Boron Effects on Fruit Set, Yield, Quality and Paternity of Macadamia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design, Sample Collection and Processing
2.3. Determination of Oil Concentration
2.4. Mineral Nutrient Analysis
2.5. Paternity Analysis
2.6. Statistical Analysis
3. Results
3.1. Floral and Foliar Mineral Nutrient Concentrations
3.2. Fruit Set and Yield
3.3. Nut Quality
3.4. Nut Paternity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The challenge of feeding the world. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). World Food and Agriculture—Statistical Yearbook 2020; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- International Nut & Dried Fruit Council. Tree Nut and Dried Fruit Productions to Add Up to 4.5 Million and 3.3 Million Metric Tons, Respectively. Available online: https://www.nutfruit.org/industry/news/detail/tree-nut-and-dried-fruit-productions-to-add-up-to-4-5-million-and-3-3-million-metric-tons-respectively (accessed on 31 March 2021).
- Statista. Global Fruit Production in 2019, by Selected Variety. 2021. Available online: https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/ (accessed on 31 March 2021).
- Nyomora, A.M.; Brown, P.H.; Krueger, B. Rate and time of boron application increase almond productivity and tissue boron concentration. HortScience 1999, 34, 242–245. [Google Scholar] [CrossRef] [Green Version]
- Garner, L.; Klein, G.; Zheng, Y.; Khuong, T.; Lovatt, C.J. Response of evergreen perennial tree crops to gibberellic acid is crop load-dependent: II. GA3 increases yield and fruit size of ‘Hass’ avocado only in the on-crop year of an alternate bearing orchard. Sci. Hortic. 2011, 130, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Patrick, J.W.; Colyvas, K. Crop yield components—Photoassimilate supply- or utilisation limited-organ development? Funct. Plant Biol. 2014, 41, 893–913. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, A.G. Flower and fruit abortion: Proximate causes and ultimate functions. Annu. Rev. Ecol. Syst. 1981, 12, 253–279. [Google Scholar] [CrossRef]
- Degani, C.; Stern, R.A.; El-Bastri, R.; Gazit, S. Pollen parent effect on the selective abscission of ‘Mauritius’ and ‘Floridian’ lychee fruitlets. J. Am. Soc. Hortic. Sci. 1995, 120, 523–526. [Google Scholar] [CrossRef]
- Alcaraz, M.L.; Hormaza, J.I.; Rodrigo, J. Pistil starch reserves at anthesis correlate with final flower fate in avocado (Persea americana). PLoS ONE 2013, 8, e78467. [Google Scholar] [CrossRef] [Green Version]
- Alcaraz, M.L.; Hormaza, J.I. Fruit set in avocado: Pollen limitation, pollen load size, and selective fruit abortion. Agronomy 2021, 11, 1603. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Huang, X.; Li, J.; Wang, H.; Li, J. An improved fruit transcription and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi. Front. Plant Sci. 2015, 6, 439. [Google Scholar] [CrossRef] [Green Version]
- Boldingh, H.L.; Alcaraz, M.L.; Thorp, T.G.; Minchin, P.E.H.; Gould, N.; Hormaza, J.I. Carbohydrate and boron content of styles of ‘Hass’ avocado (Persea americana Mill.) flowers at anthesis can affect final fruit set. Sci. Hortic. 2016, 198, 125–131. [Google Scholar] [CrossRef]
- Trueman, S.J.; Kämper, W.; Nichols, J.; Ogbourne, S.M.; Hawkes, D.; Peters, T.; Hosseini Bai, S.; Wallace, H.M. Pollen limitation and xenia effects in a cultivated mass-flowering tree, Macadamia integrifolia (Proteaceae). Ann. Bot. 2022, 129, 135–146. [Google Scholar] [CrossRef]
- Trueman, S.J.; Turnbull, C.G.N. Fruit set, abscission and dry matter accumulation on girdled branches of macadamia. Ann. Bot. 1994, 74, 667–674. [Google Scholar] [CrossRef]
- Trueman, S.J.; Turnbull, C.G.N. Effects of cross-pollination and flower removal on fruit set in macadamia. Ann. Bot. 1994, 73, 23–32. [Google Scholar] [CrossRef]
- Garner, L.C.; Lovatt, C.J. Physiological factors affecting flower and fruit abscission of ‘Hass’ avocado. Sci. Hortic. 2016, 199, 32–40. [Google Scholar] [CrossRef]
- Sukhvibul, N.; Whiley, A.W.; Smith, M.K. Effect of temperature on seed and fruit development in three mango (Mangifera indica L.) cultivars. Sci. Hortic. 2005, 105, 467–474. [Google Scholar] [CrossRef]
- Li, J.G.; Huang, X.M.; Huang, H.B. An overview of factors related to fruit size in Litchi chinensis Sonn. Acta Hortic. 2010, 863, 477–482. [Google Scholar] [CrossRef]
- Hofman, P.J.; Vuthapanich, S.; Whiley, A.W.; Klieber, A.; Simons, D.H. Tree yield and fruit minerals concentrations influence ‘Hass’ avocado fruit quality. Sci. Hortic. 2002, 92, 113–123. [Google Scholar] [CrossRef]
- Quaggio, J.A.; Mattos, D., Jr.; Cantarella, H.; Almeida, E.L.E.; Cardoso, S.A.B. Lemon yield and fruit quality affected by NPK fertilization. Sci. Hortic. 2002, 96, 151–162. [Google Scholar] [CrossRef]
- Gill, P.P.S.; Ganaie, M.Y.; Dhillon, W.S.; Singh, N.P. Effect of foliar sprays of potassium on fruit size and quality of ‘Patharnakh’ pear. Indian J. Hortic. 2012, 69, 512–516. [Google Scholar]
- Denney, J.O. Xenia includes metaxenia. HortScience 1992, 27, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Herbert, S.W.; Walton, D.A.; Wallace, H.M. Pollen-parent affects fruit, nut and kernel development of Macadamia. Sci. Hortic. 2019, 244, 406–412. [Google Scholar] [CrossRef]
- Kämper, W.; Thorp, G.; Wirthensohn, M.; Brooks, P.; Trueman, S.J. Pollen paternity can affect kernel size and nutritional composition of self-incompatible and new self-compatible almond cultivars. Agronomy 2021, 11, 326. [Google Scholar] [CrossRef]
- Kämper, W.; Trueman, S.J.; Ogbourne, S.M.; Wallace, H.M. Pollination services in a macadamia cultivar depend on across-orchard transport of cross pollen. J. Appl. Ecol. 2021, 58, 2529–2539. [Google Scholar] [CrossRef]
- Moncur, M.W.; Stephenson, R.A.; Trochoulias, T. Floral development of Macadamia integrifolia Maiden & Betche under Australian conditions. Sci. Hortic. 1985, 27, 87–96. [Google Scholar] [CrossRef]
- McFadyen, L.; Robertson, D.; Sedgley, M.; Kristiansen, P.; Olesen, T. Post-pruning shoot growth increases fruit abscission and reduces stem carbohydrates and yield in macadamia. Ann. Bot. 2011, 107, 993–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, T.; Huett, D.; Smith, G. The production of flowers, fruit and leafy shoots in pruned macadamia trees. Funct. Plant Biol. 2011, 38, 327–336. [Google Scholar] [CrossRef]
- Storey, W.B. Macadamia. In Handbook of Flowering; Halevy, A.H., Ed.; CRC Press: Boca Raton, FL, USA, 1985; Volume 3, pp. 283–286. [Google Scholar]
- Ito, P.J. Effect of style removal on fruit set in macadamia. HortScience 1980, 15, 520–521. [Google Scholar]
- Wallace, H.M.; Vithanage, V.; Exley, E.M. The effect of supplementary pollination on nut set of Macadamia (Proteaceae). Ann. Bot. 1996, 78, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Howlett, B.G.; Nelson, W.R.; Pattemore, D.E.; Gee, M. Pollination of macadamia: Review and opportunities for improving yields. Sci. Hortic. 2015, 197, 411–419. [Google Scholar] [CrossRef]
- Howlett, B.G.; Read, S.F.; Alavi, M.; Cutting, B.T.; Nelson, W.R.; Goodwin, R.M.; Cross, S.; Thorp, T.G.; Pattemore, D.E. Cross-pollination enhances macadamia yields, even with branch-level resource limitation. HortScience 2019, 54, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Ayre, D.J.; Whelan, R.J. Factors controlling fruit set in hermaphroditic plants: Studies with the Australian Proteaceae. Trends Ecol. Evol. 1989, 4, 267–272. [Google Scholar] [CrossRef]
- Collins, B.G.; Walsh, M.; Grey, J. Floral development and breeding systems of Dryandra sessilis and Grevillea wilsonii (Proteaceae). Aust. J. Bot. 2008, 56, 119–130. [Google Scholar] [CrossRef]
- Sakai, W.S.; Nagao, M.A. Fruit growth and abscission in Macadamia integrifolia. Physiol. Plant. 1984, 64, 455–460. [Google Scholar] [CrossRef]
- Urata, U. Pollination Requirements of Macadamia; Hawaii Agricultural Experiment Station Technical Bulletin No. 22; Hawaii Agricultural Experiment Station: Honolulu, HI, USA, 1954. [Google Scholar]
- Sedgley, M. Pollen tube growth in macadamia. Sci. Hortic. 1983, 18, 333–341. [Google Scholar] [CrossRef]
- Sedgley, M.; Bell, F.D.H.; Bell, D.; Winks, C.W.; Pattison, S.J.; Hancock, T.W. Self- and cross-compatibility of macadamia cultivars. J. Hortic. Sci. 1990, 65, 205–213. [Google Scholar] [CrossRef]
- Meyers, N.; McConchie, C.; Turnbull, C.; Vithanage, V. Cross pollination and intervarietal compatibility in macadamia. Aust. Macadamia Soc. News Bull. 1995, 22, 5–8. [Google Scholar]
- Trueman, S.J. The reproductive biology of macadamia. Sci. Hortic. 2013, 150, 354–359. [Google Scholar] [CrossRef]
- Stephenson, R.A.; Cull, B.W.; Mayer, D.G. Effects of site, climate, cultivar, flushing, and soil and leaf nutrient status on yields of macadamia in south east Queensland. Sci. Hortic. 1986, 30, 227–235. [Google Scholar] [CrossRef]
- Stephenson, R.A.; Gallagher, E.C.; Pepper, P.M. Macadamia yield and quality responses to phosphorus. Aust. J. Agric. Res. 2002, 53, 1165–1172. [Google Scholar] [CrossRef]
- Blevins, D.G.; Lukaszewski, K.M. Boron in plant structure and function. Annu. Rev. Plant Biol. 1998, 49, 481–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwai, H.; Hokura, A.; Oishi, M.; Chida, H.; Ishii, T.; Sakai, S.; Satoh, S. The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization. Proc. Natl. Acad. Sci. USA 2006, 103, 16592–16597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alloway, B.J. Micronutrients and crop production: An introduction. In Micronutrient Deficiencies in Global Crop Production; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 1–39. ISBN 978-1-4020-6860-7. [Google Scholar]
- Reid, R. Understanding the boron transport network in plants. Plant Soil 2014, 385, 1–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, H.; He, M.; Zhao, Z.; Cai, H.; Ding, G.; Shi, L.; Xu, F. The boron transporter BnaC4.BOR1;1c is critical for inflorescence development and fertility under boron limitation in Brassica napus. Plant Cell Environ. 2017, 40, 1819–1833. [Google Scholar] [CrossRef]
- Brdar-Jokanović, M. Boron toxicity and deficiency in agricultural plants. Int. J. Mol. Sci. 2020, 21, 1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Pant, J.; Dell, B.; Bell, R.W. Effects of boron deficiency on anther development and floret fertility in wheat (Triticum aestivum L. ‘Wilgoyne’). Ann. Bot. 2000, 85, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Pandey, N.; Gupta, B. The impact of foliar boron sprays on reproductive biology and seed quality of black gram. J. Trace Elem. Med. Biol. 2013, 27, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Rerkasem, B. Effects of boron on pollen viability in wheat. Plant Soil 1993, 155, 313–315. [Google Scholar] [CrossRef]
- Nyomora, A.M.S.; Brown, P.H.; Pinney, K.; Polito, V.S. Foliar application of boron to almond trees affects pollen quality. J. Am. Soc. Hortic. Sci. 2000, 125, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Sharafi, Y.; Raina, M. Effect of boron on pollen attributes in different cultivars of Malus domestica L. Natl. Acad. Sci. Lett. 2020, 44, 189–194. [Google Scholar] [CrossRef]
- Loomis, W.D.; Durst, R.W. Chemistry and biology of boron. BioFactors 1992, 3, 229–239. [Google Scholar]
- Hu, H.; Brown, P.H. Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall). Plant Physiol. 1994, 105, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, E.J. Sour cherry trees respond to foliar boron applications. HortScience 1991, 26, 1142–1145. [Google Scholar] [CrossRef] [Green Version]
- Nyomora, A.M.; Brown, P.H.; Freeman, M. Fall foliar-applied boron increases tissue boron concentration and nut set of almond. J. Am. Soc. Hortic. Sci. 1997, 122, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Perica, S.; Brown, P.H.; Connell, J.H.; Nyomora, A.M.; Dordas, C.; Hu, H.; Stangoulis, J. Foliar boron application improves flower fertility and fruit set of olive. HortScience 2001, 36, 714–716. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, P.; Wojcik, M.; Klamkowski, K. Response of apple trees to boron fertilization under conditions of low soil boron availability. Sci. Hortic. 2008, 116, 58–64. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Available online: http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_startYear=&p_c=&p_stn_num=039128 (accessed on 20 September 2021).
- Bureau of Meteorology. Available online: http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=36&p_display_type=dataFile&p_startYear=&p_c=&p_stn_num=039128 (accessed on 20 September 2021).
- Bureau of Meteorology. Available online: http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=38&p_display_type=dataFile&p_startYear=&p_c=&p_stn_num=039128 (accessed on 20 September 2021).
- Department of Natural Resources. Soil Survey of the Bundaberg Area, South East Queensland, South Section of Soils Map. Available online: https://www.publications.qld.gov.au/dataset/dd52d340-2da3-4e3d-be8a-472c85449e0e/resource/117057a0-1543-42bd-acac-8187a6593c62/download/bab-p3216-bundaberg-south-soils-map.pdf (accessed on 1 June 2021).
- Richards, T.E.; Kämper, W.; Trueman, S.J.; Wallace, H.M.; Ogbourne, S.M.; Brooks, P.R.; Nichols, J.; Hosseini, B.S. Relationships between nut size, kernel quality, nutritional composition and levels of outcrossing in three macadamia cultivars. Plants 2020, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Meyers, N.M.; Huett, D.O.; Morris, S.C.; McFadyen, L.M.; McConchie, C.A. Investigation of sampling procedures to determine macadamia fruit quality in orchards. Aust. J. Exp. Agric. 1999, 39, 1007–1012. [Google Scholar] [CrossRef]
- McConchie, C.A.; Meyers, N.M.; Anderson, K.; Vivian-Smith, A.; O’Brien, S.; Richards, S. Development and maturation of macadamia nuts in Australia. In Challenges for Horticulture in the Tropics, Proceedings of the Third Australian Society of Horticultural Science and the First Australian Macadamia Society Research Workshop, Broadbeach, QLD, Australia, 18–22 August 1996; Stephenson, R.A., Winks, C.W., Eds.; Australian Society of Horticultural Science: Gosford, Australia, 1996; pp. 234–238. [Google Scholar]
- Trueman, S.J.; Richards, S.; McConchie, C.A.; Turnbull, C.G.N. Relationships between kernel oil content, fruit removal force and abscission in macadamia. Aust. J. Exp. Agric. 2000, 40, 859–866. [Google Scholar] [CrossRef]
- McGeehan, S.L.; Naylor, D.V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 1988, 19, 493–505. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata: Melbourne, Australia, 1992; ISBN 0909605688. [Google Scholar]
- Martinie, G.D.; Schilt, A.A. Investigation of the wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 1976, 48, 70–74. [Google Scholar] [CrossRef]
- Munter, R.C.; Grande, R.A. Plant tissue and soil extract analysis by ICP-atomic emission spectrometry. In Developments in Atomic Plasma Spectrochemical Analysis; Byrnes, R.M., Ed.; Heyden: London, UK, 1981; pp. 653–672. [Google Scholar]
- Shapcott, A.; Forster, P.I.; Guymer, G.P.; McDonald, W.J.F.; Faith, D.P.; Erickson, D.; Kress, W.J. Mapping biodiversity and setting conservation priorities for SE Queensland’s rainforests using DNA barcoding. PLoS ONE 2015, 10, e0122164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, N.V.; Fazekas, A.J.; Hebert, P.D.N. Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Rep. 2008, 26, 186. [Google Scholar] [CrossRef]
- Wang, N.; Yang, C.; Pan, Z.; Liu, Y.; Peng, S.A. Boron deficiency in woody plants: Various responses and tolerance mechanisms. Front. Plant Sci. 2015, 6, 916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hare, P.; Stephenson, R.; Quinlan, K.; Vock, N. Macadamia Grower’s Handbook; Department of Primary Industries and Fisheries: Nambour, Australia, 2004; ISBN 978-0-7345-0241-4.
- Sedgley, M.; Blesing, M.A.; Vithanage, H.I.M.V. A developmental study of the structure and pollen receptivity of the macadamia pistil in relation to protandry and self-incompatibility. Bot. Gaz. 1985, 146, 6–14. [Google Scholar] [CrossRef]
- Smith, T.E.; Stephenson, R.A.; Asher, C.J.; Hetherington, S.E. Boron deficiency of avocado: Effects on pollen viability and fruit set. In Boron in Soils and Plants; Bell, R.W., Rerkasem, B., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1997; pp. 131–133. [Google Scholar]
- Ganie, M.A.; Akhter, F.; Bhat, M.A.; Malik, A.R.; Junaid, J.M.; Abas Shah, M.; Bhat, A.H.; Bhat, T.A. Boron—A critical nutrient element for plant growth and productivity with reference to temperate fruits. Curr. Sci. 2013, 104, 76–85. [Google Scholar]
- Sedgley, M.; Griffin, A.R. Sexual Reproduction of Tree Crops; Academic Press Limited: San Diego, CA, USA, 1989; ISBN 978-0-1263-4470-7. [Google Scholar]
- Seavey, S.R.; Bawa, K.S. Late-acting self-incompatibility in angiosperms. Bot. Rev. 1986, 52, 195–219. [Google Scholar] [CrossRef]
- Raspé, O.; Guillaume, P.; Jacquemart, A.-L. Inbreeding depression and biased paternity after mixed-pollination in Vaccinium myrtillus L. (Ericaceae). Int. J. Plant Sci. 2004, 165, 765–771. [Google Scholar] [CrossRef]
- Valtueña, F.J.; Rodríguez-Riaño, T.; Espinosa, F.; Ortega-Olivencia, A. Self-sterility in two Cytisus species (Leguminosae, Papilionoideae) due to early-acting inbreeding depression. Am. J. Bot. 2010, 97, 123–135. [Google Scholar] [CrossRef]
- Trueman, S.J.; Wallace, H.M. Pollination and resource constraints on fruit set and fruit size of Persoonia rigida (Proteaceae). Ann. Bot. 1999, 83, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Herbert, S.W.; Walton, D.A.; Wallace, H.M. The influence of pollen-parent and carbohydrate availability on macadamia yield and nut size. Sci. Hortic. 2019, 251, 241–246. [Google Scholar] [CrossRef]
- Pellmyr, O.; Massey, L.; Hamrick, J.; Feist, M.A. Genetic consequences of specialization: Yucca moth behavior and self-pollination in yuccas. Oecologia 1997, 109, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Huth, C.J.; Pellmyr, O. Pollen-mediated selective abortion in yuccas and its consequences for the plant-pollinator mutualism. Ecology 2000, 81, 1100–1107. [Google Scholar] [CrossRef]
- Vaughton, G.; Carthew, S.M. Evidence for selective fruit abortion in Banksia spinulosa (Proteaceae). Biol. J. Linn. Soc. 1993, 50, 35–46. [Google Scholar] [CrossRef]
- Goldingay, R.L.; Carthew, S.M. Breeding and mating systems of Australian Proteaceae. Aust. J. Bot. 1998, 46, 421–437. [Google Scholar] [CrossRef]
- Penter, M.G.; Nkwana, E.; Nxundu, Y. Factors influencing kernel breakage in the South African macadamia industry. S. Afr. Macadamia Grow. Assoc. Yearb. 2008, 16, 6–10. [Google Scholar]
- Australian Macadamia Society. The Australian Macadamia Industry; Australian Macadamia Society: Lismore, Australia, 2017. [Google Scholar]
- Australian Macadamia Society. Kernel Quality Standard for Processors; Australian Macadamia Society: Lismore, Australia, 2018. [Google Scholar]
- Department of Agriculture and Fisheries. Macadamia Industry Benchmark Report, 2009–2019 Seasons; State of Queensland: Brisbane, Australia, 2019.
- Ying, X.; Cheng, S.; Wang, W.; Lin, Z.; Chen, Q.; Zhang, W.; Kou, D.; Shen, Y.; Cheng, X.; Rompis, F.A.; et al. Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biol. Trace Elem. Res. 2011, 144, 306–315. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Pivotal role of boron supplementation on bone health: A narrative review. J. Trace Elem. Med. Biol. 2020, 62, 126577. [Google Scholar] [CrossRef]
- Travers, R.L.; Rennie, G.C.; Newnham, R.E. Boron and arthritis: The results of a double-blind pilot study. J. Nutr. Med. 1990, 1, 127–132. [Google Scholar] [CrossRef]
- Miljkovic, D.; Scorei, R.I.; Cimpoiaşu, V.M.; Scorei, I.D. Calcium fructoborate: Plant-based dietary boron for human nutrition. J. Diet. Suppl. 2009, 6, 211–226. [Google Scholar] [CrossRef]
- World Health Organization. Boron. In Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Vithanage, V.; McConchie, C.A.; Meyers, N. Maximising the Benefits from Cross Pollination in Macadamia Orchards: Final Report; Horticulture Australia Ltd.: Sydney, Australia, 2002. [Google Scholar]
- Langdon, K.S.; King, G.J.; Nock, C.J. DNA paternity testing indicates unexpectedly high levels of self-fertilisation in macadamia. Tree Genet. Genomes 2019, 15, 29. [Google Scholar] [CrossRef]
- Cunningham, S.A.; Fournier, A.; Neave, M.J.; Le Feuvre, D. Improving spatial arrangement of honeybee colonies to avoid pollination shortfall and depressed fruit set. J. Appl. Ecol. 2016, 53, 350–359. [Google Scholar] [CrossRef]
- Gary, N.E.; Mau, R.F.; Mitchell, W.C. A preliminary study of honey bee foraging range in macadamia (Macadamia integrifolia, Maiden and Betche). Proc. Hawaii. Entomol. Soc. 1972, 21, 205–212. [Google Scholar]
- Evans, L.J.; Jesson, L.; Read, S.F.J.; Jochym, M.; Cutting, B.T.; Gayrard, T.; Jammes, M.A.S.; Roumier, R.; Howlett, B.G. Key factors influencing forager distribution across macadamia orchards differ among species of managed bees. Basic Appl. Ecol. 2021, 53, 74–85. [Google Scholar] [CrossRef]
Nutrient | Correlation with NIS Yield | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample Type and Time After Peak Anthesis | ||||||||||
Flowers (0 Weeks) | Leaves (0 Weeks) | Leaves (6 Weeks) | Leaves (10 Weeks) | Leaves (26 Weeks) | ||||||
r | p | r | p | r | p | r | p | r | p | |
B | 0.242 | 0.197 | 0.214 | 0.257 | 0.116 | 0.543 | 0.340 | 0.066 | 0.277 | 0.138 |
N | 0.410 * | 0.024 | 0.195 | 0.302 | 0.050 | 0.076 | 0.362 * | 0.049 | 0.138 | 0.467 |
P | 0.327 | 0.078 | 0.289 | 0.122 | 0.050 | 0.792 | 0.225 | 0.232 | −0.189 | 0.316 |
K | 0.383 * | 0.037 | 0.224 | 0.235 | 0.182 | 0.337 | 0.407 * | 0.025 | −0.112 | 0.557 |
Al | −0.303 | 0.103 | 0.008 | 0.967 | −0.234 | 0.212 | 0.068 | 0.721 | 0.893 | −0.026 |
Ca | −0.283 | 0.130 | −0.028 | 0.881 | 0.018 | 0.927 | −0.006 | 0.976 | 0.428 * | 0.018 |
Cu | 0.408 * | 0.025 | 0.325 | 0.080 | −0.089 | 0.640 | −0.145 | 0.446 | 0.061 | 0.749 |
Fe | −0.415 * | 0.023 | 0.080 | 0.722 | −0.305 | 0.102 | −0.258 | 0.169 | −0.001 | 0.998 |
Mg | −0.130 | 0.495 | 0.244 | 0.194 | 0.104 | 0.585 | 0.162 | 0.392 | 0.579 ** | 0.001 |
Mn | 0.041 | 0.832 | 0.242 | 0.198 | 0.067 | 0.724 | 0.063 | 0.741 | 0.279 | 0.135 |
Na | −0.230 | 0.221 | −0.066 | 0.728 | −0.083 | 0.664 | 0.117 | 0.538 | 0.118 | 0.536 |
S | 0.331 | 0.074 | 0.099 | 0.603 | 0.133 | 0.484 | 0.240 | 0.201 | 0.349 | 0.060 |
Zn | −0.200 | 0.289 | 0.361* | 0.050 | −0.196 | 0.297 | 0.112 | 0.557 | −0.079 | 0.677 |
Nutrient | Correlation with Kernel Yield | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample Type and Time After Peak Anthesis | ||||||||||
Flowers (0 Weeks) | Leaves (0 Weeks) | Leaves (6 Weeks) | Leaves (10 Weeks) | Leaves (26 Weeks) | ||||||
r | p | r | p | r | p | r | p | r | p | |
B | 0.230 | 0.221 | 0.220 | 0.243 | 0.115 | 0.545 | 0.335 | 0.070 | 0.317 | 0.088 |
N | 0.373 * | 0.042 | 0.139 | 0.465 | 0.287 | 0.124 | 0.329 | 0.076 | 0.111 | 0.559 |
P | 0.328 | 0.077 | 0.233 | 0.215 | 0.049 | 0.796 | 0.213 | 0.259 | −0.241 | 0.199 |
K | 0.333 | 0.072 | 0.144 | 0.448 | 0.123 | 0.516 | 0.403 * | 0.027 | −0.207 | 0.273 |
Al | −0.300 | 0.107 | 0.001 | 0.994 | −0.261 | 0.163 | 0.028 | 0.885 | 0.005 | 0.979 |
Ca | −0.257 | 0.170 | −0.062 | 0.745 | −0.003 | 0.986 | −0.077 | 0.687 | 0.472 ** | 0.008 |
Cu | 0.421 * | 0.021 | 0.293 | 0.116 | −0.029 | 0.880 | −0.156 | 0.410 | 0.100 | 0.599 |
Fe | −0.400 * | 0.029 | −0.113 | 0.553 | −0.297 | 0.111 | −0.296 | 0.113 | 0.005 | 0.979 |
Mg | −0.127 | 0.502 | 0.197 | 0.297 | 0.062 | 0.743 | 0.099 | 0.604 | 0.616 *** | <0.001 |
Mn | 0.115 | 0.544 | 0.253 | 0.177 | 0.118 | 0.535 | 0.072 | 0.704 | 0.364 * | 0.048 |
Na | −0.272 | 0.145 | −0.074 | 0.698 | −0.137 | 0.472 | 0.128 | 0.500 | 0.104 | 0.583 |
S | 0.298 | 0.110 | 0.053 | 0.779 | 0.105 | 0.579 | 0.147 | 0.438 | 0.291 | 0.119 |
Zn | −0.147 | 0.439 | 0.314 | 0.091 | −0.165 | 0.383 | 0.068 | 0.722 | −0.074 | 0.699 |
B Application (g) | |||
---|---|---|---|
0 | 15 | 30 | |
Nut mass and quality | |||
Nut-in-shell mass | 6.57 ± 0.08 a | 6.67 ± 0.08 a | 6.71 ± 0.08 a |
Kernel mass | 2.83 ± 0.04 a | 2.87 ± 0.05 a | 2.89 ± 0.05 a |
Kernel recovery | 42.86 ± 0.43 a | 42.83 ± 0.42 a | 42.58 ± 0.40 a |
Whole kernels | 73.50 ± 2.70 a | 74.50 ± 2.30 a | 75.50 ± 1.90 a |
Kernel oil concentration | 76.90 ± 0.40 a | 77.50 ± 0.30 a | 77.50 ± 0.40 a |
Nutrient concentrations | |||
B | 0.718 ± 0.034 a | 0.912 ± 0.036 b | 0.823 ± 0.035 c |
N | 1339 ± 20 a | 1314 ± 19 a | 1352 ± 19 a |
P | 213 ± 6 a | 207 ± 7 a | 202 ± 7 a |
K | 392 ± 28 a | 365 ± 83 a | 380 ± 13 a |
Al | 0.149 ± 0.008 a | 0.143 ± 0.008 a | 0.151 ± 0.009 a |
Ca | 62.97 ± 2.08 a | 58.73 ± 1.70 a | 63.48 ± 2.20 a |
Cu | 0.385 ± 0.010 a | 0.403 ± 0.012 a | 0.378 ± 0.012 a |
Fe | 1.78 ± 0.08 a | 1.80 ± 0.07 a | 1.78 ± 0.07 a |
Mg | 122 ± 4 a | 110 ± 4 b | 116 ± 4 ab |
Mn | 0.548 ± 0.027 a | 0.471 ± 0.017 b | 0.509 ± 0.019 ab |
Na | 1.16 ± 0.07 a | 1.06 ± 0.07 a | 1.22 ± 0.07 a |
S | 134 ± 4 a | 127 ± 2 a | 130 ± 3 a |
Zn | 0.997 ± 0.034 a | 0.918 ± 0.036 ab | 0.868 ± 0.041 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Silva, A.L.; Kämper, W.; Wallace, H.M.; Ogbourne, S.M.; Hosseini Bai, S.; Nichols, J.; Trueman, S.J. Boron Effects on Fruit Set, Yield, Quality and Paternity of Macadamia. Agronomy 2022, 12, 684. https://doi.org/10.3390/agronomy12030684
De Silva AL, Kämper W, Wallace HM, Ogbourne SM, Hosseini Bai S, Nichols J, Trueman SJ. Boron Effects on Fruit Set, Yield, Quality and Paternity of Macadamia. Agronomy. 2022; 12(3):684. https://doi.org/10.3390/agronomy12030684
Chicago/Turabian StyleDe Silva, Anushika L., Wiebke Kämper, Helen M. Wallace, Steven M. Ogbourne, Shahla Hosseini Bai, Joel Nichols, and Stephen J. Trueman. 2022. "Boron Effects on Fruit Set, Yield, Quality and Paternity of Macadamia" Agronomy 12, no. 3: 684. https://doi.org/10.3390/agronomy12030684
APA StyleDe Silva, A. L., Kämper, W., Wallace, H. M., Ogbourne, S. M., Hosseini Bai, S., Nichols, J., & Trueman, S. J. (2022). Boron Effects on Fruit Set, Yield, Quality and Paternity of Macadamia. Agronomy, 12(3), 684. https://doi.org/10.3390/agronomy12030684