Management Zones in Pastures Based on Soil Apparent Electrical Conductivity and Altitude: NDVI, Soil and Biomass Sampling Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Experimental Fields
2.2. Soil Apparent Electrical Conductivity (ECa) and Topographic Survey
2.3. Soil Sampling and Laboratory Reference Analysis
2.4. Normalized Difference Vegetation Index (NDVI) Measurements with Proximal Optical Sensor
2.5. Pasture Biomass Sampling and Normalized Difference Vegetation Index (NDVI) Measurements
2.6. Soil Apparent Electrical Conductivity (ECa) and Topographic Altitude Processing
2.7. Definition and Validation of Homogeneous Management Zones (HMZ)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouaze, A.M. Chapter dour-delineation of soil management zones for variable-rate fertilization: A review. Adv. Agron. 2017, 143, 175–245. [Google Scholar]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Sales-Baptista, E.; Ferraz de Oliveira, I.; Lopes de Castro, J.; Pereira, A.; Cancela d’Abreu, M.; Machado, E.; Carvalho, M. Tree influence on soil and pasture: Contribution of proximal sensing to pasture productivity and quality estimation in montado ecosystems. Int. J. Remote Sens. 2018, 39, 4801–4829. [Google Scholar] [CrossRef]
- Efe Serrano, J. Pastures in Alentejo: Technical Basis for Characterization, Grazing and Improvement; Universidade de Évora—ICAM, Ed.; Gráfica Eborense: Évora, Portugal, 2006; pp. 165–178. (In Portuguese) [Google Scholar]
- Moral, F.J.; Rebollo, F.J.; Serrano, J.M. Delineating site-specifc management zones on pasture soil using a probabilistic and objective model and geostatistical techniques. Prec. Agric. 2020, 21, 620–636. [Google Scholar] [CrossRef]
- Schellberg, J.; Hill, M.J.; Roland, G.; Rothmund, M.; Braun, M. Precision agriculture on grassland: Applications, perspectives and constraints. Eur. J. Agron. 2008, 29, 59–71. [Google Scholar] [CrossRef]
- Moral, F.J.; Rebollo, F.J.; Serrano, J.M.; Carvajal, F. Mapping management zones in a sandy pasture soil using an objective model and multivariate techniques. Precis. Agric. 2021, 22, 800–817. [Google Scholar] [CrossRef]
- Castrignanò, A.; Buttafuoco, G.; Quarto, R.; Vitti, C.; Langella, G.; Terribile, F.; Venezia, A. A combined approach of sensor data fusion and multivariate geostatistics for delineation of homogeneous zones in an agricultural field. Sensors 2017, 17, 2794. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Calado, J.; Carvalho, M. Integration of soil electrical conductivity and indices obtained through satellite imagery for differential management of pasture fertilization. AgriEngineering 2019, 1, 567–585. [Google Scholar] [CrossRef] [Green Version]
- Peralta, N.R.; Costa, J.L.; Balzarin, M.; Franco, M.C.; Córdoba, M.; Bullock, D. Delineation of management zones to improve nitrogen management of wheat. Comput. Electron. Agric. 2015, 110, 103–113. [Google Scholar] [CrossRef]
- Moral, F.; Terrón, J.; Da Silva, J.M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Georgi, C.; Spengler, D.; Itzerott, S.; Kleinschmit, B. Automatic delineation algorithm for site-specific management zones based on satellite remote sensing data. Precis. Agric. 2018, 19, 684–707. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Costa, F.; Carreira, E.; Pereira, A.; Carvalho, M. Can soil pH correction reduce the animal supplementation needs in the critical autumn period in Mediterranean Montado ecosystem? Agronomy 2021, 11, 514. [Google Scholar] [CrossRef]
- Moral, F.J.; Serrano, J.M. Using low-cost geophysical survey to map soil properties and delineate management zones on grazed permanent pastures. Precis. Agric. 2019, 20, 1000–1014. [Google Scholar] [CrossRef]
- Serrano, J.; Peça, J.; Marques da Silva, J.; Shahidian, S. Mapping soil and pasture variability with an electromagnetic induction sensor. Comput. Electron. Agric. 2010, 73, 7–16. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Monitoring seasonal pasture quality degradation in the Mediterranean montado ecosystem: Proximal versus remote sensing. Water 2018, 10, 1422. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Evaluation of normalized difference water index as a tool for monitoring pasture seasonal and inter-annual variability in a Mediterranean agro-silvo-pastoral system. Water 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Casasnovas, J.A.; Sandonís-Pozo, L.; Escolà, A.; Arnó, J.; Llorens, J. Delineation of management zones in Hedgerow Almond Orchards based on vegetation indices from UAV images validated by LiDAR-derived canopy parameters. Agronomy 2022, 12, 102. [Google Scholar] [CrossRef]
- Denora, M.; Fiorentini, M.; Zenobi, S.; Deligios, P.A.; Orsini, R.; Ledda, L.; Perniola, M. Validation of rapid and low-cost approach for the delineation of zone management based on machine learning algorithms. Agronomy 2022, 12, 183. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Sudduth, K.A.; Myers, D.B.; Drummond, S.T.; Hong, S.Y. Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Comput. Electron. Agric. 2005, 46, 285–308. [Google Scholar] [CrossRef]
- Valente, D.S.M.; Queiroz, D.M.; Pinto, F.A.C.; Santos, N.T.; Santos, F.L. Definition of management zones in coffee production fields based on apparent soil electrical conductivity. Sci. Agric. 2012, 69, 173–179. [Google Scholar] [CrossRef] [Green Version]
- FAO. World Reference Base for Soil Resources; World Soil Resources Reports N Æ 103; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Serrano, J.; Shahidian, S.; da Silva, J.M.; Paixão, L.; Carreira, E.; Pereira, A.; Carvalho, M. Climate changes challenges to the management of Mediterranean Montado ecosystem: Perspectives for use of precision agriculture technologies. Agronomy 2020, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Egner, H.; Riehm, H.; Domingo, W.R. Utersuchungeniiber die chemische Bodenanalyse als Grudlagefir die Beurteilung des Nahrstof-zunstandes der Boden. II. K. Lantbr. Ann. 1960, 20, 199–216. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Sciences; John Wiley & Sonns Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Moral, F.J.; Rebollo, F.J.; Serrano, J.M. Estimating and mapping pasture soil fertility in a portuguese montado based on a objective model and geostatistical techniques. Comput. Electron. Agric. 2019, 157, 500–508. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Moral, F.; Carmona-Cabezas, R.; Garcia, S.; Palha, J.; Noéme, J. Mapping management zones based on soil apparent electrical conductivity and remote sensing for implementation of variable rate irrigation: Case study of Corn under a center pivot. Water 2020, 12, 3427. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Plant, R.E.; Lambert, J.-J.; Smart, D.R. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precis. Agric. 2011, 12, 775–794. [Google Scholar] [CrossRef] [Green Version]
- Moral, F.J.; Rebollo, F.J.; Campillo, C.; Serrano, J.M. Using a objective and probabilistic model to delineate homogeneous management zones in hedgerow olive orchards. Soil Tillage Res. 2019, 194, 104308. [Google Scholar] [CrossRef]
- Cicore, P.L.; Castro Franco, M.; Peralta, N.R.; Marques da Silva, J.R.; Costa, J.L. Relationship between soil apparent electrical conductivity and forage yield in temperate pastures according to nitrogen availability and growing season. Crop. Pasture Sci. 2019, 70, 908–916. [Google Scholar] [CrossRef]
- Costa, M.M.; Queiroz, D.M.; Pinto, F.A.C.; Reis, E.F.; Santos, N.T. Moisture content effect in the relationship between apparent electrical conductivity and soil attributes. Acta Sci. 2014, 36, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Cordoba, M.A.; Bruno, C.I.; Costa, J.L.; Peralta, N.R.; Balzarini, M.G. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosyst. Eng. 2016, 143, 95–107. [Google Scholar]
- Bönecke, E.; Meyer, S.; Vogel, S.; Schröter, I.; Gebbers, R.; Kling, C.; Kramer, E.; Lück, K.; Nagel, A.; Philipp, G.; et al. Guidelines for precise lime management based on high-resolution soil pH, texture and SOM maps generated from proximal soil sensing data. Precis. Agric. 2021, 22, 493–523. [Google Scholar] [CrossRef]
- Altdorff, D.; Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Galagedara, L. Comparison of multi-frequency and multi-coil electromagnetic induction (EMI) for mapping properties in shallow Podsolic soils. Sensors 2020, 20, 2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heil, K.; Schmidhalter, U. The application of EM38: Determination of soil parameters, selection of soil sampling points and use in agriculture and archaeology. Sensors 2017, 17, 2540. [Google Scholar] [CrossRef] [Green Version]
- Stepien, M.; Samborski, S.; Gozdowski, D.; Dobers, E.S.; Chormanski, J.; Szatylowicz, J. Assessment of soil texture class on agricultural fields using ECa, Amber NDVI, and topographic properties. J. Plant Nutr. Soil Sci. 2015. [Google Scholar] [CrossRef]
- Schenatto, K.; Souza, E.G.; Bazzi, C.L.; Gavioli, A.; Betzek, N.M.; Beneduzzi, H.M. Normalization of data for delineating management zones. Comput. Electron. Agric. 2017, 143, 238–248. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized diference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2020, 32, 1–6. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Carreira, E.; Carmona-Cabezas, R.; Nogales-Bueno, J.; Rato, A.E. Evaluation of near infrared spectroscopy (NIRS) and remote sensing (RS) for estimating pasture quality in Mediterranean Montado ecosystem. Appl. Sci. 2020, 10, 4463. [Google Scholar] [CrossRef]
- Serrano, J.; Peça, J.; Marques Da Silva, J.; Shahidian, S. Calibration of a Capacitance Probe for Measurement and Mapping of Dry Matter Yield in Mediterranean Pastures. Precis. Agric. 2011, 12, 860–875. [Google Scholar] [CrossRef]
- Carvalho, M.; Goss, M.J.; Teixeira, D. Manganese toxicity in Portuguese Cambisols derived from granitic rocks: Causes, limitations of soil analyses and possible solutions. Rev. Cienc. Agrárias 2015, 38, 518–527. [Google Scholar] [CrossRef]
- Costa, J.P.; Mesquita, M.L.R. Floristic and phytosociology of weeds in pastures in Maranhão State, Northeast Brazil. Rev. Cien. Agron. 2016, 47, 414–420. [Google Scholar] [CrossRef] [Green Version]
- David, T.S.; Pinto, C.A.; Nadezhdina, N.; Kurz-Besson, C.; Henriques, M.O.; Quilhó, T.; Cermak, J.; Chaves, M.M.; Pereira, J.S.; David, J.S. Root functioning, tree water use and hydraulic redistribution in Quercus Suber trees: A modeling approach based on root sap flow. For. Ecol. Manag. 2013, 307, 136–146. [Google Scholar] [CrossRef] [Green Version]
Fiel Code | Coordinates | Area (ha) | Soil Texture * | Pasture Type | Predominant Trees | Animal Species (Type of Grazing) | Annual Rainfall (mm) |
---|---|---|---|---|---|---|---|
“AZI” | 38°6.2′ N; 8°26.9′ W | 22.3 | Sandy loam | Permanent; biodiverse | Holm and Cork oak | Sheep (Rotational grazing) | 430 |
“CUB” | 39°10.0′ N; 6°44.6′ W | 32.8 | Loam | Permanent; biodiverse | Holm and Cork oak | Cattle and Pigs (Rotational grazing) | 950 |
“GRO” | 37°52.3′ N; 7°56.7′ W | 28.3 | Sandy loam | Permanent; biodiverse | Holm oak | Cattle (Rotational grazing) | 430 |
“MUR” | 38°23.4′ N; 7°52.5′ W | 29.6 | Sandy loam | Permanent; biodiverse | Holm oak | Sheep (Permanent grazing) | 567 |
“PAD” | 38°36.4′ N; 8°8.7′ W | 32.2 | Loamy sand | Permanent; biodiverse | Holm oak | Cattle (Permanent grazing) | 567 |
“TAP” | 39°9.5′ N; 7°31.9′ W | 27.1 | Loamy sand | Permanent; biodiverse | Holm and Cork oak | Cattle and Pigs (Rotational grazing) | 950 |
Year 2020 | “AZI” | “CUB” | “GRO” | “MUR” | “PAD” | “TAP” |
---|---|---|---|---|---|---|
Date 1 | 21/01 | 29/01 | 21/01 | 22/01 | 20/01 | 22/01 |
Date 2 | 02/03 | 10/03 | 02/03 | 09/03 | 09/03 | 10/03 |
Date 3 | 21/04 | * | 21/04 | 20/04 | 20/04 | 24/04 |
Date 4 | 28/05 | * | 28/05 | 29/05 | 29/05 | 01/06 |
Altitude (m) | Azinhal | Cubillos | Grous | Murteiras | Padres | Tapada |
---|---|---|---|---|---|---|
Mean | 84.1 | 336.8 | 153.5 | 277.8 | 331.9 | 346.0 |
SD | 6.5 | 5.2 | 5.2 | 6.0 | 7.9 | 8.5 |
Range | 66.7–95.8 | 322.2–349.0 | 142.4–166.6 | 261.6–294.2 | 312.8–353.2 | 327.2–367.1 |
Parameter | Azinhal | Cubillos | Grous | Murteiras | Padres | Tapada |
---|---|---|---|---|---|---|
Clay (%) | ||||||
Mean | 9.2 | 23.5 | 16.8 | 8.5 | 6.6 | 7.0 |
SD | 3.0 | 1.6 | 7.2 | 4.7 | 2.0 | 6.4 |
Range | 4.7–12.8 | 20.7–25.4 | 11.5–30.7 | 3.2–17.0 | 4.6–10.4 | 3.7–20.0 |
Silt (%) | ||||||
Mean | 17.0 | 39.0 | 25.5 | 15.9 | 15.4 | 14.8 |
SD | 3.8 | 0.6 | 3.9 | 10.7 | 2.2 | 9.9 |
Range | 12.0–20.9 | 38.2–39.6 | 20.0–31.5 | 5.1–34.7 | 13.2–19.1 | 5.1–30.2 |
Sand (%) | ||||||
Mean | 73.8 | 37.5 | 57.6 | 75.6 | 78.0 | 78.2 |
SD | 5.6 | 1.9 | 8.9 | 14.6 | 2.6 | 9.0 |
Range | 66.7–79.9 | 35.6–40.9 | 43.7–67.1 | 48.5–88.3 | 73.9–80.3 | 64.8–89.1 |
pH | ||||||
Mean | 6.7 | 5.5 | 5.8 | 6.0 | 6.4 | 6.0 |
SD | 0.2 | 0.3 | 0.3 | 0.5 | 0.5 | 0.3 |
Range | 6.2–6.9 | 5.2–5.9 | 5.4–6.3 | 5.3–6.6 | 5.7–7.0 | 5.7–6.4 |
OM (%) | ||||||
Mean | 1.9 | 3.1 | 2.5 | 2.7 | 2.7 | 2.2 |
SD | 0.2 | 0.2 | 0.9 | 0.5 | 0.2 | 0.8 |
Range | 1.5–2.2 | 2.6–3.3 | 1.0–3.7 | 2.1–3.3 | 2.3–2.8 | 1.2–3.3 |
P2O5 (mg kg−1) | ||||||
Mean | 8.5 | 11.5 | 24.3 | 29.2 | 23.7 | 7.5 |
SD | 3.8 | 2.9 | 21.5 | 21.7 | 6.7 | 3.2 |
Range | 4.4–14.0 | 8.0–16.0 | 3.9–63.0 | 10.0–67.0 | 18.0–33.0 | 4.0–13.0 |
CEC (cmol kg−1) | ||||||
Mean | 11.3 | 15.2 | 11.2 | 8.6 | 15.5 | 7.2 |
SD | 3.9 | 2.4 | 1.8 | 2.8 | 1.3 | 2.5 |
Range | 7.5–18.5 | 11.4–18.5 | 8.9–13.8 | 5.2–12.4 | 14.3–17.6 | 3.5–10.1 |
ECa (mS m−1) | ||||||
Mean | 14.5 | 15.4 | 7.0 | 13.8 | 18.6 | 6.1 |
SD | 6.1 | 3.0 | 3.5 | 5.4 | 2.9 | 4.7 |
Range | 3.7–45.6 | 3.4–23.8 | 0.2–48.3 | 0.9–33.9 | 0.1–32.5 | 0.2–48.5 |
SMC (%) | ||||||
Mean | 2.5 | 7.3 | 2.5 | 10.1 | 6.6 | 6.3 |
SD | 1.2 | 1.8 | 1.6 | 2.3 | 1.4 | 1.4 |
Range | 1.7–5.3 | 5.1–10.3 | 0.9–5.9 | 6.5–12.9 | 4.3–8.6 | 4.3–9.1 |
Parameter | Azinhal | Cubillos | Grous | Murteiras | Padres | Tapada |
---|---|---|---|---|---|---|
Biomass (kg ha−1) | ||||||
Mean | 5291 | 8164 | 5917 | 6088 | 6551 | 7445 |
SD | 3136 | 2501 | 3185 | 4808 | 2697 | 4698 |
Range | 1167–12,037 | 4233–12,800 | 1767–14,500 | 1267–18,603 | 3050–11,853 | 2053–17,000 |
NDVI | ||||||
Mean | 0.495 | 0.732 | 0.564 | 0.537 | 0.668 | 0.589 |
SD | 0.134 | 0.048 | 0.188 | 0.077 | 0.119 | 0.080 |
Range | 0.250–0.682 | 0.592–0.784 | 0.241–0.797 | 0.354–0.710 | 0.432–0.819 | 0.410–0.697 |
Parameter | Azinhal | Cubillos | Grous | Murteiras | Padres | Tapada |
---|---|---|---|---|---|---|
Clay (%) | ||||||
Less potential | - | 23.1 | 12.9 | 5.2 | - | 4.2 |
Intermediate | 7.2 | 24.9 | 19.8 | - | 6.5 | - |
More potential | 9.6 | 22.6 | 27.2 | 10.2 | 6.7 | 8.5 |
pH | ||||||
Less potential | - | 5.3 | 5.4 | 5.4 | - | 5.9 |
Intermediate | 6.6 | 5.6 | 5.8 | - | 7.0 | - |
More potential | 6.9 | 5.5 | 5.9 | 6.3 | 6.2 | 6.1 |
OM (%) | ||||||
Less potential | - | 2.6 | 2.4 | 2.2 | - | 2.2 |
Intermediate | 1.9 | 3.1 | 2.2 | - | 2.8 | - |
More potential | 1.9 | 3.2 | 3.1 | 3.0 | 2.6 | 2.2 |
P2O5 (mg kg−1) | ||||||
Less potential | - | 11.0 | 10.0 | 17.0 | - | 4.5 |
Intermediate | 12.0 | 10.5 | 17.6 | - | 23.0 | - |
More potential | 7.8 | 12.3 | 41.5 | 53.5 | 23.8 | 9.0 |
CEC (cmol kg−1) | ||||||
Less potential | - | 11.4 | 10.7 | 5.5 | - | 6.4 |
Intermediate | 9.9 | 14.9 | 10.0 | - | 16.6 | - |
More potential | 18.5 | 16.7 | 13.3 | 10.2 | 15.3 | 8.9 |
Parameter | Azinhal | Cubillos | Grous | Murteiras | Padres | Tapada |
---|---|---|---|---|---|---|
Biomass (kg ha−1) | ||||||
Less potential | - | 7525a | 5226a | 5204a | - | 5315a |
Intermediate | 4361a | 7810a | 6200b | - | 6104a | - |
More potential | 5601b | 8752b | 6041b | 6971b | 6820b | 8154b |
NDVI | ||||||
Less potential | - | 0.73a | 0.55a | 0.53a | - | 0.55a |
Intermediate | 0.44a | 0.72a | 0.55a | - | 0.66a | - |
More potential | 0.51b | 0.74a | 0.60b | 0.5a | 0.68a | 0.60b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, J.; Shahidian, S.; Paixão, L.; Marques da Silva, J.; Moral, F. Management Zones in Pastures Based on Soil Apparent Electrical Conductivity and Altitude: NDVI, Soil and Biomass Sampling Validation. Agronomy 2022, 12, 778. https://doi.org/10.3390/agronomy12040778
Serrano J, Shahidian S, Paixão L, Marques da Silva J, Moral F. Management Zones in Pastures Based on Soil Apparent Electrical Conductivity and Altitude: NDVI, Soil and Biomass Sampling Validation. Agronomy. 2022; 12(4):778. https://doi.org/10.3390/agronomy12040778
Chicago/Turabian StyleSerrano, João, Shakib Shahidian, Luís Paixão, José Marques da Silva, and Francisco Moral. 2022. "Management Zones in Pastures Based on Soil Apparent Electrical Conductivity and Altitude: NDVI, Soil and Biomass Sampling Validation" Agronomy 12, no. 4: 778. https://doi.org/10.3390/agronomy12040778
APA StyleSerrano, J., Shahidian, S., Paixão, L., Marques da Silva, J., & Moral, F. (2022). Management Zones in Pastures Based on Soil Apparent Electrical Conductivity and Altitude: NDVI, Soil and Biomass Sampling Validation. Agronomy, 12(4), 778. https://doi.org/10.3390/agronomy12040778