The Effect of an Engineered Biostimulant Derived from Ascophyllum nodosum on Grass Yield under a Reduced Nitrogen Regime in an Agronomic Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. PSI-362-Coated Granular N Fertilizer
2.2. Modified Lysimeter Grass Trial Setup
2.3. Lysimeter Soil Nutrient Analysis
2.4. Grass Growth Rate, Yield Measurement and Quality Assessment
2.5. Silage Harvesting Field Trials
2.6. Grazing Field Trials
2.7. Weather Data
2.8. Statistical Analysis
3. Results & Discussion
3.1. Nitrogen Response Curve
3.2. Modified Lysimeter Grass Growth Yield and Quality Information
3.3. PSI-362 Application Enhanced NUE in Lysimeter Trials
3.4. Silage Harvesting Trials
3.5. Pasture Grazing Field Trials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wall, D.; Plunkett, M. Major and Micro Nutrient Advice for Productive Agricultural Crops; Teagasc, Environment Research, Centre Johnstown Castle: Wexford, Ireland, 2021. [Google Scholar]
- World Health Organization. Musculoskeletal Conditions. Available online: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions (accessed on 15 December 2021).
- Hoxha, A.; Christensen, B. The carbon footprint of fertiliser production: Regional reference values. In Proceedings-International Fertiliser Society; International Fertiliser Society: Colchester, UK, 2019. [Google Scholar]
- Barak, P.; Jobe, B.O.; Krueger, A.R.; Peterson, L.A.; Laird, D.A. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 1997, 197, 61–69. [Google Scholar] [CrossRef]
- Banger, K.; Nasielski, J.; Janovicek, K.; Sulik, J.; Deen, B. Potential Farm-Level Economic Impact of Incorporating Environmental Costs into Nitrogen Decision Making: A Case Study in Canadian Corn Production. Front. Sustain. Food Syst. 2020, 4, 96. [Google Scholar] [CrossRef]
- Sigurdarson, J.J.; Svane, S.; Karring, H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev. Environ. Sci. Bio./Technol. 2018, 17, 241–258. [Google Scholar] [CrossRef] [Green Version]
- Maraseni, T.N.; Qu, J. An international comparison of agricultural nitrous oxide emissions. J. Clean. Prod. 2016, 135, 1256–1266. [Google Scholar] [CrossRef]
- Brentrup, F.; Pallière, C. Nitrogen use efficiency as an agro-environmental indicator. In Proceedings of the OECD Workshop on Agri-environmental Indicators, Leysin, Switzerland, 23–26 March 2010. [Google Scholar]
- Dobermann, A.R. Nitrogen Use Efficiency-State of the Art; Agronomy—Faculty Publications, University of Nebraska: Lincoln, NE, USA, 2005; p. 316. [Google Scholar]
- van Bueren, E.T.L.; Struik, P.C. Diverse concepts of breeding for nitrogen use efficiency. A review. Agron. Sustain. Dev. 2017, 37, 50. [Google Scholar]
- Mitra, G.N. Regulation of Nutrient Uptake by Plants; Springer Science and Business Media LLC: New Delhi, India, 2015; Volume 10, pp. 978–981. [Google Scholar]
- Gebremichael, A.W.; Rahman, N.; Krol, D.J.; Forrestal, P.J.; Lanigan, G.J.; Richards, K.G. Ammonium-Based Compound Fertilisers Mitigate Nitrous Oxide Emissions in Temperate Grassland. Agronomy 2021, 11, 1712. [Google Scholar] [CrossRef]
- Long, F.N.J.; Kennedy, S.J.; Gracey, H.I. Effect of fertilizer nitrogen rate and timing on herbage production and nitrogen use efficiency for first-cut silage. Grass Forage Sci. 1991, 46, 231–237. [Google Scholar] [CrossRef]
- Ricci, M.; Tilbury, L.; Daridon, B.; Sukalac, K. General Principles to Justify Plant Biostimulant Claims. Front. Plant Sci. 2019, 10, 494. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2018, 82, 277–285. [Google Scholar] [CrossRef]
- Innovation Union. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. In A New Skills Agenda for Europe; Innovation Union: Brussels, Belgium, 2014. [Google Scholar]
- Goñi, O.; Łangowski, Ł.; Feeney, E.; Quille, P.; O’Connell, S. Reducing Nitrogen Input in Barley Crops While Maintaining Yields Using an Engineered Biostimulant Derived from Ascophyllum nodosum to Enhance Nitrogen Use Efficiency. Front. Plant Sci. 2021, 12, 789. [Google Scholar] [CrossRef]
- Kroetsch, D.; Wang, C. Particle size distribution. Soil Sampl. Methods Anal. 2008, 2, 713–725. [Google Scholar]
- Shoemaker, H.E.; McLean, E.O.; Pratt, P.F. Buffer Methods for Determining Lime Requirement of Soils with Appreciable Amounts of Extractable Aluminum. Soil Sci. Soc. Am. J. 1961, 25, 274–277. [Google Scholar] [CrossRef]
- Curran, J.; Delaby, L.; Kennedy, E.; Murphy, J.; Boland, T.; O’Donovan, M. Sward characteristics, grass dry matter intake and milk production performance are affected by pre-grazing herbage mass and pasture allowance. Livest. Sci. 2010, 127, 144–154. [Google Scholar] [CrossRef]
- O’Donovan, M.; Dillon, P.; Rath, M.; Stakelum, G. Nitrogen use efficiency and apparent nitrogen recovery of Kentucky bluegrass, smooth bromegrass, and orchardgrass. Agron. J. 2002, 94, 421–428. [Google Scholar]
- Zemenchik, R.A.; Albrecht, K.A. A comparison of four methods of herbage mass estimation. Ir. J. Agric. Food Res. 2002, 94, 17–27. [Google Scholar]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Noor, M.A.; Nawaz, M.M.; Hassan, M.U.; Sher, A.; Shah, T.; Abrar, M.M.; Ashraf, U.; Fiaz, S.; Basahi, M.A.; Ahmed, W.; et al. Small Farmers and Sustainable N and P Management: Implications and Potential Under Changing Climate. In Carbon and Nitrogen Cycling in Soil; Springer Science and Business Media LLC: New York, NY, USA, 2019; pp. 185–219. [Google Scholar]
- Brady, N.C.; Weil, R.R.; Brady, N.C. Elements of the Nature and Properties of Soils; Pearson AG: New York, NY, USA, 2010. [Google Scholar]
- Ashman, M.; Puri, G. Essential Soil Science: A Clear and Concise Introduction to Soil Science; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Van Es, H.M.; Sogbedji, J.M.; Schindelbeck, R.R. Effect of Manure Application Timing, Crop, and Soil Type on Nitrate Leaching. J. Environ. Qual. 2006, 35, 670–679. [Google Scholar] [CrossRef]
- Siwik-Ziomek, A.; Szczepanek, M. Soil Extracellular Enzyme Activities and Uptake of N by Oilseed Rape Depending on Fertilization and Seaweed Biostimulant Application. Agronomy 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; Francisco, S.S.; Baigorri, R.; Cruz, F.; et al. Brassica napus Growth is Promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed Extract: Microarray Analysis and Physiological Characterization of N, C, and S Metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Hurley, M.; Lewis, E.; Beecher, M.; Garry, B.; Fleming, C.; Boland, T.; Hennessy, D. Dry Matter Intake and In Vivo Digestibility of Grass-Only and Grass-White Clover in Individually Housed Sheep in Spring, Summer and Autumn. Animals 2021, 11, 306. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.; Wall, D.P.; Moran, B.; Murphy, P.N.C. Developing the EU Farm Accountancy Data Network to derive indicators around the sustainable use of nitrogen and phosphorus at farm level. Nutr. Cycl. Agroecosyst. 2015, 102, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Finneran, E.; Crosson, P.; O'kiely, P.; Shalloo, L.; Forristal, D.; Wallace, M. Simulation modelling of the cost of producing and utilising feeds for ruminants on Irish farms. J. Farm Manag. 2010, 14, 95–116. [Google Scholar]
- Hanrahan, L.; McHugh, N.; Hennessy, T.; Moran, B.; Kearney, R.; Wallace, M.; Shalloo, L. Factors associated with profitability in pasture-based systems of milk production. J. Dairy Sci. 2018, 101, 5474–5485. [Google Scholar] [CrossRef] [Green Version]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
Factor | DM kg ha−1 | CP kg ha−1 | DMD kg ha−1 |
---|---|---|---|
Treatment (T) | *** | *** | *** |
Soil pH | ns | ns | ns |
Soil phosphorus (P) | ns | ns | ns |
Soil potassium (K) | ns | ns | ns |
Soil type (ST) | ns | ns | ns |
Treatment (T) | |||
75% N | 6611a ± 296 | 1193a ± 45 | 5299a ± 264 |
75% N + 0.5× | 7239ab ± 377 | 1269a ± 58 | 5760ab ± 328 |
75% N +1× | 8193bc ± 383 | 1560b ± 61 | 6459b ± 328 |
75% N +1.5× | 8738c ± 531 | 1575b ± 84 | 6946b ± 443 |
100% N | 8412bc ± 340 | 1587b ± 50 | 6602b ± 296 |
Regime | Yield (kg DM ha−1) | p Value | CP (kg DM ha−1) | p Value | DMD (kg DM ha−1) | p Value |
---|---|---|---|---|---|---|
100% N | 4508 ± 192 | 0.775 | 840 ± 80 | 0.948 | 3352 ± 300 | 0.878 |
80% N + PSI-362 | 4594 ± 225 | 847 ± 68 | 3426 ± 359 |
Harvest | Regime | DM Yield (kg DM ha−1) | p Value | CP (kg DM ha−1) | p Value | DMD (kg DM ha−1) | p Value |
---|---|---|---|---|---|---|---|
1st | 100% N | 5325 ± 275 | 0.760 | 1031 ± 86 | 0.884 | 4142 ± 259 | 0.557 |
80% N + PSI-362 | 5485 ± 365 | 1013 ± 61 | 4387 ± 235 | ||||
2nd | 100% N | 3986 ± 500 | 0.767 | 738 ± 65 | 0.580 | 2941 ± 381 | 0.672 |
80% N + PSI-362 | 4182 ± 321 | 800 ± 68 | 3154 ± 243 | ||||
3rd | 100% N | 4217 ± 631 | a | 797 ± 49 | a | 3217 ± 196 | a |
80% N + PSI-362 | 4124 ± 595 | a | 746 ± 44 | a | 3134 ± 185 | a | |
100% N + PSI-362 | 4727 ± 873 | a | 1064 ± 98 | b | 3328 ± 307 | a |
Site | Regime | DGG (kg DM ha−1 Day−1) | p Value | DMD (kg ha−1 Day−1) | p Value | CP (kg ha−1 Day−1) | p Value |
---|---|---|---|---|---|---|---|
1 | 100% N | 60.9± 2.5 | 0.629 | 47.2 ± 1.9 | 0.132 | 13.2 ± 0.5 | 0.45 |
75% N + PSI-362 | 59.3 ± 2.4 | 46.3 ± 1.9 | 14.8 ± 0.6 | ||||
2 | 100% N (PU) | 92.4 ± 11.8 | 0.679 | ND | N/A | ND | N/A |
75% N + PSI-362 | 99.4 ± 11.6 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quille, P.; Claffey, A.; Feeney, E.; Kacprzyk, J.; Ng, C.K.-Y.; O’Connell, S. The Effect of an Engineered Biostimulant Derived from Ascophyllum nodosum on Grass Yield under a Reduced Nitrogen Regime in an Agronomic Setting. Agronomy 2022, 12, 463. https://doi.org/10.3390/agronomy12020463
Quille P, Claffey A, Feeney E, Kacprzyk J, Ng CK-Y, O’Connell S. The Effect of an Engineered Biostimulant Derived from Ascophyllum nodosum on Grass Yield under a Reduced Nitrogen Regime in an Agronomic Setting. Agronomy. 2022; 12(2):463. https://doi.org/10.3390/agronomy12020463
Chicago/Turabian StyleQuille, Patrick, Aisling Claffey, Ewan Feeney, Joanna Kacprzyk, Carl K.-Y. Ng, and Shane O’Connell. 2022. "The Effect of an Engineered Biostimulant Derived from Ascophyllum nodosum on Grass Yield under a Reduced Nitrogen Regime in an Agronomic Setting" Agronomy 12, no. 2: 463. https://doi.org/10.3390/agronomy12020463
APA StyleQuille, P., Claffey, A., Feeney, E., Kacprzyk, J., Ng, C. K. -Y., & O’Connell, S. (2022). The Effect of an Engineered Biostimulant Derived from Ascophyllum nodosum on Grass Yield under a Reduced Nitrogen Regime in an Agronomic Setting. Agronomy, 12(2), 463. https://doi.org/10.3390/agronomy12020463