Shen, C., Xu, Q., Zafar, S., Du, B., & Xing, D. (2022). Grain Yield, Nitrogen Use Efficiency and Antioxidant Enzymes of Rice under Different Fertilizer N Inputs and Planting Density. Agronomy, 12(2), 430. https://doi.org/10.3390/agronomy12020430