Effect of Phosphorus Fertilization on Yield of Chipping Potato Grown on High Legacy Phosphorus Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Farm Managements
2.3. Soil Mehlich-3 P, Al, and Fe Measurements
2.4. Duration and Tuber Yield Measurements
2.5. Tuber Quality Measurements
2.6. Economic Return of Phosphorus Applications
2.7. Statistical Analysis
3. Results and Discussion
3.1. Regression of Yield on P Rate, Year, and Farm
3.2. Regression of Soil P Concentration (after Fertilization) on P Rate and Soil Al and Fe Concentrations (before Fertilization)
3.3. Soil pH and Chemical Analysis
3.4. Potato Tuber Quality Measurements
3.5. Economic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kolasa, K.M. The potato and human nutrition. Am. Potato J. 1993, 70, 375–384. [Google Scholar] [CrossRef]
- Lutaladio, N.B.; Castaldi, L. Potato: The hidden treasure. J. Food Compos. Anal. 2009, 22, 491–493. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA) National Agriculture Statistics Service (NASS). Potatoes 2019 Summary. 2020. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/pots0920.pdf (accessed on 23 March 2022).
- Iwama, K. Physiology of the potato: New insights into root system and repercussions for crop management. Potato Res. 2008, 51, 333. [Google Scholar] [CrossRef]
- Rosen, C.J.; Kelling, K.A.; Stark, J.C.; Porter, G.A. Optimizing phosphorus fertilizer management in potato production. Am. J. Potato Res. 2014, 91, 145–160. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Tanaka, A. Quantitative observation on the root system of various crops growing in the field. Soil Sci. Plant Nutr. 1990, 36, 483–493. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R.; Garrido-Baserba, M. Economic feasibility study for phosphorus recovery processes. Ambio 2011, 40, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [Green Version]
- Daniel, T.C.; Sharpley, A.N.; Lemunyon, J.L. Agricultural phosphorus and eutrophication: A symposium overview. J. Environ. Qual. 1998, 27, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Liu, G.; Hogue, B.; Li, Y. Phosphorus availability and environmental risks in potato fields in North Florida. Soil Use Manag. 2015, 31, 308–312. [Google Scholar] [CrossRef]
- Liu, G.D.; Simonne, E.H.; Morgan, K.T.; Hochmuth, G.J.; Agehara, S.; Mylavarapu, R. Fertilizer management for vegetable production in Florida. In Vegetable Production Handbook of Florida, 23rd ed.; Dittmar, P., Paret, M., Freeman, J., Smith, H., Eds.; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2021; Chapter 2; pp. 3–10. Available online: https://edis.ifas.ufl.edu/publication/CV296 (accessed on 23 March 2022).
- Erich, M.S.; Fitzgerald, C.B.; Porter, G.A. The effect of organic amendments on phosphorus chemistry in a potato cropping system. Agric. Ecosyst. Environ. 2002, 88, 79–88. [Google Scholar] [CrossRef]
- Hopkins, B.G.; Fernelius, K.J.; Hansen, N.C.; Eggett, D.L. AVAIL Phosphorus fertilizer enhancer: Meta-analysis of 503 field evaluations. Agron. J. 2018, 110, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Jasim, A.; Sharma, L.K.; Zaeen, A.; Bali, S.K.; Buzza, A.; Alyokhin, A. Potato phosphorus response in soils with high value of phosphorus. Agriculture 2020, 10, 264. [Google Scholar] [CrossRef]
- Rosen, C.J.; Bierman, P.M. Potato yield and tuber set as affected by phosphorus fertilization. Am. J. Potato Res. 2008, 85, 110–120. [Google Scholar] [CrossRef]
- Ohio State University Extension. Amending Soils with Lime or Gypsum (NRCS 333). 2021. Available online: https://agbmps.osu.edu/bmp/amending-soils-lime-or-gypsum-nrcs-333 (accessed on 23 March 2022).
- Cui, S.; Qin, Y.; Yu, J.; Shi, X.; Jia, L.; Fan, M. Improving tuber yield and phosphorus use efficiency using split phosphorus application to potatoes in Inner Mongolia. Am. J. Potato Res. 2020, 97, 318–324. [Google Scholar] [CrossRef]
- Martins, J.D.L.; Soratto, R.P.; Fernandes, A.; Dias, P.H. Phosphorus fertilization and soil texture affect potato yield. Rev. Caatinga 2018, 31, 541–550. [Google Scholar] [CrossRef]
- Benjannet, R.; Nyiraneza, J.; Khiari, L.; Fuller, K.; Bizimungu, B.; Savoie, D.; Jiang, Y.; Rodd, V.; Mills, A. An agro-environmental phosphorus model for potato in the Canadian Maritime Provinces. Agron. J. 2018, 110, 2566–2575. [Google Scholar] [CrossRef]
- Khiari, L.; Parent, P.E.; Pellerin, A.; Alimi, A.R.A.; Tremblay, C.; Simard, R.R.; Fortin, J. An agri-environmental phosphorus saturation index for acid coarse-textured soils. J. Environ. Qual. 2000, 29, 1561–1567. [Google Scholar] [CrossRef]
- Mylavarapu, R.; Hocmuth, G.; Liu, G.D. UF/IFAS Standardized Nutrient Recommendations for Vegetable Crop Production in Florida; University of Florida Institution of Food and Agriculture Sciences: Gainesville, FL, USA, 2022; Available online: https://edis.ifas.ufl.edu/publication/CV002 (accessed on 25 January 2022).
- Kleinschmidt, G.; Kleinkopf, G.; Westermann, D.; Zalewski, J. Specific Gravity of Potatoes (CIS 609); University of Idaho: Moscow, Russia, 1984; Available online: https://digital.lib.uidaho.edu/digital/collection/ui_ep/id/29366 (accessed on 23 March 2022).
- Rens, L.R.; Zotarelli, L.; Cantliffe, D.J.; Stoffella, P.J.; Gergela, D.; Burhans, D. Rate and timing of nitrogen fertilizer application on potato ‘FL1867’ part II: Marketable yield and tuber quality. Field Crop Res. 2015, 183, 267–275. [Google Scholar] [CrossRef]
- Lamont, W. Fertility Considerations for Potatoes; PennState Extension: Pennsylvania, PA, USA, 2017. [Google Scholar]
- Prasad, R.; Chakraborty, D. Phosphorus Basics: Understanding Phosphorus Forms and Their Cycling in the Soil; Alabama A&M and Auburn Universities Extension: Alabama, AL, USA, 2019. [Google Scholar]
- United States Department of Agriculture (USDA); Natural Resources Conservation Service (NRCS). Soil Phosphorus. 2014. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051878.pdf (accessed on 23 March 2022).
- Doydora, S.; Gatiboni, L.; Grieger, K.; Hesterberg, D.; Jones, J.L.; McLamore, E.S.; Peters, R.; Sozzani, R.; Van den Broeck, L.; Duckworth, O.W. Accessing legacy phosphorus in soils. Soil Syst. 2020, 4, 74. [Google Scholar] [CrossRef]
- Sattelmacher, B.; Marschner, H.; Kühne, R. Effects of the temperature of the rooting zone on the growth and development of roots of potato (Solanum tuberosum). Ann. Bot. 1990, 65, 27–36. [Google Scholar] [CrossRef]
- Thompson, L.M.; Black, C.A. The effect of temperature on the mineralization of soil organic phosphorus. Soil Sci. Soc. Am. J. 1948, 12, 323–326. [Google Scholar] [CrossRef]
- Lacey, M.J.; Wilson, C.R. Relationship of common scab incidence of potatoes grown in Tasmanian ferrosol soils with pH, exchangeable cations and other chemical properties of those soils. J. Phytopathol. 2001, 149, 679–683. [Google Scholar] [CrossRef]
- Stead, D.; Wale, S. Non-Water Control Measures for Potato Common Scab; British Potato Council: Oxford, UK, 2004; Available online: https://web.archive.org/web/20120401133106/http://www.potato.org.uk/sites/default/files/%5Bcurrent-page%3Aarg%3A?%5D%2FR248%20Common%20Scab%20Review%202004_0.pdf (accessed on 6 March 2022).
- Marschener, H. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res. 1998, 56, 203–207. [Google Scholar] [CrossRef]
- Joshi, M.; Fogelman, E.; Belausov, E.; Ginzberg, I. Potato root system development and factors that determine its architecture. J. Plant Physiol. 2016, 205, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Laboski, C.A.M.; Kelling, K.A. Influence of fertilizer management and soil fertility on tuber specific gravity: A review. Am. J. Potato Res. 2007, 84, 283–290. [Google Scholar] [CrossRef]
- Melito, S.; Garramone, R.; Villano, C.; Carputo, D. Chipping ability, specific gravity and resistance to Pectobacterium carotovorum in advanced potato selections. N. Z. J. Crop Hortic. Sci. 2017, 45, 81–90. [Google Scholar] [CrossRef]
- Naumann, M.; Koch, M.; Thiel, H.; Gransee, A.; Pawelzik, E. The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Res. 2020, 63, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Hochmuth, G.; Weingartner, P.; Hutchinson, C.; Tilton, A.; Jesseman, D. Potato yield and tuber quality did not respond to phosphorus fertilization of soils testing high in phosphorus content. HortTechnology 2002, 12, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Florida Automated Weather Network; University of Florida Institution of Food and Agriculture Sciences: Gainesville, FL, USA, 2022; Available online: https://fawn.ifas.ufl.edu/data/reports/?res (accessed on 6 March 2022).
Farms | Element | Concentration |
---|---|---|
mg Element kg−1 soil | ||
Farm A | P | 497 |
Al | 946 | |
Fe | 187 | |
Farm B | P | 220 |
Al | 253 | |
Fe | 312 |
Trial Year | Nutrient | Preplant | Emergence | Layby | Total |
---|---|---|---|---|---|
2018 | N | 56 | 202 | 37 | 295 |
2019 | N | 56 | 213 | 90 | 359 |
2020 | N | 56 | 202 | 45 | 303 |
2018 | K | 168 | 121 | 49 | 339 |
2019 | K | 168 | 128 | 54 | 350 |
2020 | K | 168 | 121 | 45 | 334 |
Farm | Harvest Year | Harvest Date | Internal/External Quality Measurement |
---|---|---|---|
Farm A | 2018 | 05–08 | Yes |
2019 | 05–07 | Yes | |
2020 | 04–29 | No | |
Farm B | 2018 | 05–06 | Yes |
2019 | 05–07 | Yes | |
2020 | 04–28 | No |
Farm | A | 36 observations |
B | 27 observations | |
P rate | 12.2 kg P ha−1 | 21 observations |
24.5 kg P ha−1 | 21 observations | |
48.9 kg P ha−1 | 21 observations | |
Year | 2018 | 18 observations |
2019 | 24 observations | |
2020 | 21 observations | |
Yield | Min: 24,683; Max: 45,373 Mean: 38,101; Median: 39,490 Std Dev: 5161.4 | 63 observations |
Variables | Coefficients | p-Value |
---|---|---|
Intercept | 34,891.6 | <2 × 10−16 * |
P rate (24.5 kg P ha−1) | 682.0 | 0.319 |
P rate (48.9 kg P ha−1) | 1819.4 | 0.00959 * |
Year (2019) | 3527.1 | 4.10 × 10−6 * |
Year (2020) | −5434.4 | 2.42 × 10−10 * |
Farm B | −2950.1 | 2.61 × 10−6 * |
Variables | Coefficients | p-Value | ||||
---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |
Intercept | 125.05 | 415.3 | 932.720 | 0.436 | 0.159 | 5.35 × 10−5 * |
P rate (24.5 kg P ha−1) | 34.653 | 10.45 | 7.186 | 0.00572 * | 0.498 | 0.527 |
P rate (48.9 kg P ha−1) | 45.969 | 12.72 | 22.996 | 0.000302* | 0.412 | 0.0365 * |
Days after planting for individual growth stages z | −0.006053 | 2.397 | 0.396 | 0.982 | <2 × 10−16 * | 0.00956 * |
P (before fertilization) | −0.214 | 1.392 | 1.387 | 0.276 | 1.32 × 10−11 * | 2 × 10−16 * |
Farm B | −97.184 | −117.16 | −282.073 | 1.56 × 10−6 * | 0.000256 * | 3.10 × 10−6 * |
Soil pH (before fertilization) | 17.492 | −32.68 | −101.595 | 0.495 | 0.130 | 0.00275 * |
Al (before fertilization) | N/A | N/A | −0.464 | N/A | N/A | 2.19 × 10−6 * |
Fe (before fertilization) | N/A | N/A | 0.175 | N/A | N/A | 0.134 |
Farms | Element | Concentration | P Equivalent z (kg P ha−1) |
---|---|---|---|
(mg Element kg ha−1) | |||
Farm A | P | 1114 | N/A |
Al | 2121 | 2434 y | |
Fe | 419 | 232 x | |
Farm B | P | 493 | N/A |
Al | 567 | 651 | |
Fe | 699 | 388 |
Farm | P Rate (kg P ha−1) | Specific Gravity | ||
---|---|---|---|---|
2018 | 2019 | Average | ||
Farm A | 12.2 z | 1.087 | 1.081 | 1.084 |
24.5 | 1.086 | 1.083 | 1.085 | |
48.9 | 1.087 | 1.082 | 1.085 | |
Farm B | 12.2 z | 1.082 | 1.085 | 1.084 |
24.5 | 1.086 | 1.085 | 1.086 | |
48.9 | 1.083 | 1.083 | 1.083 |
Farm | P Rate (kg P ha−1) | Internal Quality Issues (% of Total Tuber Yield) | ||||
---|---|---|---|---|---|---|
Hollow Heart | Brown Center | Corky Ring Spot | Internal Heat Necrosis | Total | ||
Farm A | 12.2 z | 1.32 | 0 | 0 | 0.15 | 1.47 |
24.5 | 1.67 | 0 | 0 | 0 | 1.67 | |
48.9 | 0.94 | 0 | 0 | 0 | 0.94 | |
Farm B | 12.2 z | 0.83 | 0 | 0.50 | 0.83 | 2.17 |
24.5 | 0.78 | 0 | 0.78 | 0 | 1.56 | |
48.9 | 1.88 | 0 | 0.16 | 0.16 | 2.19 |
Farm | P Rate (kg P ha−1) | External Quality Issues (% of Tubers Examined) | ||||
---|---|---|---|---|---|---|
Green Skin | Growth Cracks | Misshapen | Rotten | Total | ||
Farm A | 12.2 z | 2.94 y | 7.60 | 0.59 | 0.95 | 12.09 |
24.5 | 3.69 | 6.62 | 0.60 | 1.24 | 12.15 | |
48.9 | 3.93 | 4.62 | 0.69 | 0.73 | 9.98 | |
Farm B | 12.2 z | 7.15 | 5.42 | 1.36 | 2.55 | 16.48 |
24.5 | 8.02 | 4.70 | 1.22 | 2.25 | 16.19 | |
48.9 | 5.98 | 3.51 | 0.82 | 3.06 | 13.37 |
Farm | P Rate (kg P ha−1) | Potato Tuber Size (Diameter) | ||||||
---|---|---|---|---|---|---|---|---|
C y (12.7–38.1 mm) | B (38.1–47.6 mm) | A1 (47.6–63.5 mm) | A2 (63.5–83.8 mm) | A3 (83.8–101.6 mm) | A4 (>101.6 mm) | Total | ||
Farm A | 12.2 z | 1.42 | 4.37 | 39.68 | 9.18 | 6.75 | 0.15 | 61.54 |
24.5 | 0.88 | 3.30 | 35.75 | 9.84 | 5.49 | 0.00 | 55.26 | |
48.9 | 1.17 | 4.28 | 44.80 | 9.86 | 3.78 | 2.16 | 66.05 | |
Farm B | 12.2 z | 1.23 | 4.37 | 33.14 | 11.67 | 12.79 | 0.23 | 63.44 |
24.5 | 0.94 | 3.26 | 31.24 | 13.29 | 14.34 | 0.20 | 63.27 | |
48.9 | 0.77 | 2.68 | 30.17 | 13.34 | 16.56 | 0.22 | 63.73 |
Variables | Coefficients | p-Value |
---|---|---|
Intercept | 5.9785 | <2 × 10−16 * |
P rate (24.5 kg P ha−1) | −0.0685 | 0.8994 |
P rate (48.9 kg P ha−1) | −1.0998 | 0.0433 * |
Year (2019) | −1.9754 | 2.15 × 10−5 * |
Farm B | 1.5579 | 6.42 × 10−4 * |
Farm | Year | P Rate (kg P ha−1) | Yield (Mg ha−1) | Yield Gain (kg ha−1) | Yield Return per kg P |
---|---|---|---|---|---|
Farm A | 2018–2020 | 12.2 | 43.4 | N/A | N/A |
24.5 | 43.8 | 375 | 6.7 | ||
48.9 | 45.0 | 1561 | 13.9 | ||
Farm B | 2018–2020 | 12.2 | 39.0 | N/A | N/A |
24.5 | 40.5 | 1553 | 27.7 | ||
48.9 | 42.2 | 3236 | 28.9 |
Farm | Year | P Rate (kg P ha−1) | Potato Market Price (US Dollars ha−1) | Economic Return (US Dollars ha−1) |
---|---|---|---|---|
Farm A | 2018 | 12.2 | 13,106 | N/A |
24.5 | 13,188 | 83 | ||
48.9 | 13,589 | 484 | ||
2019 | 12.2 | 13,916 | N/A | |
24.5 | 14,007 | 91 | ||
48.9 | 14,172 | 257 | ||
2020 | 12.2 | 10,447 | N/A | |
24.5 | 10,458 | 11 | ||
48.9 | 10,641 | 195 | ||
2018–2020 | 12.2 | 12,489 | N/A | |
24.5 | 12,551 | 62 | ||
48.9 | 12,801 | 312 | ||
Farm B | 2018 | 12.2 | 10,440 | N/A |
24.5 | 10,980 | 540 | ||
48.9 | 11,192 | 751 | ||
2019 | 12.2 | 13,027 | N/A | |
24.5 | 13,015 | −11 | ||
48.9 | 13,382 | 355 | ||
2020 | 12.2 | 9539 | N/A | |
24.5 | 10,349 | 810 | ||
48.9 | 10,949 | 1410 | ||
2018–2020 | 12.2 | 11,380 | N/A | |
24.5 | 11,713 | 333 | ||
48.9 | 12,137 | 757 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Fall, T.; Su, Z.; Bortolozo, F.; Mussoline, W.; England, G.; Dinkins, D.; Morgan, K.; Clark, M.; Liu, G. Effect of Phosphorus Fertilization on Yield of Chipping Potato Grown on High Legacy Phosphorus Soil. Agronomy 2022, 12, 812. https://doi.org/10.3390/agronomy12040812
Qiu Y, Fall T, Su Z, Bortolozo F, Mussoline W, England G, Dinkins D, Morgan K, Clark M, Liu G. Effect of Phosphorus Fertilization on Yield of Chipping Potato Grown on High Legacy Phosphorus Soil. Agronomy. 2022; 12(4):812. https://doi.org/10.3390/agronomy12040812
Chicago/Turabian StyleQiu, Yuheng, Thioro Fall, Zhihua Su, Fernando Bortolozo, Wendy Mussoline, Gary England, David Dinkins, Kelly Morgan, Mark Clark, and Guodong Liu. 2022. "Effect of Phosphorus Fertilization on Yield of Chipping Potato Grown on High Legacy Phosphorus Soil" Agronomy 12, no. 4: 812. https://doi.org/10.3390/agronomy12040812
APA StyleQiu, Y., Fall, T., Su, Z., Bortolozo, F., Mussoline, W., England, G., Dinkins, D., Morgan, K., Clark, M., & Liu, G. (2022). Effect of Phosphorus Fertilization on Yield of Chipping Potato Grown on High Legacy Phosphorus Soil. Agronomy, 12(4), 812. https://doi.org/10.3390/agronomy12040812