Combined Effect of Animal Manures and Di-Ammonium Phosphate (DAP) on Growth, Physiology, Root Nodulation and Yield of Chickpea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Treatment Plan
2.2. Collection and Preparation of Normal and Processed Animal Manure
2.3. Growth and Yield Attributes of Chickpea
2.4. Physiological Parameters of Chickpea
2.5. Phosphorous and Potassium Determination in Plant Tissues
2.6. Statistical Analysis
3. Results
3.1. Growth Parameters of Chickpea
3.2. Yield Parameters of Chickpea
3.3. Physiological Attributes of Chickpea
3.4. Mineral Concentrations
3.5. P Uptake and P Use Effeciency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M.A. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil Sci. Plant Nutri. 2015, 15, 333–352. [Google Scholar] [CrossRef] [Green Version]
- Younis, S.A.; Kim, K.H.; Shaheen, S.M.; Antoniadis, V.; Tsang, Y.F.; Rinklebe, J.; Deep, A.; Brown, R.J. Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renew. Sust. Energy Rev. 2021, 152, 111686. [Google Scholar] [CrossRef]
- Kuylenstierna, J.; Barraza, H.J.; Benton, T.; Larsen, A.F.; Kurppa, S.; Lipper, L.; Virgin, I. Food Security and Sustainable Food System; MISTRA, The Swedish Foundation for Strategic Environmental Research: Stockholm, Sweden, 2019; p. 43. [Google Scholar]
- Arif, M.; Ali, K.; Jan, M.T.; Shah, Z.; Jones, D.L.; Quilliam, R.S. Integration ofbiochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crops Res. 2016, 195, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Mitran, T.; Meena, R.S.; Lal, R.; Layek, J.; Kumar, S.; Datta, R. Role of soil phosphorus on legume production. In Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018; pp. 487–510. [Google Scholar]
- Ali, S.F.; Mahna, S.K. Study on growth characteristics of tree legume seedlings and nutrient status of their rhizospheric soil in arid and semi arid region of Rajasthan. Agric. Biolog. Res. 2017, 33, 22–37. [Google Scholar]
- Saeed, Q.; Zhang, A.; Mustafa, A.; Sun, B.; Zhang, S.; Yang, X. Effect of long-term fertilization on greenhouse gas emissions and carbon footprints in northwest China: A field scale investigation using wheat-maize-fallow rotation cycles. J. Clean. Prod. 2021, 332, 130075. [Google Scholar] [CrossRef]
- Pang, J.; Ryan, M.H.; Lambers, H.; Siddique, K.H. Phosphorus acquisition and utilisation in crop legumes under global change. Curr. Opin. Plant Biol. 2018, 45, 248–254. [Google Scholar] [CrossRef]
- Li, L.; Pan, S.; Melzer, R.; Fricke, W. Apoplastic barriers, aquaporin gene expression and root and cell hydraulic conductivity in phosphate-limited sheepgrass plants. Physiol. Plant. 2020, 168, 118–132. [Google Scholar] [CrossRef]
- Ditta, A.; Khalid, A. Bio-organo-phos: A sustainable approach for managing phosphorus deficiency in agricultural soils. In Organic Fertilizers—From Basic Concepts to Applied Outcomes; INTECH: West Palm Beach, FL, USA, 2016; pp. 109–136. [Google Scholar]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Jiang, S.; Sheng, H.; Liu, X.; Hua, H.; Liu, X.; Zhang, Y. Human perturbation of the global phosphorus cycle: Changes and consequences. Environ. Sci. Technol. 2018, 52, 2438–2450. [Google Scholar] [CrossRef]
- Bieleski, R. Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiol. 1973, 24, 225–252. [Google Scholar] [CrossRef]
- Raghothama, K. Phosphate acquisition. Annu. Rev. Plant Biol. 1999, 50, 665–693. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, P.K.; Chakraborty, T. Comparative solubility study of four phosphatic fertilizers in different solvents and the effect of soil. Resour. Environ. 2012, 2, 175–179. [Google Scholar] [CrossRef]
- Ashraf, M.N.; Jusheng, G.; Lei, W.; Mustafa, A.; Waqas, A.; Aziz, T.; Khan, W.U.D.; Hussain, B.; Farooq, M.; Wenju, Z.; et al. Soil microbial biomass and extracellular enzyme–mediated mineralization potentials of carbon and nitrogen under long-term fertilization (>30 years) in a rice–rice cropping system. J. Soils Sediments 2021, 21, 3789–3800. [Google Scholar] [CrossRef]
- Bi, Q.F.; Li, K.J.; Zheng, B.X.; Liu, X.P.; Li, H.Z.; Jin, B.J.; Ding, K.; Yang, X.R.; Lin, X.Y.; Zhu, Y.G. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci. Total Environ. 2020, 703, 134977. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, Y.; Qian, J.; Lau, S.P. Emerging opportunities for black phosphorus in energy applications. Mater. Today Energy 2019, 12, 1–25. [Google Scholar] [CrossRef]
- Von Wandruszka, R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem. Trans. 2006, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Leytem, A.B. Phosphorus compounds in sequential extracts of animal manures: Chemical speciation and a novel fractionation procedure. Environ. Sci. Technol. 2004, 38, 6101–6108. [Google Scholar] [CrossRef]
- US Salinity Laboratory Staff. Diagnosis and improvement of saline and alkali soils. In USDA Handbook No 60; U.S. Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate USDA Circular 939; U.S. Government Printing Office: Washington, DC, USA, 1954.
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium, sodium, and potassium. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1983; Volume 9, pp. 225–246. [Google Scholar]
- Jackson, M. Soil Chemical Analysis; Constable and Co. Ltd.: London, UK, 1962; pp. 496–497. [Google Scholar]
- Naveed, M.; Aslam, M.K.; Ahmad, Z.; Abbas, T.; Al-Huqail, A.A.; Siddiqui, M.H.; Ali, H.M.; Ashraf, I.; Mustafa, A. Growth Responses, Physiological Alterations and Alleviation of Salinity Stress in Sunflower (Helianthus annuus L.) Amended with Gypsum and Composted Cow Dung. Sustainability 2021, 13, 6792. [Google Scholar] [CrossRef]
- Basir, A.; Shah, Z.; Naeem, M.; Bakht, J.; Khan, Z. Effect of phosphorus and farm yard manure on agronomic traits of chickpea (Cicer arietinum L.). Sarhad J. Agric. 2008, 24, 567–572. [Google Scholar]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 2231, 606. [Google Scholar]
- Appleby, C.; Bergersen, F. Preparation and experimental use of leghaemoglobin. In Methods for Evaluating Biological Nitrogen Fixation; Bergersen, F.J., Ed.; John Wiley and Sons: Chichester, UK, 1980; pp. 315–335. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wolf, B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Amr. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of analysis for soils. J. Plants Waters 1961, 182–186. [Google Scholar]
- Arfan-ul-Haq, M.; Yaseen, M.; Naveed, M.; Mustafa, A.; Siddique, S.; Alamri, S.; Siddiqui, M.H.; Al-Amri, A.A.; Alsubaie, Q.D.; Ali, H.M. Deciphering the potential of bioactivated rock phosphate and di-ammonium phosphate on agronomic performance, nutritional quality and productivity of wheat (Triticum aestivum L.). Agronomy 2021, 11, 684. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods; Iowa State College Press: Ames, IA, USA, 1989. [Google Scholar]
- United Nations Population Fund (UNFPA). World Population Dashboard. 2021. Available online: https://www.unfpa.org/data/world-population-dashboard (accessed on 5 December 2021).
- Maene, L. International fertilizer supply and demand. In Proceedings of the Australian Fertilizer Industry Conference, Hamilton, Australia, 6–10 August 2007; International Fertilizer Industry Association: Paris, France, 2007. [Google Scholar]
- Mogollon, J.M.; Beusen, A.H.W.; van Grinsven, H.J.M.; Westhoek, H.; Bouwman, A.F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Chang. 2018, 50, 149–163. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Khan, H.; Paull, J.; Siddique, K.; Stoddard, F. Faba bean breeding for drought affected environments: A physiological and agronomic perspective. Field Crops Res. 2010, 115, 279–286. [Google Scholar] [CrossRef]
- Gill, H.; Singh, A.; Sethi, S.; Behl, R. Phosphorus uptake and use efficiency invance different varieties of bread wheat (Triticum aestivum L). Arch. Agron. Soil Sci. 2004, 50, 563–572. [Google Scholar] [CrossRef]
- Mohsin, Z.; Abbasi, M.K.; Khaliq, A. Effect of combining organic materials with inorganic phosphorus sources on growth, yield, energy content and phosphorus uptake in maize at Rawalakot Azad Jammu and Kashmir. Pak. Arch. Appl. Sci. Res. 2011, 3, 199–212. [Google Scholar]
- Seleiman, M.F.; Abdelaal, M.S. Effect of organic, inorganic and bio fertilization on growth, yield and quality traits of some chickpea (Cicer arietinum L.) varieties. Egypt. J. Agron. 2018, 40, 105–117. [Google Scholar] [CrossRef]
- Hati, K.M.; Mandal, K.G.; Misra, A.K.; Ghosh, P.K.; Bandyopadhya, K.K. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresour. Technol. 2006, 97, 2182–2188. [Google Scholar] [CrossRef]
- Ismail, M.; Moursy, A.A.; Mousa, A. Effect of organic and inorganic fertilizer on growth and yield of chickpea (Cicer arietinum L.) grown on sandy soil using 15n tracer. Bangl. J. Bot. 2017, 46, 155–161. [Google Scholar]
- Balemi, T. Effect of integrated use of cattle manure and inorganic fertilizers on tuber yield of potato in Ethiopia. J. Soil Sci. Plant Nutr. 2012, 12, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Ditta, A.; Muhammad, J.; Imtiaz, M.; Mehmood, S.; Qian, Z.; Tu, S. Application of rock phosphate enriched composts increases nodulation, growth and yield of chickpea. Int. J. Recycl. Org. Waste Agric. 2018, 7, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Busari, M.A.; Salako, F.K.; Adetunji, M.T. Soil chemical properties and maize yield after application of organic and inorganic amendments to an acidic soil in southwestern Nigeria. Span. J. Agric. Res. 2008, 6, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.G.; Li, D.C.; Li, J.M.; Qin, D.Z.; Kazuyuki, Y.; Hosen, Y. Effects of organic manure application with chemical fertilizers on nutrient absorption and yield of rice in Hunan of Southern China. Agric. Sci. China. 2008, 7, 1245–1252. [Google Scholar] [CrossRef]
- Mahmoud, E.; El-Kader, N.A.; Robin, P.; Akkal-Corfini, N.; El-Rahman, L.A. Effects of different organic and inorganic fertilizers on cucumber yield and some soil properties. World J. Agric. Sci. 2009, 5, 408–414. [Google Scholar]
- Deshpande, A.; Dalavi, S.; Pandey, S.; Bhalerao, V.; Gosavi, A. Effect of rock phosphate along with organic manures on soil properties, yield and nutrient uptake by wheat and chickpea. J. Indian Soc. Soil Sci. 2015, 63, 93–99. [Google Scholar] [CrossRef]
- Tesfahun, W. Effects of biochar in soil chemical and biological property and mitigating climate change: Review. Civ. Environ. Res. 2018, 10, 58–61. [Google Scholar]
- Jat, R.S.; Ahlawat, I. Effect of vermicompost, biofertilizer and phosphorus on growth, yield and nutrient uptake by gram (Cicer arietinum) and their residual effect on fodder maize (Zea mays). Indian J. Agric. Sci. 2004, 74, 359–361. [Google Scholar]
- Jebara, M.; Aouani, M.E.; Payre, H.; Drevon, J. Nodule conductance varied among common bean (Phaseolus vulgaris) genotypes under phosphorus deficiency. J. Plant Physiol. 2005, 162, 309–315. [Google Scholar] [CrossRef]
- Kouas, S.; Labidi, N.; Debez, A.; Abdelly, C. Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. 2005, 25, 389–393. [Google Scholar] [CrossRef]
- El-Azab, M.E. Effects of foliar NPK spraying with micronutrients on yield and quality of cowpea plants. Asian J. Appl. Sci. 2016, 4. [Google Scholar]
- Hill, N.M.; Patriquin, D.G. Maximizing N2 fixation in sugarcane litter. In International Symposium on Sustainable Agriculture for the Tropics—The Role of Biological Nitrogen Fixation, Programme and Abstracts; Seropedica Embrapa-CNPAB: Seropédica, Brazil, 1996; pp. 59–60. [Google Scholar]
- Hamman, S.T.; Burke, I.C.; Stromberger, M.E. Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol. Biochem. 2007, 39, 1703–1711. [Google Scholar] [CrossRef]
- Singh, G.; Aggrawal, N.; Khanna, V. Integrated nutrient management in lentil with organic manures, chemical fertilizers and biofertilizers. J. Food Legumes 2010, 23, 149–151. [Google Scholar]
- Shaharoona, B.; Arshad, M.; Zahir, Z.A. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett. Appl. Microbiol. 2006, 42, 155–159. [Google Scholar] [CrossRef]
- Shaharoona, B.; Jamro, G.M.; Zahir, Z.A.; Arshad, M.; Memon, K.S. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J. Microbiol. Biotechnol. 2007, 17, 1300–1307. [Google Scholar]
- Ditta, A.; Arshad, M.; Zahir, Z.A.; Jamil, A. Comparative efficacy of rock phosphate enriched organic fertilizer vs. mineral phosphatic fertilizer for nodulation, growth and yield of lentil. Intl. J. Agric. Biol. 2015, 17, 589–595. [Google Scholar] [CrossRef]
- Reddy, D.D.; Rao, A.S.; Rupa, T.R. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in a Vertisol. Bioresour. Technol. 2000, 75, 113–118. [Google Scholar] [CrossRef]
- Mahmood, T.; Azam, F.; Malik, K.A. Effect of Kallar grass compost on growth and nutrient utilization of maize. In Annual Report of NIAB; NIAB: Faisalabad, Pakistan, 1983; pp. 112–115. [Google Scholar]
- Tiwari, V.N.; Singh, H.; Upadhyay, R.M. Effect of biocides, organic manure and blue green algae on yield and yield attributing characteristics of rice and soil productivity under sodic soil conditions. J. Indian Soc. Soil Sci. 2001, 49, 332–336. [Google Scholar]
- Pattanayak, S.K.; Mishra, K.N.; Jena, M.K.; Nayak, R.K. Evaluation of green manure crops fertilized with various phosphorus sources and their effect on subsequent rice crop. J. Indian Soc. Soil Sci. 2001, 49, 285–291. [Google Scholar]
- Sarwar, G.; Hussain, N.; Mujeeb, F.; Schmeisky, H.; Hassan, G. Biocompost application for the improvement of soil characteristics and dry matter yield of Lolium perenne (Grass). Asian J. Plant Sci. 2003, 2, 237–241. [Google Scholar] [CrossRef]
- Yaduvanshi, N.P.S. Effect of five years of rice-wheat cropping and NPK fertilizer use with and without organic and green manures on soil properties and crop yields in a reclaimed sodic soil. J. Indian Soc. Soil Sci. 2001, 49, 714–719. [Google Scholar]
Parameters | Soil | Normal Manure | Processed Manure |
---|---|---|---|
pH | 8.09 ± 1.00 | 7.8 ± 1.02 | 6.9 ± 0.92 |
EC * (dS m−1) | 1.76 ± 0.56 | 1.80 ± 0.60 | 1.75 ± 0.67 |
Cation Exchange Capacity (c molc kg−1) | 11.2 ± 1.40 | 43.60 ± 1.90 | 96.34 ± 2.01 |
Carbon (g kg−1) | 22.67 ± 1.98 | 405± 3.38 | 265 ± 2.19 |
Calcium Carbonate (%) | 3.0 ± 1.60 | - | - |
Soil textural Class | Sandy Clay Loam | - | - |
Saturation percentage (%) | 34.6 ± 2.34 | - | - |
Total Nitrogen (%) | 0.36 ± 0.04 | 1.62 ± 1.05 | 2.90 ± 0.99 |
Olsen P (mg kg−1) | 4.34 ± 0.18 | 5.4 ± 0.92 | 6.8 ± 0.95 |
Extractable K (mg kg−1) | 113 ± 2.23 | 68 ± 2.89 | 87.04 ± 2.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.S.; Naveed, M.; Qadir, M.F.; Bashir, M.A.; Rafique, M.; Siddiqui, M.H.; Alamri, S.; Brtnicky, M.; Holatko, J.; Mustafa, A. Combined Effect of Animal Manures and Di-Ammonium Phosphate (DAP) on Growth, Physiology, Root Nodulation and Yield of Chickpea. Agronomy 2022, 12, 674. https://doi.org/10.3390/agronomy12030674
Khan MS, Naveed M, Qadir MF, Bashir MA, Rafique M, Siddiqui MH, Alamri S, Brtnicky M, Holatko J, Mustafa A. Combined Effect of Animal Manures and Di-Ammonium Phosphate (DAP) on Growth, Physiology, Root Nodulation and Yield of Chickpea. Agronomy. 2022; 12(3):674. https://doi.org/10.3390/agronomy12030674
Chicago/Turabian StyleKhan, Muhammad Shaharyar, Muhammad Naveed, Muhammad Farhan Qadir, Muhammad Asaad Bashir, Munazza Rafique, Manzer H. Siddiqui, Saud Alamri, Martin Brtnicky, Jiri Holatko, and Adnan Mustafa. 2022. "Combined Effect of Animal Manures and Di-Ammonium Phosphate (DAP) on Growth, Physiology, Root Nodulation and Yield of Chickpea" Agronomy 12, no. 3: 674. https://doi.org/10.3390/agronomy12030674
APA StyleKhan, M. S., Naveed, M., Qadir, M. F., Bashir, M. A., Rafique, M., Siddiqui, M. H., Alamri, S., Brtnicky, M., Holatko, J., & Mustafa, A. (2022). Combined Effect of Animal Manures and Di-Ammonium Phosphate (DAP) on Growth, Physiology, Root Nodulation and Yield of Chickpea. Agronomy, 12(3), 674. https://doi.org/10.3390/agronomy12030674