DNA-Based Technologies for Grapevine Biodiversity Exploitation: State of the Art and Future Perspectives
Abstract
:1. Introduction
2. The Genetic Bases of Grape Inter- and Intra-Varietal Diversity
3. Genetic Technologies for the Characterization of Grape Diversity
3.1. Cytogenetic Techniques
3.2. PCR-Based Techniques
3.3. Array-Based Technologies
3.4. High-Throughput Sequencing (HTS) Technologies
3.4.1. Reduced Representation Sequencing (RRS)
3.4.2. Whole Genome Resequencing Approaches
3.4.3. RNA Sequencing
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lacombe, T.; Audeguin, L.; Boselli, M.; Bucchetti, B.; Cabello, F.; Chatelet, P.; Crespan, M.; D’Onofrio, C.; Eiras Dias, J.; Ercisli, S.; et al. Grapevine European catalogue: Towards a comprehensive list. Vitis 2011, 50, 65–68. [Google Scholar]
- Aradhya, M.K.; Dangl, G.S.; Prins, B.H.; Boursiquot, J.-M.; Walker, M.A.; Meredith, C.P.; Simon, C.J. Genetic Structure and Differentiation in Cultivated Grape, Vitis vinifera L. Genet. Res. 2003, 81, 179–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmaso, M.; Faes, G.; Segala, C.; Stefanini, M.; Salakhutdinov, I.; Zyprian, E.; Toepfer, R.; Grando, M.S.; Velasco, R. Genome Diversity and Gene Haplotypes in the Grapevine (Vitis vinifera L.), as Revealed by Single Nucleotide Polymorphisms. Mol. Breed. 2005, 14, 385–395. [Google Scholar] [CrossRef]
- Arrizabalaga, M.; Morales, F.; Oyarzun, M.; Delrot, S.; Gomès, E.; Irigoyen, J.J.; Hilbert, G.; Pascual, I. Tempranillo Clones Differ in the Response of Berry Sugar and Anthocyanin Accumulation to Elevated Temperature. Plant Sci. 2018, 267, 74–83. [Google Scholar] [CrossRef]
- Kupe, M.; Karatas, N.; Unal, M.S.; Ercisli, S.; Baron, M.; Sochor, J. Phenolic Composition and Antioxidant Activity of Peel, Pulp and Seed Extracts of Different Clones of the Turkish Grape Cultivar ‘Karaerik’. Plants 2021, 10, 2154. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the World’s Future Wine-Growing Regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- This, P.; Lacombe, T.; Thomas, M.R. Historical Origins and Genetic Diversity of Wine Grapes. TRENDS Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef]
- Bošković, J. Influence of Genetic Variability of Grapes to Produce High-Quality Wines. J. Agron. Technol. Eng. Manag. 2020, 3, 483–488. [Google Scholar]
- Riaz, A.; Anjum, M.A.; Naz, S.; Balal, R.M. Applications of Molecular Markers in Fruit Crops for Breeding Programs—A Review. Phyton 2021, 90, 17. [Google Scholar]
- Myles, S.; Boyko, A.R.; Owens, C.L.; Brown, P.J.; Grassi, F.; Aradhya, M.K.; Prins, B.; Reynolds, A.; Chia, J.-M.; Ware, D. Genetic Structure and Domestication History of the Grape. Proc. Natl. Acad. Sci. USA 2011, 108, 3530–3535. [Google Scholar] [CrossRef] [Green Version]
- Bacilieri, R.; Lacombe, T.; Le Cunff, L.; Di Vecchi-Staraz, M.; Laucou, V.; Genna, B.; Péros, J.-P.; This, P.; Boursiquot, J.-M. Genetic Structure in Cultivated Grapevines Is Linked to Geography and Human Selection. BMC Plant Biol. 2013, 13, 25. [Google Scholar] [CrossRef] [Green Version]
- Bowers, J.E.; Meredith, C.P. The Parentage of a Classic Wine Grape, Cabernet Sauvignon. Nat. Genet. 1997, 16, 84–87. [Google Scholar] [CrossRef]
- Bowers, J.; Boursiquot, J.-M.; This, P.; Chu, K.; Johansson, H.; Meredith, C. Historical Genetics: The Parentage of Chardonnay, Gamay, and Other Wine Grapes of Northeastern France. Science 1999, 285, 1562–1565. [Google Scholar] [CrossRef]
- Bowers, J.E.; Siret, R.; Meredith, C.P.; This, P.; Boursiquot, J.-M. A Single Pair of Parents Proposed for a Group of Grapevine Varieties in Northeastern France. Acta Hort. 1998, 528, 129–132. [Google Scholar] [CrossRef]
- Vouillamoz, J.; Monaco, A.; Costantini, L.; Stefanini, M.; Scienza, A.; Grando, M.S. The Parentage of ‘Sangiovese’, the Most Important Italian Wine Grape. Vitis 2007, 46, 19–22. [Google Scholar]
- Boursiquot, J.-M.; Lacombe, T.; Laucou, V.; Julliard, S.; Perrin, F.-X.; Lanier, N.; Legrand, D.; Meredith, C.; This, P. Parentage of Merlot and Related Winegrape Cultivars of Southwestern France: Discovery of the Missing Link. Aust. J. Grape Wine Res. 2009, 15, 144–155. [Google Scholar] [CrossRef]
- Raimondi, S.; Tumino, G.; Ruffa, P.; Boccacci, P.; Gambino, G.; Schneider, A. DNA-Based Genealogy Reconstruction of Nebbiolo, Barbera and Other Ancient Grapevine Cultivars from Northwestern Italy. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Riaz, S.; Garrison, K.E.; Dangl, G.S.; Boursiquot, J.-M.; Meredith, C.P. Genetic Divergence and Chimerism within Ancient Asexually Propagated Winegrape Cultivars. J. Am. Soc. Hortic. Sci. 2002, 127, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Vondras, A.M.; Minio, A.; Blanco-Ulate, B.; Figueroa-Balderas, R.; Penn, M.A.; Zhou, Y.; Seymour, D.; Ye, Z.; Liang, D.; Espinoza, L.K. The Genomic Diversification of Grapevine Clones. BMC Genom. 2019, 20, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vignani, R.; Bowers, J.E.; Meredith, C.P. Microsatellite DNA Polymorphism Analysis of Clones of Vitis vinifera ‘Sangiovese’. Sci. Hortic. 1996, 65, 163–169. [Google Scholar] [CrossRef]
- Cretazzo, E.; Meneghetti, S.; De Andrés, M.T.; Gaforio, L.; Frare, E.; Cifre, J. Clone Differentiation and Varietal Identification by Means of SSR, AFLP, SAMPL and M-AFLP in Order to Assess the Clonal Selection of Grapevine: The Case Study of Manto Negro, Callet and Moll, Autochthonous Cultivars of Majorca. Ann. Appl. Biol. 2010, 157, 213–227. [Google Scholar] [CrossRef]
- Gambino, G.; Dal Molin, A.; Boccacci, P.; Minio, A.; Chitarra, W.; Avanzato, C.G.; Tononi, P.; Perrone, I.; Raimondi, S.; Schneider, A. Whole-Genome Sequencing and SNV Genotyping of ‘Nebbiolo’ (Vitis vinifera L.) Clones. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Carrier, G.; Le Cunff, L.; Dereeper, A.; Legrand, D.; Sabot, F.; Bouchez, O.; Audeguin, L.; Boursiquot, J.-M.; This, P. Transposable Elements Are a Major Cause of Somatic Polymorphism in Vitis vinifera L. PLoS ONE 2012, 7, e32973. [Google Scholar] [CrossRef] [Green Version]
- Pelsy, F. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity 2010, 104, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Carbonell-Bejerano, P.; Royo, C.; Mauri, N.; Ibáñez, J.; Zapater, J.M.M. Somatic variation and cultivar innovation in grapevine. In Advances in Grape and Wine Biotechnology; IntechOpen: London, UK, 2019. [Google Scholar]
- Guichoux, E.; Lagache, L.; Wagner, S.; Chaumeil, P.; Léger, P.; Lepais, O.; Lepoittevin, C.; Malausa, T.; Revardel, E.; Salin, F. Current Trends in Microsatellite Genotyping. Mol. Ecol. Resour. 2011, 11, 591–611. [Google Scholar] [CrossRef]
- Morcia, C.; Tumino, G.; Raimondi, S.; Schneider, A.; Terzi, V. Muscat Flavor in Grapevine: A Digital PCR Assay to Track Allelic Variation in VvDXS Gene. Genes 2021, 12, 747. [Google Scholar] [CrossRef]
- Milovanov, A.V.; Tello, J.; Anhalt, U.C.M.; Forneck, A. Truncated Non-Nuclear Transposable Elements in Grapevine: A Mini Review. Sci. Agric. Bohem. 2019, 50, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Muyle, A.; Gaut, B.S. Evolutionary Genomics and the Domestication of Grapes. In The Grape Genome; Springer: Berlin/Heidelberg, Germany, 2019; pp. 39–55. [Google Scholar]
- Wellenreuther, M.; Mérot, C.; Berdan, E.; Bernatchez, L. Going beyond SNPs: The Role of Structural Genomic Variants in Adaptive Evolution and Species Diversification. Mol. Ecol. 2019, 28, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.L. Functional Analysis of Grapevine STS7 and STS22 Promoters; MSU Graduate Theses 2981; Missouri State: Springfield, MO, USA, 2016. [Google Scholar]
- Xie, H.; Konate, M.; Sai, N.; Tesfamicael, K.G.; Cavagnaro, T.; Gilliham, M.; Breen, J.; Metcalfe, A.; Stephen, J.R.; De Bei, R. Global DNA Methylation Patterns Can Play a Role in Defining Terroir in Grapevine (Vitis vinifera Cv. Shiraz). Front. Plant Sci. 2017, 8, 1860. [Google Scholar] [CrossRef] [Green Version]
- Springer, N.M.; Schmitz, R.J. Exploiting Induced and Natural Epigenetic Variation for Crop Improvement. Nat. Rev. Genet. 2017, 18, 563–575. [Google Scholar] [CrossRef]
- McCue, M.E.; Bannasch, D.L.; Petersen, J.L.; Gurr, J.; Bailey, E.; Binns, M.M.; Distl, O.; Guérin, G.; Hasegawa, T.; Hill, E.W. A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies. PLoS Genet. 2012, 8, e1002451. [Google Scholar] [CrossRef] [PubMed]
- Mercati, F.; De Lorenzis, G.; Brancadoro, L.; Lupini, A.; Abenavoli, M.R.; Barbagallo, M.G.; Di Lorenzo, R.; Scienza, A.; Sunseri, F. High-Throughput 18K SNP Array to Assess Genetic Variability of the Main Grapevine Cultivars from Sicily. Tree Genet. Genomes 2016, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ruffa, P.; Raimondi, S.; Boccacci, P.; Abbà, S.; Schneider, A. The Key Role of “Moscato Bianco” and “Malvasia Aromatica Di Parma” in the Parentage of Traditional Aromatic Grape Varieties. Tree Genet. Genomes 2016, 12, 50. [Google Scholar] [CrossRef]
- Kato, A.; Lamb, J.C.; Birchler, J.A. Chromosome Painting Using Repetitive DNA Sequences as Probes for Somatic Chromosome Identification in Maize. Proc. Natl. Acad. Sci. USA 2004, 101, 13554–13559. [Google Scholar] [CrossRef] [Green Version]
- Iovene, M.; Zhang, T.; Lou, Q.; Buell, C.R.; Jiang, J. Copy Number Variation in Potato—An Asexually Propagated Autotetraploid Species. Plant J. 2013, 75, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Fransz, P.; Linc, G.; Lee, C.-R.; Aflitos, S.A.; Lasky, J.R.; Toomajian, C.; Ali, H.; Peters, J.; van Dam, P.; Ji, X. Molecular, Genetic and Evolutionary Analysis of a Paracentric Inversion in Arabidopsis Thaliana. Plant J. 2016, 88, 159–178. [Google Scholar] [CrossRef] [Green Version]
- do Vale Martins, L.; Yu, F.; Zhao, H.; Dennison, T.; Lauter, N.; Wang, H.; Deng, Z.; Thompson, A.; Semrau, K.; Rouillard, J.-M. Meiotic Crossovers Characterized by Haplotype-Specific Chromosome Painting in Maize. Nat. Commun. 2019, 10, 4604. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, W.; Meng, Z.; Braz, G.T.; Li, Y.; Wang, K.; Wang, H.; Lai, J.; Jiang, J.; Dong, Z.; et al. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biol. 2021, 22, 237. [Google Scholar] [CrossRef]
- Jiang, J. Fluorescence in Situ Hybridization in Plants: Recent Developments and Future Applications. Chromosome Res. 2019, 27, 153–165. [Google Scholar] [CrossRef]
- Haas, H.U.; Alleweldt, G. The Karyotype of Grapevine (Vitis vinifera L.). Acta Hortic. 1998, 528, 249–258. [Google Scholar] [CrossRef]
- Castro, C.; Carvalho, A.; Pavia, I.; Leal, F.; Moutinho-Pereira, J.; Lima-Brito, J. Nucleolar Activity and Physical Location of Ribosomal DNA Loci in Vitis Vinifera L. by Silver Staining and Sequential FISH. Sci. Hortic. 2018, 232, 57–62. [Google Scholar] [CrossRef]
- Pereira, H.S.; Barão, A.; Delgado, M.; Morais-Cecílio, L.; Viegas, W. Genomic Analysis of Grapevine Retrotransposon 1 (Gret1) in Vitis vinifera. Theor. Appl. Genet. 2005, 111, 871–878. [Google Scholar] [CrossRef]
- Falistocco, E.; Passeri, V.; Marconi, G. Investigations of 5S RDNA of Vitis Vinifera L.: Sequence Analysis and Physical Mapping. Genome 2007, 50, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.S.; Delgado, M.; Avó, A.P.; Barão, A.; Serrano, I.; Viegas, W. Pollen Grain Development Is Highly Sensitive to Temperature Stress in Vitis Vinifera. Aust. J. Grape Wine Res. 2014, 20, 474–484. [Google Scholar] [CrossRef]
- Giannuzzi, G.; D’Addabbo, P.; Gasparro, M.; Martinelli, M.; Carelli, F.N.; Antonacci, D.; Ventura, M. Analysis of High-Identity Segmental Duplications in the Grapevine Genome. BMC Genom. 2011, 12, 436. [Google Scholar] [CrossRef] [Green Version]
- Cardone, M.F.; D’Addabbo, P.; Alkan, C.; Bergamini, C.; Catacchio, C.R.; Anaclerio, F.; Chiatante, G.; Marra, A.; Giannuzzi, G.; Perniola, R. Inter-varietal Structural Variation in Grapevine Genomes. Plant J. 2016, 88, 648–661. [Google Scholar] [CrossRef]
- Houel, C.; Bounon, R.; Chaïb, J.; Guichard, C.; Péros, J.-P.; Bacilieri, R.; Dereeper, A.; Canaguier, A.; Lacombe, T.; N’Diaye, A. Patterns of Sequence Polymorphism in the Fleshless Berry Locus in Cultivated and Wild Vitis Vinifera Accessions. BMC Plant Biol. 2010, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Beliveau, B.J.; Joyce, E.F.; Apostolopoulos, N.; Yilmaz, F.; Fonseka, C.Y.; McCole, R.B.; Chang, Y.; Li, J.B.; Senaratne, T.N.; Williams, B.R. Versatile Design and Synthesis Platform for Visualizing Genomes with Oligopaint FISH Probes. Proc. Natl. Acad. Sci. USA 2012, 109, 21301–21306. [Google Scholar] [CrossRef] [Green Version]
- Karimi, M.R.; Dehvari, V.; Hajiyan, M. Genetics Diversity of Some Grape Genotypes by ISSR and RAPD Markers. Eur. J. Hortic. Sci. 2011, 76, 201–207. [Google Scholar]
- Hameed, U.K.A.; Abdelaziz, K.; El Sherif, N. Genetic Diversity of Grapevine (Vitis vinifera L.) Cultivars in Al-Madinah Al-Munawara Based on Molecular Markers and Morphological Traits. Bangladesh J. Plant Taxon. 2020, 27, 113–127. [Google Scholar] [CrossRef]
- Dettweiler, E.; Jung, A.; Zyprian, E.; Topfer, R. Grapevine Cultivar Muller-Thurgau and Its True to Type Descent. Vitis 2000, 39, 63–66. [Google Scholar]
- Lacombe, T.; Boursiquot, J.-M.; Laucou, V.; Di Vecchi-Staraz, M.; Péros, J.-P.; This, P. Large-Scale Parentage Analysis in an Extended Set of Grapevine Cultivars (Vitis vinifera L.). Theor. Appl. Genet. 2013, 126, 401–414. [Google Scholar] [CrossRef]
- Staraz, M.D.V.; Bandinelli, R.; Boselli, M.; This, P.; Boursiquot, J.-M.; Laucou, V.; Lacombe, T.; Vares, D. Genetic Structuring and Parentage Analysis for Evolutionary Studies in Grapevine: Kin Group and Origin of the Cultivar Sangiovese Revealed. J. Am. Soc. Hortic. Sci. 2007, 132, 514–524. [Google Scholar] [CrossRef]
- Calò, A.; Costacurta, A.; Maraš, V.; Meneghetti, S.; Crespan, M. Molecular Correlation of Zinfandel (Primitivo) with Austrian, Croatian, and Hungarian Cultivars and Kratošija, an Additional Synonym. Am. J. Enol. Vitic. 2008, 59, 205–209. [Google Scholar]
- Marsal, G.; Mateo-Sanz, J.M.; Canals, J.M.; Zamora, F.; Fort, F. SSR Analysis of 338 Accessions Planted in Penedès (Spain) Reveals 28 Unreported Molecular Profiles of Vitis vinifera L. Am. J. Enol. Vitic. 2016, 67, 466–470. [Google Scholar] [CrossRef]
- Baránková, K.; Sotolář, R.; Baránek, M. Identification of Rare Traditional Grapevine Cultivars Using SSR Markers and Their Geographical Location within the Czech Republic. Czech J. Genet. Plant Breed. 2020, 56, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Crespan, M.; Giannetto, S.; Coletta, A.; Antonacci, D. The Parents of’Malvasia Nera Di Brindisi/Lecce’Have Been Discovered. Acta. Hortic. 2006, 827, 239–244. [Google Scholar]
- Maul, E.; Sudharma, K.N.; Kecke, S.; Marx, G.; Müller, C.; Audeguin, L.; Boselli, M.; Boursiquot, J.M.; Bucchetti, B.; Cabello, F.; et al. The European Vitis Database (www.Eu-Vitis.De): A Technical Innovation Through An Online Uploading And Interactive Modification System. Vitis 2012, 51, 79–85. [Google Scholar]
- Lefort, F.; Roubelakis-Angelakis, K.A. The Greek Vitis Database: A Multimedia Web-Backed Genetic Database for Germplasm Management of Vitis Resources in Greece. J. Wine Res. 2000, 11, 233–242. [Google Scholar] [CrossRef]
- Frei, A.; Vouillamoz, J.F.; Arnold, C. Swiss Vitis Microsatellite Database. In IX International Conference on Grape Genetics and Breeding. Acta Hortic. 2006, 827, 477–480. [Google Scholar]
- Villano, C.; Carputo, D.; Frusciante, L.; Santoro, X.; Aversano, R. Use of SSR and Retrotransposon-Based Markers to Interpret the Population Structure of Native Grapevines from Southern Italy. Mol. Biotechnol. 2014, 56, 1011–1020. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, S.H.; Kim, J.H.; Yim, B.; Mun, J.H.; Kim, H.B.; Hur, Y.Y.; Yu, H.J. An efficient strategy for developing genotype identification markers based on simple sequence repeats in grapevine. Hortic. Environ. Biotechnol. 2019, 60, 363–372. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Scalabrelli, G. Un Database Viticolo Universale. Italus Hortus. 2008, 17, 328–333. [Google Scholar]
- This, P.; Jung, A.; Boccacci, P.; Borrego, J.; Botta, R.; Costantini, L.; Crespan, M.; Dangl, G.S.; Eisenheld, C.; Ferreira-Monteiro, F. Characterization of Oriental Cultivars of Grapevine Using a Reference Allele System of Microsatellite Data and Assignment Test. Theor. Appl. Genet. 2004, 109, 1448–1458. [Google Scholar] [CrossRef]
- Reed, G.H.; Wittwer, C.T. Sensitivity and Specificity of Single-Nucleotide Polymorphism Scanning by High-Resolution Melting Analysis. Clin. Chem. 2004, 50, 1748–1754. [Google Scholar] [CrossRef] [Green Version]
- di Rienzo, V.; Miazzi, M.M.; Fanelli, V.; Savino, V.; Pollastro, S.; Colucci, F.; Miccolupo, A.; Blanco, A.; Pasqualone, A.; Montemurro, C. An Enhanced Analytical Procedure to Discover Table Grape DNA Adulteration in Industrial Musts. Food Control. 2016, 60, 124–130. [Google Scholar] [CrossRef]
- Awad, M.; Mylona, P.V.; Polidoros, A.N. Grapevine Phenological Quantitative Trait SSR Genotyping Using High-Throughput HRM-PCR Analysis. Phyton 2020, 89, 905–923. [Google Scholar] [CrossRef]
- Bibi, A.C.; Gonias, E.D.; Doulis, A.G. Genetic Diversity and Structure Analysis Assessed by SSR Markers in a Large Collection of Vitis Cultivars from the Island of Crete, Greece. Biochem. Genet. 2020, 58, 294–321. [Google Scholar] [CrossRef]
- Ocaña, J.; Walter, B.; Schellenbaum, P. Stable MSAP Markers for the Distinction of Vitis vinifera Cv Pinot Noir Clones. Mol. Biotechnol. 2013, 55, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Oetting, W.S.; Lee, H.K.; Flanders, D.J.; Wiesner, G.L.; Sellers, T.A.; King, R.A. Linkage Analysis with Multiplexed Short Tandem Repeat Polymorphisms Using Infrared Fluorescence and M13 Tailed Primers. Genomics 1995, 30, 450–458. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Tumino, G.; Gardiman, M.; Crespan, M.; Bignami, C.; de Palma, L.; Barbagallo, M.G.; Muganu, M.; Morcia, C.; Novello, V.; et al. Parentage atlas of Italian grapevine varieties as inferred from SNP genotyping. Front. Plant Sci. 2021, 11, 2265. [Google Scholar] [CrossRef] [PubMed]
- Nebish, A.; Tello, J.; Ferradás, Y.; Aroutiounian, R.; Martínez-Zapater, J.M.; Ibáñez, J. SSR and SNP Genetic Profiling of Armenian Grape Cultivars Gives Insights into Their Identity and Pedigree Relationships. OENO One 2021, 55, 101–114. [Google Scholar] [CrossRef]
- De Lorenzis, G.; Chipashvili, R.; Failla, O.; Maghradze, D. Study of Genetic Variability in Vitis vinifera L. Germplasm by High-Throughput Vitis18kSNP Array: The Case of Georgian Genetic Resources. BMC Plant Biol. 2015, 15, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunseri, F.; Lupini, A.; Mauceri, A.; De Lorenzis, G.; Araniti, F.; Brancadoro, L.; Dattola, A.; Gullo, G.; Zappia, R.; Mercati, F. Single Nucleotide Polymorphism Profiles Reveal an Admixture Genetic Structure of Grapevine Germplasm from Calabria, Italy, Uncovering Its Key Role for the Diversification of Cultivars in the Mediterranean Basin. Aust. J. Grape Wine Res. 2018, 24, 345–359. [Google Scholar] [CrossRef]
- Gambino, G.; Boccacci, P.; Chitarra, W.; Schneider, A.; Rolle, L. Genetic traceability of ‘Nebbiolo’musts and wines by single nucleotide polymorphism (SNP) genotyping assays. In Macrowine; IVES: Villenave d’Ornon, France, 2021; p. 7974. [Google Scholar]
- Kunej, U.; Dervishi, A.; Laucou, V.; Jakše, J.; Štajner, N. The Potential of HTS Approaches for Accurate Genotyping in Grapevine (Vitis vinifera L.). Genes 2020, 11, 917. [Google Scholar] [CrossRef]
- Scheben, A.; Batley, J.; Edwards, D. Genotyping-by-sequencing Approaches to Characterize Crop Genomes: Choosing the Right Tool for the Right Application. Plant Biotechnol. J. 2017, 15, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Wickland, D.P.; Battu, G.; Hudson, K.A.; Diers, B.W.; Hudson, M.E. A Comparison of Genotyping-by-Sequencing Analysis Methods on Low-Coverage Crop Datasets Shows Advantages of a New Workflow, GB-EaSy. BMC Bioinform. 2017, 18, 586. [Google Scholar] [CrossRef]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An Analysis Tool Set for Population Genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [Green Version]
- Garrison, E.; Marth, G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv preprint. arXiv:1207.3907 2012.
- Rimmer, A. Platypus, a Reference Genome-Free Algorithm That Rapidly Calls Variants in Clinical Sequencing Data. Nat. Genet 2014, 46, 912–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrano, A.; Birolo, G.; Prazzoli, M.L.; Lorenzi, S.; Valle, G.; Grando, M.S. SNP-Discovery by RAD-Sequencing in a Germplasm Collection of Wild and Cultivated Grapevines (V. Vinifera L.). PLoS ONE 2017, 12, e0170655. [Google Scholar] [CrossRef]
- Potokina, E.K.; Grigoreva, E.A.; Karzhaev, D.S.; Ulianich, P.S.; Volkov, V.A.; Vasylyk, I.A.; Volynkin, V.A.; Likhovskoi, V.V. Genomic Introgressions of Immune Vitis Rotundifola Michx into Russian Grapevine Germplasm Revealed by RADseq Genotyping. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology; Kochetov, A.V., Salina, E.A., Eds.; Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2021; p. 177. [Google Scholar]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar]
- Esposito, S.; Cardi, T.; Campanelli, G.; Sestili, S.; Díez, M.J.; Soler, S.; Jaime, P.; Tripodi, P. ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean ‘da serbo’ type long shelf-life germplasm. Hortic. Res. 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Esposito, S.; Carputo, D.; Cardi, T.; Tripodi, P. Applications and Trends of Machine Learning in Genomics and Phenomics for Next-Generation Breeding. Plants 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, N.; Taranto, F.; Camposeo, S.; Mangini, G.; Fanelli, V.; Gadaleta, S.; Miazzi, M.M.; Pavan, S.; di Rienzo, V.; Sabetta, W.; et al. GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars. Sci. Rep. 2018, 8, 15877. [Google Scholar] [CrossRef] [Green Version]
- Taranto, F.; D’Agostino, N.; Tripodi, P. An overview of genotyping by sequencing in crop species and its application in pepper. Dyn. Math. Models Biol. 2016, 101–116. [Google Scholar]
- Calderón, L.; Mauri, N.; Muñoz, C.; Carbonell-Bejerano, P.; Bree, L.; Bergamin, D.; Sola, C.; Gomez-Talquenca, S.; Royo, C.; Ibáñez, J. Whole Genome Resequencing and Custom Genotyping Unveil Clonal Lineages in ‘Malbec’Grapevines (Vitis vinifera L.). Sci. Rep. 2021, 11, 7775. [Google Scholar] [CrossRef]
- Davey, J.W.; Cezard, T.; Fuentes-Utrilla, P.; Eland, C.; Gharbi, K.; Blaxter, M.L. Special Features of RAD Sequencing Data: Implications for Genotyping. Mol. Ecol. 2013, 22, 3151–3164. [Google Scholar] [CrossRef] [Green Version]
- Shafer, A.B.; Peart, C.R.; Tusso, S.; Maayan, I.; Brelsford, A.; Wheat, C.W.; Wolf, J.B. Bioinformatic Processing of RAD-seq Data Dramatically Impacts Downstream Population Genetic Inference. Methods Ecol. Evol. 2017, 8, 907–917. [Google Scholar] [CrossRef]
- Jaillon, O.; Aury, J.-M.; Noel, B.; Policriti, A.; Clepet, C.; Cassagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N.; Jubin, C. The Grapevine Genome Sequence Suggests Ancestral Hexaploidization in Major Angiosperm Phyla. Nature 2007, 449, 463–467. [Google Scholar] [PubMed]
- Velasco, R.; Zharkikh, A.; Troggio, M.; Cartwright, D.A.; Cestaro, A.; Pruss, D.; Pindo, M.; FitzGerald, L.M.; Vezzulli, S.; Reid, J. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE 2007, 2, e1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam-Blondon, A.-F.; Martinez-Zapater, J.-M.; Kole, C. Genetics, Genomics, and Breeding of Grapes; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Canaguier, A.; Grimplet, J.; Di Gaspero, G.; Scalabrin, S.; Duchêne, E.; Choisne, N.; Mohellibi, N.; Guichard, C.; Rombauts, S.; Le Clainche, I. A New Version of the Grapevine Reference Genome Assembly (12X. v2) and of Its Annotation (VCost. V3). Genom. Data 2017, 14, 56. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Duan, S.; Sheng, J.; Zhu, S.; Ni, X.; Shao, J.; Mao, R.; Zhu, Y.; Deng, W.; Yang, M.; et al. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat. Commun. 2019, 10, 1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelsy, F.; Bevilacqua, L.; Blanc, S.; Merdinoglu, D. A Molecular Marker Set Combining a Retrotransposon Insertion and SSR Polymorphisms Is Useful for Assessing Diversity in Vitis. OENO One 2021, 55, 403–414. [Google Scholar] [CrossRef]
- Carbonell-Bejerano, P.; Royo, C.; Torres-Pérez, R.; Grimplet, J.; Fernandez, L.; Franco-Zorrilla, J.M.; Lijavetzky, D.; Baroja, E.; Martínez, J.; García-Escudero, E. Catastrophic Unbalanced Genome Rearrangements Cause Somatic Loss of Berry Color in Grapevine. Plant Physiol. 2017, 175, 786–801. [Google Scholar] [CrossRef] [Green Version]
- Fuller, C.W.; Middendorf, L.R.; Benner, S.A.; Church, G.M.; Harris, T.; Huang, X.; Jovanovich, S.B.; Nelson, J.R.; Schloss, J.A.; Schwartz, D.C. The Challenges of Sequencing by Synthesis. Nat. Biotechnol. 2009, 27, 1013–1023. [Google Scholar] [CrossRef]
- Mahmoud, M.; Gobet, N.; Cruz-Dávalos, D.I.; Mounier, N.; Dessimoz, C.; Sedlazeck, F.J. Structural Variant Calling: The Long and the Short of It. Genome Biol. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Smith, D.R.; Quinlan, A.R.; Peckham, H.E.; Makowsky, K.; Tao, W.; Woolf, B.; Shen, L.; Donahue, W.F.; Tusneem, N.; Stromberg, M.P. Rapid Whole-Genome Mutational Profiling Using next-Generation Sequencing Technologies. Genome Res. 2008, 18, 1638–1642. [Google Scholar] [CrossRef] [Green Version]
- Eid, J.A.; Fehr, J.; Gray, K.; Luong, J.; Lyle, G.; Otto, P.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Niedringhaus, T.P.; Milanova, D.; Kerby, M.B.; Snyder, M.P.; Barron, A.E. Landscape of Next-Generation Sequencing Technologies. Anal. Chem. 2011, 83, 4327–4341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, C.-S.; Peluso, P.; Sedlazeck, F.J.; Nattestad, M.; Concepcion, G.T.; Clum, A.; Dunn, C.; O’Malley, R.; Figueroa-Balderas, R.; Morales-Cruz, A. Phased Diploid Genome Assembly with Single-Molecule Real-Time Sequencing. Nat. Methods 2016, 13, 1050–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minio, A.; Lin, J.; Gaut, B.S.; Cantu, D. How Single Molecule Real-Time Sequencing and Haplotype Phasing Have Enabled Reference-Grade Diploid Genome Assembly of Wine Grapes. Front. Plant Sci. 2017, 8, 826. [Google Scholar] [CrossRef] [Green Version]
- Roach, M.J.; Johnson, D.L.; Bohlmann, J.; van Vuuren, H.J.; Jones, S.J.; Pretorius, I.S.; Schmidt, S.A.; Borneman, A.R. Population Sequencing Reveals Clonal Diversity and Ancestral Inbreeding in the Grapevine Cultivar Chardonnay. PLoS Genet. 2018, 14, e1007807. [Google Scholar] [CrossRef] [Green Version]
- Weirather, J.L.; de Cesare, M.; Wang, Y.; Piazza, P.; Sebastiano, V.; Wang, X.-J.; Buck, D.; Au, K.F. Comprehensive Comparison of Pacific Biosciences and Oxford Nanopore Technologies and Their Applications to Transcriptome Analysis. F1000Research 2017, 6. [Google Scholar] [CrossRef]
- Pucker, B.; Schwandner, A.; Becker, S.; Hausmann, L.; Viehöver, P.; Töpfer, R.; Weisshaar, B.; Holtgräwe, D. RNA-Seq Time Series of Vitis vinifera Bud Development Reveals Correlation of Expression Patterns with the Local Temperature Profile. Plants 2020, 9, 1548. [Google Scholar] [CrossRef]
- Khalil-Ur-Rehman, M.; Sun, L.; Li, C.-X.; Faheem, M.; Wang, W.; Tao, J.-M. Comparative RNA-Seq Based Transcriptomic Analysis of Bud Dormancy in Grape. BMC Plant Biol. 2017, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.-L.; Xi, F.-F.; Yu, Y.-H.; Zhang, X.-Y.; Zhang, G.-H.; Zhong, G.-Y. Comparative RNA-Seq Profiling of Berry Development between Table Grape ‘Kyoho’and Its Early-Ripening Mutant ‘Fengzao’. BMC Genom. 2016, 17, 795. [Google Scholar]
- Ma, Q.; Yang, J. Transcriptome profiling and identification of the functional genes involved in berry development and ripening in Vitis vinifera. Gene 2019, 680, 84–96. [Google Scholar] [CrossRef]
- Minio, A.; Massonnet, M.; Figueroa-Balderas, R.; Castro, A.; Cantu, D. Diploid Genome Assembly of the Wine Grape Carménère. G3 Genes Genomes Genet. 2019, 9, 1331–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghan, R.; Petereit, J.; Tillett, R.L.; Schlauch, K.A.; Toubiana, D.; Fait, A.; Cramer, G.R. The Common Transcriptional Subnetworks of the Grape Berry Skin in the Late Stages of Ripening. BMC Plant Biol. 2017, 17, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, M.F.; Nunes, R.B.; Tilleman, L.; Van de Peer, Y.; Deforce, D.; Van Nieuwerburgh, F.; Esteves, A.C.; Alves, A. Dual RNA Sequencing of Vitis vinifera during Lasiodiplodia Theobromae Infection Unveils Host–Pathogen Interactions. Int. J. Mol. Sci. 2019, 20, 6083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toffolatti, S.L.; De Lorenzis, G.; Brilli, M.; Moser, M.; Shariati, V.; Tavakol, E.; Maddalena, G.; Passera, A.; Casati, P.; Pindo, M. Novel Aspects on the Interaction between Grapevine and Plasmopara Viticola: Dual-RNA-Seq Analysis Highlights Gene Expression Dynamics in the Pathogen and the Plant during the Battle for Infection. Genes 2020, 11, 261. [Google Scholar] [CrossRef] [Green Version]
- Sidharthan, V.K.; Sevanthi, A.M.; Jaiswal, S.; Baranwal, V.K. Robust Virome Profiling and Whole Genome Reconstruction of Viruses and Viroids Enabled by Use of Available MRNA and SRNA-Seq Datasets in Grapevine (Vitis vinifera L.). Front. Microbiol. 2020, 11, 1232. [Google Scholar] [CrossRef]
- Cirulli, E.T.; Goldstein, D.B. Uncovering the Roles of Rare Variants in Common Disease through Whole-Genome Sequencing. Nat. Rev. Genet. 2010, 11, 415–425. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, H.; Samuels, D.C.; Yue, W.; Ness, S.; Zhao, Y. Single-Nucleotide Variants in Human RNA: RNA Editing and Beyond. Brief. Funct. Genom. 2019, 18, 30–39. [Google Scholar] [CrossRef]
- Royo, C.; Torres-Pérez, R.; Mauri, N.; Diestro, N.; Cabezas, J.A.; Marchal, C.; Lacombe, T.; Ibáñez, J.; Tornel, M.; Carreño, J. The Major Origin of Seedless Grapes Is Associated with a Missense Mutation in the MADS-Box Gene VviAGL11. Plant Physiol. 2018, 177, 1234–1253. [Google Scholar] [CrossRef] [Green Version]
- Zenoni, S.; Ferrarini, A.; Giacomelli, E.; Xumerle, L.; Fasoli, M.; Malerba, G.; Bellin, D.; Pezzotti, M.; Delledonne, M. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol. 2010, 152, 1787–1795. [Google Scholar] [CrossRef] [Green Version]
- Royo, C.; Carbonell-Bejerano, P.; Torres-Pérez, R.; Nebish, A.; Martínez, Ó.; Rey, M.; Aroutiounian, R.; Ibáñez, J.; Martínez-Zapater, J.M. Developmental, Transcriptome, and Genetic Alterations Associated with Parthenocarpy in the Grapevine Seedless Somatic Variant Corinto Bianco. J. Exp. Bot. 2016, 67, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xue, Y.; Fan, J.; Yao, J.-L.; Qin, M.; Lin, T.; Lian, Q.; Zhang, M.; Li, X.; Li, J. A Systems Genetics Approach Reveals PbrNSC as a Regulator of Lignin and Cellulose Biosynthesis in Stone Cells of Pear Fruit. Genome Biol. 2021, 22, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Piskol, R.; Ramaswami, G.; Li, J.B. Reliable Identification of Genomic Variants from RNA-Seq Data. Am. J. Hum. Genet. 2013, 93, 641–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Technique | Full Name | Mutation Types | Principle Involved | Throughput |
---|---|---|---|---|
FISH | Fluorescence In Situ Hybridization | SVs; repeat elements | Hybridization | Low |
SSR | Simple Sequence Repeat | Repeat elements | PCR; capillary electrophoresis | Low |
SSR-HRM | Microsatellite High-Resolution Melting | Repeat elements | Real-time PCR | Low |
MSAP | Methylation-Sensitive Amplified Polymorphism | Epialleles | PCR; capillary electrophoresis | Low |
HRM | High-Resolution Melting | SNPs | Real-time PCR | Low |
Targeted PCR | - | SNPs | PCR | Low |
Vitis9KSNP and Vitis18KSNP | - | SNPs | Hybridization | Medium |
GBS | Genotyping By Sequencing | SNPs | Digestion; hybridization | High |
RRS | Reduced Representation Sequencing | SNPs; InDels | Digestion; hybridization | High |
WGR | Whole Genome Resequencing | All | NGS | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villano, C.; Aiese Cigliano, R.; Esposito, S.; D’Amelia, V.; Iovene, M.; Carputo, D.; Aversano, R. DNA-Based Technologies for Grapevine Biodiversity Exploitation: State of the Art and Future Perspectives. Agronomy 2022, 12, 491. https://doi.org/10.3390/agronomy12020491
Villano C, Aiese Cigliano R, Esposito S, D’Amelia V, Iovene M, Carputo D, Aversano R. DNA-Based Technologies for Grapevine Biodiversity Exploitation: State of the Art and Future Perspectives. Agronomy. 2022; 12(2):491. https://doi.org/10.3390/agronomy12020491
Chicago/Turabian StyleVillano, Clizia, Riccardo Aiese Cigliano, Salvatore Esposito, Vincenzo D’Amelia, Marina Iovene, Domenico Carputo, and Riccardo Aversano. 2022. "DNA-Based Technologies for Grapevine Biodiversity Exploitation: State of the Art and Future Perspectives" Agronomy 12, no. 2: 491. https://doi.org/10.3390/agronomy12020491
APA StyleVillano, C., Aiese Cigliano, R., Esposito, S., D’Amelia, V., Iovene, M., Carputo, D., & Aversano, R. (2022). DNA-Based Technologies for Grapevine Biodiversity Exploitation: State of the Art and Future Perspectives. Agronomy, 12(2), 491. https://doi.org/10.3390/agronomy12020491