Reduced Nitrogen Fertilizer Rates Maintained Raspberry Growth in an Established Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Fruit Yield and Quality
2.4. Primocane Growth
2.5. Leaf Photosynthesis
2.6. Plant and Soil Sample Collection
2.7. Plant Leaf Tissue Nutrient Analyses
2.8. Soil Properties
2.9. Statistical Analyses
3. Results and Discussion
3.1. Fruit Yield and Average Berry Size
3.2. Fruit Quality
3.3. Plant Growth and Photosynthesis
3.4. Primocane Leaf Nutrient Levels
3.5. Soil Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture National Agricultural Statistics Service (USDA NASS). USDA Noncitrus Fruits and Nuts 2020 Summary. 2021. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/zs25x846c/0g3551329/qj72pt50f/ncit0520.pdf (accessed on 28 February 2021).
- Rempel, H.; Strik, B.C.; Righetti, T.L. Uptake, partitioning, and storage of fertilizer nitrogen in red raspberry as affected by rate and timing of application. J. Am. Soc. Hortic. Sci. 2004, 129, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Strik, B.C.; Bryla, D. Uptake and partitioning of nutrients in blackberry and raspberry and evaluating plant nutrient status for accurate assessment of fertilizer requirements. HortTechnology 2015, 25, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Hart, J.; Strik, B.; Rempel, H. Caneberries; Nutrient Management Guide; Oregon State University, Extension Service: Corvallis, OR, USA, 2006; EM 8903-E. [Google Scholar]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A.S. Plant Physiology and Development, 6th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2015. [Google Scholar]
- Strik, B. A review of nitrogen nutrition of Rubus. Acta Hortic. 2008, 777, 403–410. [Google Scholar] [CrossRef]
- Strik, B.; Righetti, T.; Rempel, H. Black plastic mulch improved the uptake of 15nitrogen from inorganic fertilizer and organic prunings in summer-bearing red raspberry. HortScience 2006, 41, 272–274. [Google Scholar] [CrossRef] [Green Version]
- Kowalenko, C.G.; Keng, J.C.W.; Freeman, J.A. Comparison of nitrogen application via a trickle irrigation system with surface banding of granular fertilizer on red raspberry. Can. J. Plant Sci. 2000, 80, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, R.; Silvestre, W.P.; Rota, L.D.; Pauletti, G.F. Raspberry production with different NPK dosages in South Brazil. Sci. Hortic. 2019, 261, 108984. [Google Scholar] [CrossRef]
- Milošević, T.M.; Glišić, I.P.; Glišić, I.S.; Milošević, N.T. Cane properties, yield, berry quality attributes and leaf nutrient composition of blackberry as affected by different fertilization regimes. Sci. Hortic. 2018, 227, 48–56. [Google Scholar] [CrossRef]
- Heiberg, N. Effect of vegetation control and nitrogen fertilization in red raspberry. Acta Hortic. 2002, 585, 579–583. [Google Scholar] [CrossRef]
- Chesnaux, R.; Allen, D.M.; Graham, G. Assessment of the impact of nutrient management practices on nitrate contamination in the Abbotsford-Sumas aquifer. Environ. Sci. Technol. 2007, 41, 7229–7234. [Google Scholar] [CrossRef]
- Havlin, J.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 8th ed.; Pearson: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- DeVetter, L.W.; Strik, B.C.; Moore, P.; Finn, C.; Dossett, M.; Miller, T.; Benedict, C.; Bryla, D.R.; Zasada, I. Commercial Red Raspberry Production in the Pacific Northwest; PNW 598; Washington State University Extension Publication: Washington, DC, USA, 2021; in press. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA). Weather Data for Aurora Station. 2021. Available online: https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GSOY (accessed on 18 August 2021).
- Washington State University AgWeatherNet. Weather Data for Mount Vernon Station. 2021. Available online: https://weather.wsu.edu/index.php?page=station_details&UNIT_ID=100090 (accessed on 18 August 2021).
- United States Department of Agriculture (USDA). Web Soil Survey. 2021. Available online: https://websoilsurvey.sc.egov.usda.gov (accessed on 18 June 2021).
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Pearson Prentice Hall: Columbus, OH, USA, 2008. [Google Scholar]
- United States Department of Agriculture National Agricultural Statistics Service (USDA NASS). USDA Noncitrus Fruits and Nuts 2017 Summary. 2018. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/ncit0618.pdf/ (accessed on 26 April 2021).
- Miller, R.O.; Gavlak, R.; Horneck, D. Soil, Plant and Water Reference Methods for the Western Region, 4th ed.; Western Regional Extension Publication: Fort Collins, CO, USA, 2013; WREP-125. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- AgroEcoLab, University of Maryland. Protocol for Mineral Nitrogen Extraction in Soils (KCl Method). 2021. Available online: https://www.agroecologylab.com (accessed on 18 August 2021).
- Keeney, D.; Nelson, D. Nitrogen-Inorganic Forms. In Methods of Soil Analysis, Part 2-Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 2015; pp. 643–698. [Google Scholar]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Galinato, S.P.; DeVetter, L.W. 2015 Cost Estimates of Establishing and Producing Red Raspberries in Washington State; Washington State University Extension Publication: Washington, DC, USA, 2016; TB21. [Google Scholar]
- Stojanov, D.; Milošević, T.; Mašković, P.; Milošević, N.; Glišić, I.; Paunović, G. Influence of organic, organo-mineral and mineral fertilisers on cane traits, productivity and berry quality of red raspberry (Rubus idaeus L.). Sci. Hortic. 2019, 252, 370–378. [Google Scholar] [CrossRef]
- An, B.; Wei, H.; Li, L.; Guo, P. Nutrient uptake and utilization and antioxidants of fruits in red raspberry (Rubus idaeus L.) cultivar ‘Autumn Bliss’ in response to fertilization under extended photoperiod. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Hodnefjell, R.; Heide, O.; Rivero, R.; Remberg, S.; Sønsteby, A. Control of growth cessation and floral initiation in red raspberry (Rubus idaeus L.) cultivars of diverse origin in controlled and natural environments. Sci. Hortic. 2018, 233, 412–420. [Google Scholar] [CrossRef]
- Zhang, H.; Miles, C.; Ghimire, S.; Benedict, C.; Zasada, I.; DeVetter, L. Polyethylene and biodegradable plastic mulches improve growth, yield, and weed management in floricane red raspberry. Sci. Hortic. 2019, 250, 371–379. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). United States Standards for Grades of Raspberries. 2016. Available online: https://www.ams.usda.gov/sites/default/files/media/RaspberriesStandard.pdf (accessed on 18 August 2021).
- Papp, J.; Kobzos-Pápai, I.; Nagy, J. Effect of nitrogen application on yield, leaf nutrient status and fruit chemical composition of raspberry and redcurrant varieties. Acta Agron. Acad. Sci. Hung. 1984, 33, 337–343. [Google Scholar]
- Jeppsson, N. The effects of fertilizer rate on vegetative growth, yield and fruit quality, with special respect to pigments, in black chokeberry (Aronia melanocarpa) cv. ‘Viking’. Sci. Hortic. 2000, 83, 127–137. [Google Scholar] [CrossRef]
- Jafarikouhini, N.; Kazemeini, S.A.; Sinclair, T.R. Sweet corn nitrogen accumulation, leaf photosynthesis rate, and radiation use efficiency under variable nitrogen fertility and irrigation. Field Crops Res. 2020, 257, 107913. [Google Scholar] [CrossRef]
- Prsa, I.; Stampar, F.; Vodnik, D.; Veberic, R. Influence of nitrogen on leaf chlorophyll content and photosynthesis of ‘Golden Delicious’ apple. Acta Agric. Scand. Sect. B Soil Plant Sci. 2007, 57, 283–289. [Google Scholar] [CrossRef]
- Bryla, D. A comparison between fertigation and granular fertilizer applications on yield and leaf nitrogen in red raspberry. Acta Hortic. 2016, 5, 527–531. [Google Scholar] [CrossRef]
- Forge, T.; Walters, T.; Koch, C. Use of composted dairy manure solids mulch for raspberry: Influences on soil nematode communities and N and P availability. Compos. Sci. Util. 2014, 22, 230–241. [Google Scholar] [CrossRef]
- Hargreaves, J.; Adl, M.S.; Warman, P.R.; Rupasinghe, H.P.V. The effects of organic amendments on mineral element uptake and fruit quality of raspberries. Plant Soil 2008, 308, 213–226. [Google Scholar] [CrossRef]
- Nelson, E.; Martin, L.W. The relationship of soil-applied N and K to yield and quality of ‘Thornless Evergreen’ blackberry. HortScience 1986, 21, 1153–1154. [Google Scholar]
- Spiers, J.M.; Braswell, J.H. Influence of N, P, K, Ca and Mg rates on leaf micronutrient concentration of ‘Navaho’ blackberry. Plant Nutr. 2001, 585, 842–843. [Google Scholar] [CrossRef]
- Fernandez-Salvador, J.; Strik, B.C.; Bryla, D. Response of blackberry cultivars to fertilizer source during establishment in an organic fresh market production system. HortTechnology 2015, 25, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Forge, T.; Kenney, E.; Hashimoto, N.; Neilsen, D.; Zebarth, B. Compost and poultry manure as preplant soil amendments for red raspberry: Comparative effects on root lesion nematodes, soil quality and risk of nitrate leaching. Agric. Ecosyst. Environ. 2016, 223, 48–58. [Google Scholar] [CrossRef]
pH z | Cation Exchange Capacity (meq 100 g−1) | Organic Matter (%) | ENR y (kg N ha−1) | mg kg−1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NO3-N | P x | K | Ca | Mg | SO4-S | Na | Mn | B | Fe | Cu | Zn | ||||
6.4 | 6.7 | 2.8 | 96 | 5 | 100 | 202 | 930 | 103 | 3 | 11 | 2.0 | 0.3 | 69 | 3.0 | 1.8 |
Treatment | Berry Weight (g) | Average Plant Yield (kg Plant−1) | Total Yield (kg Plant−1) |
---|---|---|---|
N fertilizer rate (A) | |||
Control (0 kg N ha−1) | 3.02 z | 0.311 | 0.933 |
Low (34 kg N ha−1) | 3.03 | 0.385 | 1.15 |
Medium (67 kg N ha−1) | 3.10 | 0.325 | 0.977 |
High (101 kg N ha−1) | 3.10 | 0.349 | 1.05 |
Harvest time (B) | |||
Early | 3.35 a | 0.212 c | - y |
Middle | 3.08 b | 0.542 a | - |
Late | 2.75 c | 0.274 b | - |
Significance x | |||
N fertilizer rate (A) | 0.78 | 0.85 | 0.85 |
Harvest time (B) | <0.0001 | <0.0001 | - |
Interaction A × B | 0.55 | 0.85 | - |
Treatment | TSS (°Brix) | pH | TA (g L−1) | TSS/TA |
---|---|---|---|---|
N fertilizer rate (A) | ||||
Control (0 kg N ha−1) | 11.8 z | 3.35 | 1.64 b | 7.21 |
Low (34 kg N ha−1) | 11.9 | 3.31 | 1.64 b | 7.26 |
Medium (67 kg N ha−1) | 12.2 | 3.35 | 1.76 a | 6.90 |
High (101 kg N ha−1) | 11.9 | 3.34 | 1.64 b | 7.27 |
Harvest time (B) | ||||
Early | 10.3 c | 3.40 a | 1.57 c | 6.56 b |
Middle | 12.3 b | 3.30 b | 1.68 b | 7.32 a |
Late | 13.3 a | 3.30 b | 1.75 a | 7.60 a |
Significance y | ||||
N fertilizer rate (A) | 0.44 | 0.37 | 0.03 | 0.16 |
Harvest time (B) | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Interaction A × B | 0.72 | 0.52 | 0.38 | 0.84 |
Treatment | Primocane Length (cm) | Primocane Number (No. Plant−1) | CO2 Assimilation (μmol m−2 s−1) |
---|---|---|---|
Control (0 kg N ha−1) | 279 z | 8.22 | 8.27 |
Low (34 kg N ha−1) | 276 | 6.56 | 7.47 |
Medium (67 kg N ha−1) | 258 | 6.56 | 7.09 |
High (101 kg N ha−1) | 269 | 7.00 | 7.29 |
p-value | 0.72 | 0.11 | 0.61 |
Treatment | pH z | CEC (meq 100g−1) | SOM (%) | ENR y (kg N ha−1) | mg kg−1 | |
---|---|---|---|---|---|---|
NO3-N | NH4-N | |||||
Control (0 kg N ha−1) | 6.30 x | 11.1 | 3.80 | 98.6 | 0.565 | 0.06 b |
Low (34 kg N ha−1) | 6.23 | 10.3 | 3.87 | 99.8 | 1.322 | 0.20 a |
Medium (67 kg N ha−1) | 6.33 | 10.9 | 4.00 | 101 | 0.515 | 0.08 ab |
High (101 kg N ha−1) | 6.23 | 11.3 | 3.95 | 100 | 1.570 | 0.07 ab |
p-value | 0.77 | 0.08 | 0.75 | 0.86 | 0.47 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Miles, C.; Tao, H.; DeVetter, L.W. Reduced Nitrogen Fertilizer Rates Maintained Raspberry Growth in an Established Field. Agronomy 2022, 12, 672. https://doi.org/10.3390/agronomy12030672
Lu Q, Miles C, Tao H, DeVetter LW. Reduced Nitrogen Fertilizer Rates Maintained Raspberry Growth in an Established Field. Agronomy. 2022; 12(3):672. https://doi.org/10.3390/agronomy12030672
Chicago/Turabian StyleLu, Qianwen, Carol Miles, Haiying Tao, and Lisa Wasko DeVetter. 2022. "Reduced Nitrogen Fertilizer Rates Maintained Raspberry Growth in an Established Field" Agronomy 12, no. 3: 672. https://doi.org/10.3390/agronomy12030672
APA StyleLu, Q., Miles, C., Tao, H., & DeVetter, L. W. (2022). Reduced Nitrogen Fertilizer Rates Maintained Raspberry Growth in an Established Field. Agronomy, 12(3), 672. https://doi.org/10.3390/agronomy12030672