Crop Performance Indexes Applied to Legume Used as Summer Cover Crops under Water Deficit Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Isotopic Ratio Mass Spectrometry Determination
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soares, M.B.; Tavanti, R.F.; Rigotti, A.R.; de Lima, J.P.; da Silva Freddi, O.; Petter, F.A. Use of cover crops in the southern Amazon region: What is the impact on soil physical quality? Geoderma 2021, 384, 114796. [Google Scholar] [CrossRef]
- Da Silva, E.C.; Muraoka, T.; Bastos, A.V.S.; Franzin, V.I.; Buzetti, S.; Loureiro Soares, F.A.; Batista Teixeira, M.; Bendassolli, J.A. Biomass and Nutrient Accumulation by Cover Crops and Upland Rice Grown in Succession Under No-Tillage System as Affected by Nitrogen Fertilizer Rate. J. Crop Sci. Biotechnol. 2020, 23, 117–126. [Google Scholar] [CrossRef]
- Pereira Pacheco, L.; Dalla Côrt São Miguel, A.S.; da Silva, R.G.; de Souza, E.D.; André Petter, F.; Kappes, C. Biomass yield in production systems of soybean sown in succession to annual crops and cover crops. Pesquisa Agropecuária Brasileira 2017, 52, 582–591. [Google Scholar] [CrossRef]
- Reddy, P.P. Cover/Green Manure Crops. In Sustainable Intensification of Crop Production; Springer: Singapore, 2016; pp. 55–67. [Google Scholar] [CrossRef]
- Souza, A.V.S.S.; Souza, T.A.F.; Santos, D.; Rios, E.S.; Souza, G.J.L. Agronomic evaluation of legume cover crops for sustainable agriculture. Russ. Agric. Sci. 2018, 44, 31–38. [Google Scholar] [CrossRef]
- Pound, B.; Anderson, S.; Gundel, S. Species for niches: When and for whom are cover crops appropriate? Mt. Res. Dev. 1999, 19, 307–312. [Google Scholar]
- Sadras, V.; Lake, L.; Li, Y.; Farquharson, E.A.; Sutton, T. Phenotypic plasticity and its genetic regulation for yield, nitrogen fixation and δ13C in chickpea crops under varying water regimes. J. Exp. Bot. 2016, 67, 4339–4351. [Google Scholar] [CrossRef] [Green Version]
- Blankenagel, S.; Yang, Z.; Avramova, V.; Schön, C.-C.; Grill, E. Generating Plants with Improved Water Use Efficiency. Agronomy 2018, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Santiago-Arenas, R.; Ferdous, Z.; Attia, A.; Datta, A. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Adv. Agron. 2019, 156, 109–157. [Google Scholar]
- Vadez, V.; Kholova, J.; Medina, S.; Kakkera, A.; Anderberg, H. Transpiration efficiency: New insights into an old story. J. Exp. Bot. 2014, 65, 6141–6153. [Google Scholar] [CrossRef] [Green Version]
- Polley, H.W. Implications of atmospheric and climatic change for crop yield and water use efficiency. Crop Sci. 2002, 42, 131–140. [Google Scholar] [CrossRef]
- Ali, M.H.; Talukder, M.S.U. Increasing water productivity in crop production—A synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Barbarin, I.; Royo, J.B. Application of the measurement of the natural abundance of stable isotopes in viticulture: A review. Aust. J. Grape Wine Res. 2015, 21, 157–167. [Google Scholar] [CrossRef]
- Berriel, V.; Monza, J.; Perdomo, C.H. Cover Crop Selection by Jointly Optimizing Biomass Productivity, Biological Nitrogen Fixation, and Transpiration Efficiency: Application to Two Crotalaria Species. Agronomy 2020, 10, 1116. [Google Scholar] [CrossRef]
- Elazab, A.; Molero, G.; Serret, M.D.; Araus, J.L. Root traits and δ13C and δ18O of durum wheat under different water regimes. Funct. Plant Biol. 2012, 39, 379–393. [Google Scholar] [CrossRef]
- Yasir, T.A.; Min, D.H.; Chen, X.J.; Condon, A.G.; Hu, Y.G. The association of carbon isotope discrimination (Δ) with gas exchange parameters and yield traits in Chinese bread wheat cultivars under two water regimes. Agric. Water Manag. 2013, 119, 111–120. [Google Scholar] [CrossRef]
- Berriel, V.; Mori, C.; Perdomo, C. Water status and 13C isotopic discrimination of two conventional pastures in Uruguay. Agrociencia 2014, 18, 1–13. (In Spanish) [Google Scholar]
- Hartman, G.; Danin, A. Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. Oecologia 2010, 162, 837–852. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.R.; Turnbull, M.H.; Schmidt, S.; Erskine, P.D. 13C natural-abundance in plant-communities along a rainfall gradient: A biological integrator of water availability. Aust. J. Plant Physiol. 1995, 22, 51–55. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Cooper, T.A. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 1988, 76, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Funct. Plant Biol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Santiago, L.S.; Silvera, K.; Andrade, J.L.; Dawson, T.E. The use of stable isotopes in tropical biology. Interciencia 2005, 30, 28–35. (In Spanish) [Google Scholar]
- Barbour, M.M. Stable oxygen isotope composition of plant tissue: A review. Funct. Plant Biol. 2007, 34, 83–94. [Google Scholar] [CrossRef]
- Hirl, R.T.; Ogée, J.; Ostler, U.; Schäufele, R.; Baca Cabrera, J.; Zhu, J.; Schliep, I.; Wingate, L.; Schnyder, H. Temperature sensitive biochemical 18O-fractionation and humidity-dependent attenuation factor are needed to predict δ18O of cellulose from leaf water in a grassland ecosystem. N. Phytol. 2021, 229, 3156–3171. [Google Scholar] [CrossRef] [PubMed]
- Chalk, P.M.; Craswell, E.T. An overview of the role and signifcance of 15N methodologies in quantifying biological N2 fxation (BNF) and BNF dynamics in agro-ecosystems. Symbiosis 2018, 75, 1–16. [Google Scholar] [CrossRef]
- Berriel, V.; Perdomo, C.; Monza, J. Carbon Isotope Discrimination and Water-Use Efficiency in Crotalaria Cover Crops under Moderate Water Deficit. J. Soil Sci. Plant Nutr. 2020, 20, 537–545. [Google Scholar] [CrossRef]
- Sulzman, E.W. Stable isotope chemistry and measurement: A primer. In Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Michener, R., Lajtha, K., Eds.; Blackwell Publishing: Boston, NJ, USA, 2007; pp. 1–21. [Google Scholar]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Shearer, G.; Kohl, D.H. N2-fixation in field settings: Estimations based on natural 15N abundance. Aust. J. Plant Physiol. 1986, 13, 699–756. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat; Version 2011; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. [Google Scholar]
- Saikia, P.; Nag, A.; Anurag, S.; Chatterjee, S.; Khan, M.L. Tropical Legumes: Status, Distribution, Biology and Importance. In The Plant Family Fabaceae; Hasanuzzaman, M., Araújo, S., Gill, S., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Zorrilla-Fontanesi, Y.; Pauwels, L.; Panis, B. Strategies to revise agrosystems and breeding to control Fusarium wilt of banana. Nat. Food 2020, 1, 599–604. [Google Scholar] [CrossRef]
- Condon, A.G. Drying times: Plant traits to improve crop water use efficiency and yield. J. Exp. Bot. 2020, 71, 2239–2252. [Google Scholar] [CrossRef]
- Hernandez-Ochoa, I.M.; Pequeno, D.N.L.; Reynolds, M. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: Management, breeding options and land use change. Eur. J. Agron. 2019, 109, 125915. [Google Scholar] [CrossRef]
- Buto, O.; Galbiati, G.M.; Alekseeva, N.; Bernoux, M. Climate Finance in the Agriculture and Land Use Sector—Global and Regional Trends between 2000 and 2018; FAO: Rome, Italy, 2021. [Google Scholar]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K. Maximizing Crop Yields; Marcel Dekker: New York, NY, USA, 1992. [Google Scholar]
- Baligar, V.C.; Fageria, N.K. Agronomy and Physiology of Tropical Cover Crops. J. Plant Nutr. 2007, 30, 1287–1339. [Google Scholar] [CrossRef]
- Sreeharsha, R.V.; Mudalkar, S.; Sengupta, D. Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO2 environment in pigeonpea (Cajanus cajan L.). Photosynth. Res. 2019, 139, 425–439. [Google Scholar] [CrossRef]
- Maxwell, T.M.; Silva, L.C.R.; Horwath, W.R. Integrating effects of species composition and soil properties to predict shifts in montane forest carbon-water relations. Proc. Natl. Acad. Sci. USA 2018, 115, E4219–E4226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pronger, J.; Campbell, D.I.; Clearwater, M.J.; Mudge, P.L.; Rutledge, S.; Wall, A.M.; Schipper, L.A. Toward optimisation of water use efficiency in dryland pastures using carbon isotope discrimination as a tool to select plant species mixtures. Sci. Total Environ. 2019, 665, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.; Rebuffo, M.; Díaz, P.; García, C.; Monza, J.; Borsani, O. Physiological and biochemical responses to water deficit in Lotus uliginosus x L. corniculatus hybrids. Crop Pasture Sci. 2017, 68, 670–679. [Google Scholar] [CrossRef]
- Turner, N.C.; Palta, J.A.; Shrestha, R.; Ludwig, C.; Siddique, K.H.M.; Turner, D.W. Carbon isotope discrimination is not correlated with transpiration efficiency in three cool-season grain legumes (Pulses). J. Integr. Plant Biol. 2007, 49, 1478–1483. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Cernusak, L.A.; Barnes, B. Heavy water fractionation during transpiration. Plant Physiol. 2007, 143, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Ferrio, J.P.; Mateo, M.A.; Bort, J.; Abdalla, O.; Voltas, J.; Araus, J.L. Relationships of grain delta 13C and delta 18O with wheat phenology and yield under water-limited conditions. Ann. Appl. Biol. 2007, 150, 207–215. [Google Scholar] [CrossRef]
- Barbour, M.M.; Cernusak, L.A.; Whitehead, D.; Griffin, K.L.; Turnbull, M.H.; Tissue, D.T.; Farquhar, G.D. Nocturnal stomatal conductance and implications for modelling δ18O of leaf-respired CO2 in temperate tree species. Funct. Plant Biol. 2005, 32, 1107–1121. [Google Scholar] [CrossRef] [Green Version]
DM | T | TE | ∆13C | ∆18O | |
---|---|---|---|---|---|
DM | 1 | ||||
T | 0.50 *** | 1 | |||
TE | 0.49 *** | −0.47 *** | 1 | ||
∆13C | −0.32 *** | 0.44 *** | −0.77 *** | 1 | |
∆18O | 0.13 * | −0.44 *** | 0.56 *** | −0.69 *** | 1 |
Species | Nfix/T | Nfix/∆13C | Nfix/∆18O | |||
---|---|---|---|---|---|---|
80% FC | 50% FC | 80% FC | 50% FC | 80% FC | 50% FC | |
Cajanus cajan | 75 a | 69 a | 6.87 Aa | 4.52 Ba | 6.7 a | 6.3 a |
Crotalaria spectabilis | 25 b | 33 b | 2.43 Ab | 2.37 Bb | 2.2 b | 2.3 b |
Crotalaria ochroleuca | 77 a | 83 a | 5.49 Aa | 3.60 Ba | 5.7 a | 4.3 a |
Crotalaria juncea | 16 b | 14 b | 1.39 Ab | 0.84 Bb | 1.8 b | 1.4 b |
Factor | p-value | |||||
Specie | <0.0001 | <0.0001 | <0.0001 | |||
Water status | NS | 0.0325 | NS | |||
Specie × Water status | NS | NS | NS |
TE | Nfix/T | Nfix/∆13C | Nfix/∆18O | |
---|---|---|---|---|
TE | 1 | |||
WUEfix | 0.45 *** | 1 | ||
Nfix/∆13C | 0.29 * | 0.87 *** | 1 | |
Nfix/∆18O | 0.43 *** | 0.73 *** | 0.85 *** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berriel, V.; Perdomo, C.H.; Signorelli, S.; Monza, J. Crop Performance Indexes Applied to Legume Used as Summer Cover Crops under Water Deficit Conditions. Agronomy 2022, 12, 443. https://doi.org/10.3390/agronomy12020443
Berriel V, Perdomo CH, Signorelli S, Monza J. Crop Performance Indexes Applied to Legume Used as Summer Cover Crops under Water Deficit Conditions. Agronomy. 2022; 12(2):443. https://doi.org/10.3390/agronomy12020443
Chicago/Turabian StyleBerriel, Verónica, Carlos H. Perdomo, Santiago Signorelli, and Jorge Monza. 2022. "Crop Performance Indexes Applied to Legume Used as Summer Cover Crops under Water Deficit Conditions" Agronomy 12, no. 2: 443. https://doi.org/10.3390/agronomy12020443
APA StyleBerriel, V., Perdomo, C. H., Signorelli, S., & Monza, J. (2022). Crop Performance Indexes Applied to Legume Used as Summer Cover Crops under Water Deficit Conditions. Agronomy, 12(2), 443. https://doi.org/10.3390/agronomy12020443